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Abstract

Dams have been associated with various impacts on downstream river ecosystems, includ-
ing a decrease in stream flow, species biodiversity, water quality, altered hydrology and 
colonisation of the area by invasive alien plant species. The impacts normally interfere 
with the ecosystem functioning of riparian and aquatic environments, thereby leading 
to decreased biodiversity. This study aims to assess the impacts of dams on downstream 
river ecosystems, using data from aerial photographs and orthophotos, supplemented 
by field work. Five dams in Limpopo Province, South Africa, were selected (Albasini, 
Damani, Mambedi, Nandoni and Vondo), and photographs from different years were 
used. The area devoid of trees of certain species both downstream and upstream of the 
dams was calculated using grids of predetermined square sizes on each available photo-
graph. Aerial photographs and orthophoto data were supplemented by field work. The 
nearest-individual method was used in the field to determine tree density of particular 
tree species. The environments downstream of the dams show a loss of obligate ripar-
ian vegetation and an increase of obligate terrestrial vegetation (Acacia Karroo, Acacia 

Ataxacantha and Bauhinia galpinii). Treeless area increased in all cases, especially in the 
case of Mambedi and Vondo dams, indicating lower resilience and higher fragility there.

Keywords: downstream, upstream, aerial orthophoto, riparian vegetation, damming of 
rivers
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1. Introduction

Dams across the world have been associated with many negative environmental, social and 

economic impacts. In particular, dams tend to affect downstream water flow, leading to 
vegetation species loss. Many dammed rivers around the world have been characterised by 

decline in species biodiversity, increase in invasive alien plants and pollution. Mumba and 

Thompson [1] argue that flow disturbance provides stimulus for the establishment of oppor-

tunistic plants, particularly alien invasive species. In Limpopo, the most northerly province 
of South Africa, the impacts of dams have also been accelerated by the alternating wet and 
dry climatic conditions that greatly affect the flow regimes of rivers. This is because dams 
create barriers to natural water flow and interfere with ecological processes of riparian zones 
that influence vegetation composition, richness and diversity [2]. Dams have been associated 

with water pollution generated from industries and agricultural sectors, such as the release of 

litter, hot water, pesticides and fertilisers into streams and rivers [3].

The decrease in downstream flow is strongly associated with negative impacts on downstream 
riparian ecosystems. The decrease in water quality and quantity downstream alters the veg-

etation composition, natural irrigation of floodplains and microclimates. These downstream 
impacts are associated with a decrease in biological diversity, changes in successional stages, 

altered biogeochemical cycles and alteration of downstream natural ecosystems. Toxins that 

accumulate in dams can be released during flush periods and is often accompanied by irrepa-

rable damage to the downstream environment. The presence of dam results in landscape 

modification and changes in hydrology, channel morphology and physiochemical properties 
result in the dramatic decrease in biodiversity in riparian and aquatic ecosystems (upstream 
& downstream) [4]. About half of South Africa’s rainfall is stored in dams [5]. There are about 

550 government dams that carry about approximately 37 million m3 of water. There are about 

25 registered dams in Limpopo Province [6].

The dams of Limpopo, with much of the Province characterised by wet-dry climatic cycles 
have remarkable and sometimes irreversible impacts on downstream ecosystems. These dams 
usually change vegetation composition, reduce species diversity, alter flow characteristics and 
encourage alien species invasion that alter the ecosystem functioning of rivers downstream. 

Need therefore arises that the impact of these dams on their downstream river ecosystems be 

studied using historical aerial photograph data to determine whether the upstream existence 

of dams impacts on downstream vegetation density. The main purpose of the study was to 

use historical aerial photography to assess the impact of selected Luvuvhu/Mutale dams of 
the Limpopo Province on their downstream river ecosystems. The specific objectives were 
to study the nature of vegetation changes along downstream river courses, and to compare 

upstream and downstream vegetation species richness.

2. Materials and methods

The study area is riverine vegetation that is located upstream and downstream of the follow-

ing dams: Albasini, Nandoni, Damani, Mambedi and Vondo dam that are located in Vhembe 
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district, Limpopo province of South Africa. The major rivers Luvuvhu and Mutshindudi origi-
nate from Soutpansberg Mountains and the vegetation types range from co-regions 2.01 Sour 
Lowveld Bushveld, Soutpansberg Arid Mountain Bushveld and patches of Afromontane Forest 
to the eco-regions to 2.15 Northeastern Mountain Grassland and Afromontane Forest [8].

2.1. The study area

2.1.1. Albasini dam

The dam is situated at 23o06’25”S and 30o07’30″E. It was built on the Luvuvhu River in 1952 
and was raised by means of spillway gates in 1970/1971. The dam was built to supply water 
to the Levubu Irrigation Scheme to irrigate tropical fruits such as bananas, litchis, mangos, 
avocados and macadamia nuts (Figure 1). Its maximum water carrying capacity is 25.6×106 m3 

[6]. It lies 22 km south-east of Makhado (formerly Louis Trichardt) and approximately 45 km 
west (upstream) of the Nandoni dam, which also lies on the Luvuvhu River. It has a surface 
area of 350 ha. The rainfall station in the vicinity of the dam is Goedehoop.

2.1.2. Damani dam

The Damani dam is on the Mbwedi River and was established in 1991 (Figures 1 and 2). The 

dam is situated at 22o50’07”S and 30o31’22″E and was built to supply water to the former 
Damani Coffee Estate which required 4.08×106m3 per annum. It supplies irrigation water to 

the surrounding commercial farms owned by local community members. Its maximum water 

carrying capacity is 12.4 × 106 m3 and it has a surface area of 130 ha [6].

Figure 1. The locations of selected dams in the study area.
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2.1.3. Mambedi dam

The dam was built on the Mambedi River to supply water to the Sapekoe Tea Company. The 
dam suffered a partial collapse in the year 2000 after its wall failed to contain an increase in 
flow during the heavy downpour caused by cyclone Eline. The dam had a carrying capacity 
of 7×106 m3 prior to its collapse. This left the dam completely non-functional. The dam is situ-

ated at 23o07’27”S and 30o13’13″E [6].

Figure 2. The riverine vegetation along Mbwedi River before the damming (top) and after construction of the Damani 
dam (bottom).
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2.1.4. Nandoni dam

The Nandoni dam lies on the Luvuvhu River and was constructed in 2005. The dam is situ-

ated at 22o56′ 45”S and 30o20’07″ E. It was completed in 2009 and its water carrying capacity 
is 163×106m3 [6]. The dam has a surface area of 1570 ha. The Nandoni dam lies 40 km east 
(downstream) of the Albasini dam. It was built to supply water to the Nandoni water works 
and provide water for small scale irrigation [6].

2.1.5. Vondo dam

The Vondo dam was established in 1982 on the Mutshindudi River near Thohoyandou and 
Sibasa. The dam is situated at 22o56’45”S and 30o20′07″E. It has a capacity of 30.54×106 m3 and 

a surface area of 219 ha. It was built to supply water to the Tate-Vondo Tea Estate [6].

2.2. The characteristics of the vegetation in the selected study area

A check sheet for vegetation data was used. This was used to record data on vegetation type, 
morphology and density. Data for these variables were collected both upstream and down-

stream of the dams. Before the actual collection of data a pilot survey was done to record the type 
of vegetation found along the major river courses of the Luvuvhu and Mutale river catchment. 
This was done to study the ecological setting of the study area and to identify points where data 
were to be sampled. Vegetation was categorised into trees, shrubs and herbs. All three life forms 
where identified in the field and measurements were done to determine pattern of vegetation 
change and density both downstream and upstream of the dams. Pattern of change was identi-
fied by studying vegetation composition along riparian zones both upstream and downstream 
of the dams to compare vegetation composition associated with water-deficient (downstream) 
and water-rich (upstream) environments. This was done to establish whether there was an 
increase in terrestrial vegetation along dry and wet riparian zones and to assess changes in 
morphological characteristics of the vegetation (whether short, dispersed or clustered).

Tree density was considered as the concentration of Acacia tree species within a given area, 

expressed in square meters. The nearest individual method of Kent and Coker [7]) and the 

simple plotless sampling was carried out to measure tree density. Since the study area was 
characterised by tall, dense and sometimes scattered trees, plotless sampling as a form of 
random sampling was used. Dense, sparse and tall tree species of the area limited the use of 

quadrants and other probabilistic sampling methods. With plotless sampling, sampled points 
were randomly selected using random walk procedures. These sampled points are called ran-

dom walk points. The random walk points were chosen using random numbers selected from 
a random number table. The first selected random number represented the direction of the 
location of the random walk point. A standard prismatic compass was used to measure the 
direction of the randomly selected spots, ranging from 0 to 360o. The second random number 

represented the distance that was travelled to locate a sampled point, in the direction that was 

previously chosen. Tree density measurements were taken at 16 random walk points around 
each dam – 8 upstream and 8 downstream of the dam.
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All the random walk points were used as starting points to measure tree density using the 
nearest individual method. For each selected spot a total of five distance measurements were 
taken and all measurements were averaged to determine the mean distance of each tree spe-

cies from the random walk point. Acacia tree species were used for the purpose of this mea-

surement. A 30 m tape was used to measure distances from selected random walk points to 
the nearest individual tree species. Five distance measurements between similar individual 
species, per random walk point, were taken and averaged to determine the mean distance of 
individual tree species from the random walk points. All distances were then averaged and 
squared to determine the mean area of Acacia tree species using a formula (1) adapted from 
Kent and Coker [7] as follows:

  A =  N   2   (1)

where A is the mean area of tree species and N is the mean distance to the nearest individual 

species.

After the calculation of mean area, tree density was also calculated using a formula (2) adapted 
from Kent and Coker [7] as follows:

  TD =  √ 
__

   A __ 
2
      (2)

where TD is the tree density.

2.3. The use of aerial photographs and orthophotos for treeless cover area

Tree cover was defined as the extent of tree canopy cover in relation to the ground surface. 
The identification of trees on aerial photographs (Table 1) was based on size, shape, tone or 
shades of grey, pattern and texture.

To reduce bias and error in object identification a stereoscopic view was generated for adjacent 
aerial photographs to verify the shape, sizes, texture, pattern and tone of trees as suggested by 
Jensen [8]. Vertical aerial photographs (1:16,666) and orthophoto maps (1:10,000) of Luvuvhu/ 
Mutale area were used to calculate the size of treeless area in all studied dams. These scales 
were chosen because they are able to show many landscape features and minimise misin-

terpretation of features. Booth et al. [9] argue that the accuracy of land or vegetation charac-

terisation from remote sensing data is a function of spatial resolution. They recommend the 

use of the lowest-resolution photographs (1:60,000 to 1:40,000). This is why in this study of 
dams in the Luvuvhu and Mutale river catchment, the resolutions of 1:10,000 and 1:16,666 
were used to study vegetation density changes both upstream and downstream of the dams. 

Orthophotos (=) (1:10,000) were also used because they were considered more accurate and 
could supplement measurements and object identification from vertical aerial photographs. 
Cameron et al. [10] argue that orthophotos are in fact rectified photographs showing objects 
in their true planimetric positions. The size of treeless area was considered to be the total 
surface area devoid of trees in a given area. The size of treeless area in each photograph was 
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calculated within an area of 4.5 km2 both upstream and downstream of dams making a total 
surface area of 9 km2 for each dam. This size of an area was chosen because it was possible to 
determine any tree cover variations between downstream and upstream sections of the dams.

On the aerial photographs of a scale of 1:16,666, a grid of 0.2 cm squares, with 4125 squares, 
was used to calculate the total surface area devoid of tree species both downstream and 

upstream of the dams. The size of the grid was 15 cm × 11 cm, equivalent to 2.5 km × 1.8 km 
on the ground, which is the total surface area of 4.5 km2. All squares with no tree species were 
added together to obtain the total surface area devoid of tree species. The total number of 

squares with no tree species was then converted to square kilometres to determine the size of 
the area on the ground that was devoid of trees. The total surface area (3) devoid of trees was 
calculated as follows:

Table 1. Aerial photographs and orthophotos for Luvuvhu and Mutale dam areas (surveys and mapping: Department 
of Land Affairs).
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A

  

=    S   2 

  

 

  

=     0.2 × 16, 666
 _________ 

100, 000
   ×   

0.2 × 16, 666
 _________ 

100, 000
  

       = 0.033 km × 0.033 km    

 

  

= 0.001089  km   2  × 4125   (  number of sample squares )   
      

 

  

= 4.5  km   2 

    

  (3)

where A is the total surface area of one sample square, S is the one side of a square.

From the given formula, the total number of squares that contained no tree species was multi-
plied by 0.001089 km2 to determine the total surface area devoid of tree species in km2.

For the available 1:10,000 orthophoto maps, a grid of 0.25 cm square size was used with a total 
square of 7200. The size of the grid was 25 cm × 18 cm, which is an equivalent of 2.5 km × 1.8 km 
on the ground. Each square represented a total surface area of 0.000625 km2. Therefore, the 

total surface area covered by the grid can be simplified as 0.000625 km2 × 7200 to represent 

4.5 km2. The total surface area (4) devoid of trees was also calculated as follows:

   

A

  

=    S   2 

  

 

  

=     0.25 × 10, 000
 __________ 

100, 000
   ×   

0.25 × 10, 000
 __________ 

100, 000
  

       = 0.025 km  ×  0.025 km    

 

  

= 0.000625  km   2  × 7200   (  number of sample squares )   
      

 

  

= 4.5  km   2 

    

        (4)

2.4. Data analysis

The remotely sensed data was analysed qualitatively by describing the vegetation cover 
on aerial photographs and orthophotos. Tree cover from the remotely sensed images was 

described based on Dansereau’s method [11] of vegetation description of physiognomy and 

structure as highlighted by Kent and Coker [7]. The method of Dansereau [11] describes cover 

based on the following criteria:

Barren (b): An area characterised open land with no trees and grass, or sparse trees of poor quality.

Continuous (c): An area characterised by uniform, unbroken dense vegetation cover.

Discontinuous (i): An area characterised by dense, but intermittent, cover. The interruption 
occurs as a result of in environmental gradients (slope, altitude, topography) and disturbed 
or degraded surfaces.

Tufts and groups (p): Bushes growing in clusters or groups, and is separated from one another 
by noticeable environmental gradients or degraded surfaces.

3. Results and discussion

3.1. Aerial photograph and orthophoto analysis of tree cover data

From the aerial photograph data, vegetation cover data has been presented in tabular and 
graphical form, showing areas upstream and downstream in the vicinity of dams that are 
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devoid of trees. Table 2 summarises the calculated surface areas devoid of trees for different 
aerial photographs.

Table 3 shows the size of area devoid of trees derived from orthophotos both upstream and 
downstream of the studied dams. Table 3 shows the total surface area devoid of trees for all 

studied periods on aerial photographs and orthophotos.

Table 4 shows the total surface areas devoid of tree cover that were measured using aerial 

photographs. The total surface areas have been expressed in square kilometres.

Table 1 shows that for the Albasini dam area on the Luvuvhu River, the surface area devoid of 
trees immediately upstream of the dam remained about the same = at 0.82 km2 between 1989 
and 1995 (Tables 1 and 3). The area downstream of the dam devoid of trees during the same 

period increased from 1.02 to 1.07 km2. This is an increase in treeless area by 0.05 km2 in a period 

of 6 years (Tables 1 and 3). This density increase in the treeless area is expected because of the 

shortage in water that would have occurred probable due to the upstream presence of the dam. 

The total surface area devoid of trees for the whole study area (9 km2) in 1989 was 1.84 and 1.89 
km2 in 1995. However, the size of treeless area upstream of the dam from 1995 to 1997 (latest 
studied period) increased from 0.82 to 0.84 km2. This is growth of treeless area by 0.02 km2. The 

size of the treeless area downstream of the dam from 1995 to 1997 increased from 1.07 to 1.13 km2 

Table 2. Surface areas devoid of trees upstream and downstream of studied dams (from aerial photographs).

Table 3. Surface areas devoid of trees upstream and downstream of the studied dams (from orthophoto calculation).
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(Tables 1 and 2). This is a growth by 0.06 km2 (Tables 2 and 3). Therefore, the impact of shortage 

of water downstream of the dam was clearly reflected in the 1997 photographs. The total surface 
area devoid of trees for the study area from 1995 to 1997 was 0.08 km2. Therefore, the total surface 

area devoid of trees for the dam study area between 1989 and 1997 grew from 1.84 to 1.97 km2 

(Tables 1 and 2) in a period of 6 years. This is an increase by 0.13 km2 in 6 years (Table 3). From 
Table 3 the total surface area devoid of trees downstream of the dam between 1989 and 1997 was 
bigger (0.11 km2) than upstream (0.02 km2). The increase in treeless area downstream of the dam 

can be explained with specific reference to alternating shortage of water downstream of the dam 
area. Shortage of water downstream of the dam during low-rainfall period gradually leads to 
a decline in riparian species richness and lower species diversity of colonising vegetation. This 

is because riparian species are selective when establishing themselves and they are sensitive 

to flooding frequency and duration [12–15]. Therefore, the diversity and function of riparian 

communities are impacted by river regulation [16]. Gordon and Meentemeyer [17] stated that 

reduced wetted perimeter of a river allows vegetation to increase by 50% along formerly inun-

dated area. However, the colonising species are terrestrial, like Acacia Karroo along downstream 

reaches of Luvuvhu River at the Albasini dam.

For the Damani dam on the Mbwedi River, the total surface area devoid of trees upstream 
of the dam changed between 1987 and 1995 from 0.32 to 0.42 km2 (Tables 1 and 3). This is an 

increase in area by 0.10 km2 (Table 3). The area downstream of the dam devoid of trees between 

the same periods increased from 0.32 to 0.46 km2. This is an increase in area by 0.14 km2 in a 

period of 8 years. The total surface area devoid of trees for the whole dam study area (9 km2)  

in 1987 was 0.64 and 0.88 km2 in 1995 (Tables 1 and 3). This is a total surface area devoid of 

trees of 0.24 km2 in a period of 8 years (Table 3). However, the treeless area upstream of the 
dam from 1995 to 2004 (latest studied period) remained constant at 0.42 km2 (Tables 2 and 3), 

Table 4. Total surface area devoid of tree species of the selected dams in the Luvuvhu and Mutale river catchment.
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while the treeless area downstream of the dam grew from 0.46 to 0.55 km2 from 1995 to 2004. 
This is an increase in area by 0.09 km2 (Table 3). Therefore, the total surface area devoid of trees 

grew from 0.64 to 0.97 km2 between 1987 and 2004 within a studied dam area of 9 km2. The 

total surface area devoid of trees between 1987 and 2004 grew by 0.33 km2 within a dam area 

of 9 km2. This means that the scale and magnitude of impact by upstream presence of the dam 

is bigger than at the Albasini dam area. This shows that downstream riparian vegetation does 
not receive sufficient water to support biomass production through photosynthesis. As with 
the Albasini dam area, the Damani dam area has also shown an increase in treeless area, with 
downstream reaches having bigger treeless areas.

For the Mambedi dam on the Mambedi River, the total surface area devoid of trees upstream 
of the dam changed between 1995 and 1997 from 2.10 to 2.12 km2 (Tables 1 and 2). This is 

an increase in area by 0.02 km2 (Table 3). The area devoid of trees immediately downstream 

of the dam during the same period increased from 2.48 to 2.50 km2. This is also an increase 

in an area by 0.02 km2 (Table 3). The total surface area devoid of trees for the whole dam 

study area in 1995 was 4.5 and 4.62 km2 in 1997 (Tables 1 and 2). This is a total surface area 

of 0.04 km2 (Table 3). However, the size of the treeless area upstream of the dam in the 2001 
aerial photograph was 2.90 km2 (Table 2). This is an increase in area from 2.12 km2 (1997) to 
2.90 km2 (2001). This is an increase in area by 0.78 km2 in a period of 4 years. The size of the 
treeless area immediately downstream of the dam increased from 2.50 km2 (1997) to 2.60 km2. 

This is an increase in area devoid of trees by 0.10 km2 in a 4-year period. This means that the 

total treeless surface area for the whole dam within the studied area increased from 4.62 km2 

(1997) to 5.50 km2 (2001), an increase of 0.88 km2 over 4 years. However, the total surface area 
devoid of vegetation for the whole dam study area (9 km2) devoid of trees grew from 4.58 km2 

(1995) to 5.50 km2 (2001) (6-year period). This is an area of 0.92 km2 (Table 3). This means that 

downstream riparian communities suffer water shortage during low rainfall months, and this 
is further worsened by the presence of the dam. This also explains why there is an increase in 

treeless area downstream of the dam. The size of treeless area upstream of the dam is further 
worsened by the fact that after the collapse of the dam wall in the year 2000, a large formerly 

inundated area was left dry, but was later replaced by terrestrial grass species and very few 

tree species. This is why the size of the treeless area in the 2001 photograph was bigger than 
the treeless area shown in the 1995 and 1997 aerial photographs respectively. Plate 1 shows 

the area that was exposed after the failure of the Mambedi dam.

From Plate 1 it can be seen in the background, where less water accumulates, that the area is 
characterised by fine thatching grass (Hyparrhenia filipendula) with a few unevenly scattered 
Acacia ataxacantha trees. Vegetation is still in its primary stage of succession and the stagnant 

water body that can be seen in the background has shown deterioration in water quality. From 
the photograph, it is evident that the failure of the dam reduced the aquatic environment and 
riparian and aquatic biota suffered from the failed water management project. The aquatic 
and riparian zones were colonised by terrestrial grass and woody plants. Orr [17] has stated 

that plant composition differs among recent and older sites as newer sites are dominated by a 
combination of grasses and early successional forbs. The same is true with the Mambedi dam. 

Again, the presence of low grass density on the banks will make the river banks more unstable 
and result in calving. Once this occurs, erosion of banks will increase and sedimentation will 
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also increase. Simon and Collison [18] have noted that if vegetation development progresses 

to trees banks are expected to be more stable than if banks are dominated by grass communi-
ties. This is why Russell et al. [19] have argued that without riparian vegetation, erosion and 

sedimentation will increase in dams. Channels that are characterised by low grass densities 

are more likely to lead to channel straightening [20, 21] .

For the Nandoni dam on the Luvuvhu river, the total surface area devoid of trees upstream of 
the dam increased between 1987 and 1995 from 1.11 to 1.16 km2 (Table 1) This is an increase 

in area of 0.05 km2 (Table 3). The area downstream of the dam devoid of vegetation during 

the same period increased from 1.17 to 1.22 km2. This is also an increase of 0.05 km2. The total 

surface area devoid of trees for the whole dam study area (9 km2) was 2.28 km2 in 1987 and 
2.38 km2 in 1995. This is a change in treeless area by 0.10 km2, this change occurring equally 
upstream and downstream of the dam. This increase in treeless area both upstream and 

downstream of the dam might have occurred during the dry seasons accompanied by low 

flows due to the upstream presence of the dam. This might explain why an increase in treeless 
area was noted in the 1995 aerial photograph. The larger treeless area downstream of the dam 
between 1995 and 2004 appears to be a function of the upstream presence of the dam.

Just like with other studied dams (Albasini, Damani, Mambedi and Nandoni) there has been 
an increase in the size of the treeless area, especially downstream of the Vondo dam. For the 
Vondo dam on the Mutshindudi river, the total surface area devoid of trees upstream of the 

dam changed between 1987 and 1995 from 1.91 to 2.30 km2 (Table 1). This is an increase in 

area of 0.39 km2 in a period of 8 years (Table 3). The area immediately downstream of the dam 

devoid of trees between the same periods increased from 2.03 to 2.55 km2; a higher increase in 

area of 0.52 km2. The total surface area devoid of trees for the Vondo dam in 1987 was 3.94 and 
4.85 km2 in 1995 (Table 1). This means that from 1987 to 1995 the total surface area devoid of 
tree species grew by 0.91 km2 within an area of 9 km2.

Plate 1. The defunct Mambedi dam after the 2000 floods (December 2008).
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It can therefore be concluded that there is also insufficient water available for downstream 
vegetation during dry periods. This led to the disappearance of trees along downstream 

reaches of all studied dams, including Vondo dam. The area upstream of the dam increased 

from 2.30 km2 (1995) to 2.42 km2 in 2004 (Table 2). This is an increase of 0.12 km2. However, the 
area downstream of the dam only increased from 2.55 to 2.58 km2. This is increase of 0.03 km2. 

This means that the total surface area between 1995 and 2004 increased from 4.85 to 5.00 km2 

(Tables 1 and 2). This is a total surface area of 0.15 km2 (Table 3). Therefore, the total surface 

area devoid of trees in a 17 year period (1987–2004) increased from 3.94 to 5.00 km2. This is the 

total surface area of 1.06 km2 (Table 3).

Progressive increase in treeless area shows that the growing conditions might have been 
altered by reduced river discharge and alternating wet-dry periods. This means that the 

growing conditions that existed before or during the construction of the Vondo dam, differed 
from those existed after the construction. Therefore, colonisation and primary plant succes-

sion took place under different conditions that existed before the construction of the dam. 
Doyle et al. [22] also argued that succession of plant communities in the formerly inundated 

area will occur under very different conditions than those existed at the time of dam construc-

tion. This is why the succession conditions downstream of the studied dam areas favoured 

the proliferation of terrestrial species like Acacia ataxacantha and Acacia Karroo. An interesting 
observation by Vale et al. [23] was that reduction in moisture of the soil leads to reduction in 

water-related species such as H. gralipes, I. laurina, A. edulis and I. vere. This explains the pres-

ence of terrestrial tree species such Acacia Karoo in formally inundated downstream environ-

ments. Caskey [24] also noted that diversion-induced flow alteration in the Rocky Mountains 
of the Colorado led to the reduction in the frequency of hydrophytic wetland species and the 
proliferation of non-hydrophytic upland species. Figure 3 shows the total surface areas of 

studied dams devoid of trees calculated from aerial photographs and orthophotos of different 
years as depicted in Table 3.

Figure 3. Total surface areas upstream and downstream of dams devoid of trees.
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3.2. Tree cover data from aerial photographs and orthophotos

The degree of tree cover for all studied dams has been described based on the method of 

Dansereau [11] on vegetation description as highlighted by Kent and Coker [7]. Table 5 shows 

the latest state of tree cover as studied from the latest aerial photographs of the study areas 

using Dansereau’s method.

Tree density is a function of rainfall or moisture availability. Therefore, a cut in water down-

stream of the Luvuvhu/ Mutale dams, due to the upstream presence of the dams, has led to 
a decline in tree density (Table 5). Jones et al. [25] have also noted that tree stands decreased 

along the Colorado and Gila River systems of USA due to the existence of dams.

Table 5. Latest state of tree cover for the five selected Luvuvhu/Mutale dams.

Environmental Risks78



3.3. Field data from the selected dams in the Luvuvhu and Mutale river catchment

3.3.1. Tree density

Tree density data was collected from the five dams studied through field survey. The mean 
distances for tree species from the Luvuvhu/Mutale dams were measured and the results are 
shown in Table 6 and Figure 3. Tree densities upstream and downstream of the dams studied.

From Figure 4 Vondo shows slightly higher upstream density and much lower downstream den-

sity. Vondo shows lower downstream density than all studied dam areas. Downstream of Vondo 

dam area, is less dense (10.11 m2) than in all studied dam areas while Albasini dam area is denser.

However, the Vondo dam area is characterised by commercial agriculture and human settle-

ment along the Mutshindudi River. Therefore, the extent of the impact of the dam downstream 
is complicated by the existence of settlements and intense commercial farming (tea planta-

tions). The field data and photo data do not correspond in all cases but this happen to agree in 
this particular case because of the human settlements and tea plantations. For example, Kellog 
and Zhu [26] noted that during the construction of the Three Gorges Dam (China) clearing of 
vegetation for agriculture the average width of the upstream waterway increased from 0.6 to 

1.6 km. This shows how dams negatively impact on their immediate environments. The same 
is true with the area in the vicinity of the Vondo dam. Therefore, the lower tree density down-

stream of the Vondo dam corresponds with the size of the treeless area (1.06 km2) calculated 

from remotely sensed images. Results in Table 6 and Figure 3 also show that upstream tree 

Table 6. Tree density upstream and downstream of the dams studied (December 2009).
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density is highest at Damani dam (4.22m2) on the Mbwedi River and lowest at Mambedi dam 
(7.09m2) on the Mambedi River. Downstream tree density is highest on the Albasini dam and 
lowest in all other dams. Downstream tree density is highest on the Albasini dam (5.88 m2) 

and lowest on the Vondo dam (10.11m2). Tree density upstream of Nandoni dam is higher 

(4.59 m2) than downstream of the dam (6.57m2). Thus, the growth in treeless area downstream 

of all studied dams occurs as a result of low flows which are available for riparian irrigation. 
This is caused by the upstream presence of the dams. This, according to Lees et al. [27] and 

Sutherland et al. [28], occurs because construction of dams leads to fragmentation and degra-

dation of riparian zones which also leads to loss of ephemeral habitats.

The magnitude of degradation is a function of resilience and fragility of the area which is con-

trolled by soil type, size of the dam, age of dam, size of degraded area during the construction 
of the dam, species diversity, succession stages, climatic variability, energy pools and routes 

and soil instability [29]. Albasini dam area has a smallest difference between the downstream 
(5.88 m2) and upstream (5.86 m2) tree density. This is a function of the age of the dam: vegeta-

tion, predominantly terrestrial, having had sufficient time to regenerate after the construction 
of the dam in 1952. Vale et al. [30] have noted that dam impact stabilises a few years after 

impoundment but becomes intense immediately after dam construction. This explains the 

smallest difference between downstream and upstream areas. However, Vondo dam area has 
lower tree density because it is located in a more humid area characterised by high rainfall and 

sensitive soils. Soils of the area are therefore dystrophic (nutrient-poor). This explains why 
the area became sensitive to water shortage downstream of the dam. Vegetation that thrived 

well under humid conditions suffered when river discharge was reduced downstream of the 

Figure 4. Tree densities downstream and upstream of the dams.
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Vondo dam on the Mutshindudi river. This is because conditions became too dry for riparian 

communities resulting in loss of diversity. Graf [31] similarly argued that regulated reaches 

are less likely to support extensive ecosystem components requiring a dry period of summer, 
and the species diversity will be lower.

4. Conclusion

In all the five dams studied, downstream treeless area has increased progressively over 
the years. In all cases, aerial and orthophotos showed increasing discontinuity in down-

stream tree cover. Treeless area is bigger downstream than upstream in all cases (except the 
Mambedi dam, which failed in the year 2000). There is lower species richness downstream 

than upstream (again, except in the case of the failed Mambedi dam). In all the downstream 
riparian zones, the predominant vegetation is obligate terrestrial species. Downstream veg-

etation is less dense than previously and less dense than upstream, although in the case of 

the oldest dam (Albasini), the difference is small, as the terrestrial vegetation downstream 
has had more time to recover. These effects are ascribed to the probable presence of the dams 
causing reduced downstream flows during dry seasons.

From the above summary of the findings of all five dams studied, it can be concluded that 
any modification of river flow through damming alters flow characteristics and impacts nega-

tively on nutrient cycling of lotic environments. This is accompanied by low downstream spe-

cies diversity. All dams are characterised by low surface or runoff downstream. Changes in 
river flow due to damming have led to the replacement of riparian vegetation with terrestrial 
vegetation or alien plant species in other dams. All downstream sections of the studied dams 
are characterised by terrestrial vegetation in formerly inundated riparian zones. Total annual 
rainfall does not guarantee the regeneration of disturbed areas since regeneration depends on 

many combined factors such as size of dams, size of degraded area during dam construction, 
natural species diversity, successional stages, climatic variability, energy pools and routes 

and soil instability. The resilience and fragility of disturbed areas depend on the combination 

of some of these factors.
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