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Abstract

Assessment of carotenoids (Car) content provides a valuable insight into clarifying the 
mechanisms of plant photoprotection and light-adaption and is critical for stress diag-
noses in plants. Due to their small proportion in the overall total pigment content and to 
the overlapping of spectral absorption features with chlorophylls (Chl) in the blue region 
of the spectrum, accurate estimation of Car content in plants, from remotely sensed data, 
is challenging. Previous studies made progress in Car content estimation at both the leaf 
and canopy level with remote sensing techniques. However, established spectral indices 
and methods for Car estimation in most studies that generally rely on specific and limited 
measured data might lack predictive accuracy for Car estimation and lack sensitivity to 
low or high Car content in various species and at different growth stages. In this chapter, 
a new carotenoid index (CARI) was proposed for foliar Car assessment with abundant 
simulated leaf data and various measured leaf reflectances. Detailed analysis on the mech-
anism, formation and performance of the new spectral index on Car retrieval was pre-
sented. Analysis results suggested that accurate nondestructive estimation of foliar Car 
content with CARI could be achieved at the leaf scale, through remote sensing techniques.

Keywords: carotenoids, retrieval, hyperspectral, remote sensing, radiative transfer 
model

1. Introduction

Photosynthetic pigments, mainly including chlorophylls (Chl) and carotenoids (Car), are of 

tremendous significance in the biosphere. Their photosynthetic function could provide neces-

sities, such as oxygen and organic matters, for plant and mammal survival [1]. Generally, 
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chlorophylls, composed of chlorophyll a (Chl a) and chlorophyll b (Chl b), represent the prin-

cipal class of pigments responsible for light absorption in photosynthesis [2]. Carotenoids, 

that include carotenes and xanthophylls, are the second major group of plant pigments [1]. 

They are part of the essential structures of the photosynthetic antenna and reaction center and 
help stabilize chlorophyll-protein complexes [3, 4]. Besides their function in photosynthesis, 

previous studies suggest that the assessment of the variation of Car and of their ratio to Chl 

could shed light on the understanding of photoprotection, photosynthetic acclimation and 

photosynthetic efficiency in plants [5–10]. Within the plant growth cycle, a normal decrease 

in Chl indicates that plants are affected by environmental stresses, while the variation of Car 
reflects the physiological status of vegetation [10]. For instance, it has been observed that Car 

content would change when plants are in sun-intense and high-temperature conditions, or 

when nitrogen availability is low or at the onset of leaf senescence [5]. Therefore, quantitative 
estimation of Car content is extremely useful in order to clarify the mechanisms of photopro-

tection and light-adaption and for early diagnosis of stress in plants.

The absorption features of Car in the visible range make it possible for Car content retrieval 
with remote sensing techniques. Based on its absorption features, researches on Car content 

estimation at both the leaf and canopy level with spectroscopic analysis have been conducted 

in recent years [11]. With ratio analysis of reflectance spectra (RARS) method, Chappelle et al. 
[12] suggested that reflectance at the 500 nm wavelength correlated best with Car content, 
and the reflectance was less affected by other pigments. Thus, they proposed a ratio analysis 
of reflectance spectra ((RARSc, R

760
/R

500
) for Car assessment. Research conducted by Datt [13] 

indicated that the maximum sensitivity of reflectance to variation in pigment content was in 
the green band region at 550 nm and in the red-edge region at 708 nm; a reflectance band ratio 
index (RBRI) (R

672
/(R

550
 × R

708
)) was then proposed for pigment content estimation, which had 

a good correlation with Car content. Based on the reflectance of the Car absorption band at 
470 nm, Blackburn [14] put forward two spectral indices with the optimal wavebands 470 and 

800 nm, that is, pigment specific simple ratio (PSSRc) and pigment specific normalized differ-

ence (PSNDc), for Car estimation at the leaf level. Gitelson et al. [11] found that the first-order 
derivative reflectance around 510 nm was the most sensitive to Car content. They established 
two spectral indices, that is, carotenoid reflectance index 550 (CRI

550
) and carotenoid reflec-

tance index 700 (CRI
700

), for foliar Car content assessment. Based on a conceptual three-band 

model, Gitelson et al. [15] further put forward green carotenoid index (CAR
green

) and red-

edge carotenoid index (CAR
red-edge

) with three bands located at 510–520 nm, 690–710 nm (560–

570 nm for CAR
green

) and a NIR band, for Car retrieval at the leaf level. Research conducted by 
Hernández-Clemente et al. [16] indicated that vegetation canopy structure severely affected 
the performance of CRI

550
 for Car content assessment at the canopy level. A simple ratio index 

(SRcar, R
515

/R
570

) was then proposed and it showed good correlation with Car content at both 

leaf and canopy levels.

Overall, previous studies have indeed made much progress in Car content estimation both 

at the leaf and canopy level; nevertheless, most of the research focused on establishing 

spectral indices or models for Car content retrieval, with limited measured datasets. These 
limited data might not be generic enough in order to provide a robust method of assessing 
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Car composition and distribution, at a range of phenological stages and leaf structures. 

Spectral indices or models based on these datasets might be site- or species-specific, their 
robustness and capability deserve further investigation when applied to a wide variety of 

plant leaves and conditions. Thus, to develop robust spectral indices or models for Car con-

tent retrieval with spectroscopic techniques, the quality of the training dataset, the selection 

of the optimal wavelengths and the availability of an independent dataset for the validation 

are critical [17].

Radiative transfer models (RTMs) are effective tools to clarify the mechanism describing the 
relationships between spectral reflectance and plant parameters. They provide an analysis of 
the remote sensing signal based on a robust understanding of the physical, chemical and bio-

logical processes, allowing to assemble rapidly abundant simulation datasets [18]. In recent 
years, the RTMs have been used extensively for various applications on the vegetation studies 
[19]. Based on simulated data at the leaf and canopy level with leaf model PROPSECT [20] 

and multilayer canopy model Scattering by Arbitrary Inclined Leaves (SAIL) [21], there are 

researches on leaf biochemical parameters retrieval, such as leaf chlorophylls content (LChl), 
leaf mass per area (LMA) and leaf carotenoids content (LCar), with spectral indices methods 
and RTMs inversion [18, 22–24]. However, less attention was given to the application of RTMs 
in Car content retrieval than to Chl content assessment. For foliar Car content estimation, 

leaf model PROSPECT could simulate abundant leaf level data through combining plant bio-

chemical parameters, which could be used for the investigation of optical characteristic of Car 

and other pigments and for quantitative evaluation of estimating results of foliar Car content 

with different spectral indices as well. In addition, for assessment of leaf Car content with 
plant canopy spectra, canopy spectra were influenced by more than biochemical parameters, 
canopy structure, illumination and observation geometry, and soil background properties 

affected canopy spectrum as well [25]. Among these factors, leaf area index (LAI), one of the 
key parameters describing the canopy structure, and the soil background, has a large effect 
on canopy reflectance signals [26, 27]. Utilization of PROSAIL model (coupled by leaf model 
PROSPECT and canopy model SAIL) could generate an extensive canopy level dataset useful 
for better understanding the relationship between canopy geometry, background environ-

ment and canopy reflectance, thus it could shed light on the effect of LAI and soil background 
on foliar Car content assessment and provide basis for an accurate and robust LCar estimation 
with spectral index methods.

Therefore, the goal of this chapter is to propose a nondestructive method to assess LCar with 
remote sensing techniques, through developing an accurate and robust LCar estimation index, 
using simulated and measured datasets based on their absorption features in the visible spec-

trum. The specific objectives were to: (1) establish a new carotenoid index (CARI) for LCar 
estimation, assess and compare its performance with published carotenoid indices using leaf 

level simulated data obtained from PROSPECT-5; (2) evaluate the capability and robustness 
of the new CARI and published carotenoid indices with various leaf level measured data 
including the widely used ANGERS dataset and field survey data; (3) clarify the effect of LAI 
and soil background on LCar assessment with the CARI using an extensive synthetic dataset 
obtained from PROSAIL and measured data at the canopy scale.
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2. Materials and methods

2.1. Field experiment

A field experiment was designed and conducted in 2004 to collect measured data at both the leaf 
and canopy level for foliar Car content assessment. The experiment site was located at the National 
Experimental Station for Precision Agriculture (40°10.6′ N, 116°26.3′ E), Beijing, China. Winter 
wheat (Triticum aestivum L.) was used in this experiment, and 21 cultivars of winter wheat were 
grown in plots of 30 × 5.4 m size in the experiment site. Fertilization and irrigation were applied 

according to local standard practice so as to provide nonlimiting conditions. During the whole 

growing season, field measurements were conducted on specific growth stages including booting 
(April 28), head emergence (May 11), pollination (May 28) and milk development (June 08). For 
each growth period, different cultivars were used for sampling at both the canopy and leaf levels.

2.2. Field measurements

2.2.1. Reflectance spectrum measurements

On each sampling date, a 1 × 1 m area of winter wheat was first selected for canopy reflectance 
measurements, with an Analytical Spectral Devices (ASD) FieldSpec spectrometer (Analytical 
Spectral Devices, Inc., Boulder, CO, USA) under clear, blue-sky conditions between 10:00 and 
14:00 h (Beijing Local Time). Measurements were obtained from a nadir position at approxi-
mately 1.3 m above the wheat canopy and taken by averaging 10 scans. Reflectance spectra 
were derived relative to a 0.4 × 0.4 m white reference panel, which was placed horizontally 

just above the wheat canopy.

Crop aboveground biomass from the 1 m2 area was collected immediately after canopy spec-

tral measurements, kept in a portable refrigerator and then transferred to a laboratory for leaf 

reflectance measurement and biochemical analysis. Leaf spectra were obtained using the ASD 
spectrometer coupled with a Li-Cor 1800-12 integration sphere (Li-Cor, Inc., Lincoln, NE, USA). 
For each leaf sample, measurements were made on five different areas (avoiding leaf veins). 
The sample was illuminated by a focused beam, which was produced by a Li-Cor 787 halogen 
lamp light source (6 V, 10 W, 3100 K), and the radiation that was captured by the spectrometer 

was the average reflected radiation within the Li-Cor 1800-12 integration sphere [28].

2.2.2. Plant measurements

Laboratory analyses were made on the 1 m2 quadrat wheat samples just after leaf spectral 

measurement. LCar, leaf dry mass and LAI were measured according to standard proce-

dures. Leaf dry mass was determined drying the samples in an oven at 70°C for 48 h, leaf Car 
content was determined using an L6 ultraviolet-visible spectrophotometer (INESA, China). 
Chlorophyll a (Chl a), chlorophyll b (Chl b) and total carotenoids’ (Car) concentrations were 

calculated with Eqs. (1) to (3) [29]; the unit of total carotenoids could then be converted into 

content unit, that is, mass per unit leaf dry weight (mg/g), and concentration unit, that is, 

mass per unit leaf area (μg/cm2), using data on the volume of leaf pigment extract, the leaf dry 

weight and the leaf disc area, with Eqs. (4) and (5):
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  Chla  (mg / L)  = 12.21 ×  A  
663

   − 2.81 ×  A  
646

    (1)

  Chlb  (mg / L)  = 20.13 ×  A  
646

   − 5.03 ×  A  
663

    (2)

  Car  (mg / L)  =  (1000 ×  A  
470

   − 3.27 × Chla − 104 × Chlb)  / 229  (3)

  Car  (mg / g)  =  [Car (mg / L)  ×  V  
T
   (ml) ]  /  [DW (g)  × 1000]   (4)

  Car  (μg /  cm   2 )  =  [Car (mg / g)  × DW (g) ]  / leaf area ( cm   2 )   (5)

where A
X
 is the absorbance of the extract solution at wavelength x, VT (ml) is the volume of 

leaf pigment extract solution and DW (g) is the leaf dry weight.

LAI was determined using a dry weight method [30]. Leaf segments of approximate area 0.06 m2 

were cut from the central part of about 30 leaves selected from all the green leaves in the 1 m2 

quadrat as standard leaves for LAI calculation. Both the standard leaves and the remaining 
leaves were oven dried at 70°C to constant weight and weighed. LAI was calculated as Eq. (6):

  LAI =  ( S  
r
   ×  W  

t
  )  /  ( S  

l
   ×  W  

r
  )   (6)

where S
r
 (m2) is the area of the standard leaves, W

t
 (g) is the total dry weight of the 1 m2 

quadrat sampled leaves, S
l
 is the sampled land area (m2) and W

r
 (g) is the dry weight of the 

standard leaves.

2.3. ANGERS dataset

Besides the winter wheat measured data, the ANGERS dataset, which contains various plant 
species and different growth conditions, was also used. The dataset was collected in 2003 on 
temperate plants at the National Institute for Agricultural Research (INRA), ANGERS, France. 
It contains leaf directional-hemispherical reflectance and transmittance spectra measured at 
1 nm resolution from 400 to 2400 nm using ASD FieldSpec instruments equipped with inte-

grating spheres. Chlorophyll a and b (Chl), total carotenoids (Car), water (also named equiva-

lent water thickness (EWT)) and dry matter (also named leaf mass per area (LMA)) content 
are available for each sample [18].

2.4. Simulated datasets

PROSPECT-5 simulates leaf directional-hemispherical reflectance and transmittance from 400 
to 2500 nm with six input variables: LChl, LCar, LMA, EWT, leaf structure parameter (N) 
and brown pigments (Cbrown). Generally, pigments absorb light in the visible range (400–

760 nm), whereas water has a high absorbance in the near-infrared band (1000–2500 nm). Dry 

matter and refractive index variations extend through the whole wave range (400–2500 nm) 
[18]. Since the goal was to estimate leaf Car content mainly from visible wavebands, and the 
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visible range was unaffected by EWT, the EWT value was kept fixed at the average EWT 
value of ANGERS dataset. The range of variation of LChl, LCar, N and LMA obtained from 
ANGERS dataset was used in simulations. Detailed values for the input parameters used in 
PROSPECT-5 simulations are shown in Table 1.

With PROSPECT-5 model, 2500 leaf reflectance simulations could be obtained by random 
combination of the parameters values. To avoid unrealistic combinations, we made use of the 
content ratio of Car to Chl to restrain the combinations. Statistics of the content ratio of Car to 
Chl in the ANGERS data show that the ratio values ranging from 0.1 to 0.6 account for 97% 
of the samples. This criterion was then used to eliminate invalid combinations and finally 
1700 leaf reflectance were kept. To investigate the effect of LAI and soil background on LCar 
assessment, LAI values were set to change from 1 to 8 with a step of 1; soil moisture parameter 
values were set to vary from 0 to 1 with a step of 0.5. Other input variables were fixed and 
defined based on [26]. Input values used for 4SAIL are shown in Table 1. Then, 40,800 canopy 
reflectance were obtained using the PROSAIL model.

2.5. Spectral indices

Published spectral indices for Car content assessment were summarized in Table 2. In addition 
to these existing spectral indices, a new spectral index for foliar Car content estimation was pro-

posed based on the spectral absorption features of Car and Chl observed with the leaf level simu-

lated dataset. The correlation between Car and Chl with reflectance ranging from 400 to 800 nm 
was first investigated. Figure 1a shows that the correlation peak region is located in the range 

Models Parameters Values

PROSPECT-5 Leaf chlorophyll content (LChl, μg/cm2) 10/20/30/40/50/60/70/80/90/100

Leaf carotenoid content (LCar, μg/cm2) 2/4/6/8/10/12/14/16/18/20

Leaf structure parameter (N) 1.6/1.7/1.8/1.9/2.0

Leaf mass per area (LMA, g/cm2) 0.002/0.003/0.004/0.005/0.006

Equivalent water thickness (EWT, cm) 0.012

Brown pigments (Cbrown) 0

4SAIL Leaf area index (LAI) 1/2/3/4/5/6/7/8

Leaf angle distribution (LAD) Spherical

Soil moisture parameter (P
soil

) 0/0.5/1

Solar zenith angle (SZA, °) 30

View zenith angle (VZA, °) 0

View azimuth angle (VAA, °) 0

Fraction of diffuse incident radiation 0.23

Hot spot effect 0.15

Table 1. Input parameters for PROSPECT-5 and 4SAIL models used for leaf and canopy reflectance modeling.
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500–540 nm for Car, and band 521 nm showed the maximum correlation, suggesting that reflec-

tance in this range is very sensitive to Car content [11]. Besides, the range of its maximum sensitiv-

ity overlapped with Chl absorption features (Figure 1a). For Chl, the correlation extended from 

400 to 760 nm and two strong correlation peaks were observed in green and red-edge regions.

To establish a new spectral index for LCar estimation, Band 521 nm was chosen on the con-

sideration that it had the highest correlation with LCar (R2 = 0.607, RMSE = 3.144 μg/cm2, 

Figure 1b), although a strong correlation with LChl also existed. Band 720 nm was selected to 
reduce the influence of Chl on LCar estimation since it showed the highest relationship with 
LChl (R2 = 0.906, RMSE = 7.981 μg/cm2, Figure 1c). The proposed new carotenoid index (CARI, 
R

720
/R

521
–1) was then established, based on the formula of chlorophyll indices (i.e., CI

red-edge
 

and CI
green

). Simulated and measured datasets were then used to investigate its capability and 
robustness for LCar assessment.

2.6. Statistics analysis

Linear regression models between leaf carotenoids content and spectral indices derived from 
simulated and measured datasets were obtained using the SPSS 18.0 software (SPSS Inc., 
Chicago, IL). A k-fold (k = 6) cross-validation procedure was used to evaluate the performance 
of spectral index methods using ANGERS and experimental data, and all the selected spectral 
indices were tested using the same k-fold partitions. The overall performances of these mod-

els were evaluated by statistics including a coefficient of determination (R2), root mean square 

error (RMSE), relative RMSE (RRMSE) and mean absolute error (MAE).

Spectral index Equation Reference

Ratio analysis of reflectance spectra (RARSc) R
760

/R
500

[12]

Pigment specific simple ratio (PSSRc) R
800

/R
470

[14]

Pigment specific normalized difference (PSNDc) (R
800

 − R
470

)/(R
800

 + R
470

) [14]

Reflectance band ratio index (RBRI) R
672

/(R
550

 × R
708

) [13]

Plant senescence reflectance index (PSRI) (R
678

 − R
500

)/R
750

[8]

Carotenoid reflectance index (CRI
550

) (R
510

)−1 − (R
550

)−1 [11]

Carotenoid reflectance index (CRI
700

) (R
510

)−1 − (R
700

)−1 [11]

Red-edge carotenoid index (CAR
red edge

) [(R
510

)−1 − (R
700

)−1] × R
770

[15]

Green carotenoid index (CAR
green

) [(R
510

)−1 − (R
550

)−1] × R
770

[15]

Photochemical reflectance index (PRI) (R
570

 − R
531

)/(R
570

 + R
531

) [31]

Modified photochemical reflectance index (PRI
m1

) (R
512

 − R
531

)/(R
512

 + R
531

) [32]

Simple ratio (SR
car

) R
515

/R
570

[16]

Carotenoid index (CARI) R
720

/R
521

 − 1 [33]

Rλ is the reflectance value at wavelength λ.

Table 2. Spectral indices selected for LCar assessment.
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3. Leaf car content assessment

3.1. Simulation results at the leaf level

Based on PROSPECT-5 leaf simulations, correlation between CARI and LCar is presented 
in Figure 1d. Results showed that CARI had a significant linear relationship with LCar 
(R2 = 0.943, RMSE = 1.196 μg/cm2), indicating that CARI index was accurate in estimating LCar 
with leaf-simulated data. Nevertheless, relationships between established spectral indices 
and LCar varied in Figure 2. Among these established spectral indices, the carotenoid indices, 

that is, CRI
550

, CRI
700

, CAR
red-edge

 and CAR
green

, proposed by Gitelson et al. [11, 15] showed 

the highest correlation (R2 > 0.77, the RMSE < 2.40 μg/cm2) with LCar. However, when LCar 
values were high, correlations between these indices and LCar presented with large disper-

sion, suggesting that these indices might be not sensitive to high LCar values (>15 μg/cm2).  

Compared with CRI
550

 and CRI
700

, adding of a near infrared band (770 nm) in CAR
red-edge

 and 

CAR
green

 did not improve the estimation accuracy of LCar. Correlation between RARSc and 
LCar was general (R2 = 0.603, RMSE = 3.160 μg/cm2), and when LCar values were higher than 
10 μg/cm2, the correlation showed an obvious nonlinear trend. RBRI index was less correlated 
with LCar (R2 = 0.165, RMSE = 4.584 μg/cm2), and the scatter plot of RBRI versus LCar showed 

Figure 1. (a) R2 curves for LCar (LChl) versus leaf reflectance within the wavelength range from 400 to 800 nm 
(b) Correlation between band 521 nm and LCar (c) Correlation between band 720 nm and LChl and (d) linear relationship 
between CARI and LCar.
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Figure 2. Relationships between published spectral indices and leaf carotenoids content from leaf level data simulated 

with PROSPECT-5.
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large dispersity. PSSRc and PSNDc had low correlations with LCar. Compared with PSNDc, 
PSSRc showed a slightly better correlation with LCar (R2 = 0.387, RMSE = 0.387 μg/cm2).  

However, when LCar values exceeded 10 μg/cm2, PSSRc and PSNDc present obvious non-

linear correlations with LCar (Figure 2g and h). Correlation between PRI and LCar was 
poor (R2 = 0.120, RMSE = 4.705 μg/cm2), and the scatter diagram showed obvious dispersion 
(Figure 2i). As for its modified version PRIm1, it showed almost no correlation with LCar, 
indicating that PRIm1 might not be suitable for the estimation of LCar. PSRI showed a low 
correlation with LCar (R2 = 0.191, RMSE = 4.511 μg/cm2), and the correlation was nonlinear. 

Different from these vegetation indices, SRcar showed a lower negative correlation with LCar 
(R2 = 0.142, RMSE = 4.645 μg/cm2), and the scatter diagram also showed strong dispersity.

3.2. Car assessment using ANGERS dataset

First, the ANGERS dataset was used to analyze the capability of different spectral indices in esti-
mating LCar. Performance of different spectral indices in LCar assessment is shown in Table 3. 

The estimation accuracy of CAR
red-edge

 and CAR
green

 in LCar assessment was slightly better than 
that of CRI

550
 and CRI

700
. However, compared with the simulated results, these indices showed 

rather poor performance in LCar retrieval with the ANGERS data. RARSc exhibited good per-

formance in LCar retrieval with a R2 value of 0.438 and a RMSE value of 3.792 μg/cm2. Although 

RBRI showed poor correlation with LCar in the leaf-simulated data, its estimation accuracy 
in LCar retrieval was the highest in the ANGERS data (R2 = 0.727, RMSE = 2.640 μg/cm2).  

Compared with PSNDc estimation results, estimation accuracy of PSSRc is relatively high, 
which is consistent with the foliar simulated results. PRI showed low accuracy in LCar estima-

tion (R2 = 0.199, RMSE = 4.527 μg/cm2), while PRIm1 also showed poor estimation results. 

Index Rank R2 RMSE (μg/cm2) MAE (μg/cm2) RRMSE (%)

CRI
550

10 0.139 4.693 3.363 54.179

CRI
700

11 0.138 4.696 3.413 54.217

CAR
green

8 0.184 4.568 3.199 52.732

CAR
red-edge

7 0.190 4.550 3.232 52.524

RARSc 3 0.438 3.792 2.757 43.781

RBRI 1 0.727 2.640 1.808 30.475

PSNDc 9 0.167 4.617 3.472 53.303

PSSRc 4 0.310 4.201 3.142 48.499

PRI 6 0.199 4.527 3.295 52.267

PRI
m1

12 0.075 4.869 3.505 56.215

PSRI 13 0.002 5.057 3.796 58.377

SR
car

5 0.213 4.489 3.117 51.820

CARI 2 0.545 3.413 2.345 39.400

Table 3. Cross-validation results for LCar assessment using ANGERS data.
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Figure 3. Scatterplots of measured LCar versus predicted LCar for spectral indices with ANGERS dataset. Dashed lines 
indicate 1:1 lines.

Index Rank R2 RMSE (μg/cm2) MAE (μg/cm2) RRMSE (%)

CRI
550

12 0.124 2.395 1.998 28.531

CRI
700

13 0.046 2.533 2.121 30.171

CAR
green

7 0.411 1.941 1.637 23.122

CAR
red edge

9 0.344 2.050 1.739 24.417

RARSc 2 0.674 1.443 1.130 17.192

RBRI 10 0.222 2.234 1.777 26.614

PSNDc 4 0.618 1.563 1.239 18.623

PSSRc 6 0.579 1.641 1.299 19.544

PRI 1 0.710 1.369 1.092 16.305

PRI
m1

11 0.125 2.373 1.814 28.268

PSRI 8 0.388 2.063 1.539 24.570

SR
car

5 0.614 1.571 1.144 18.713

CARI 3 0.639 1.520 1.166 18.106

Table 4. Cross-validation results for LCar estimation with wheat leaf level field data.
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Among all the indices, PSRI had the lowest estimation accuracy, possibly due to its insensitive 
to LCar. The estimation accuracy of SRcar generally (R2 = 0.213, RMSE = 4.489 μg/cm2) ranks 

fifth in all estimation results. Compared with these existing spectral indices, the estimation 
accuracy of CARI was accurate (R2 = 0.545, RMSE = 0.545 μg/cm2), second to RBRI, showing 
that CARI data can be used to accurately estimate LCar in the ANGERS data.

Based on the estimation results of these spectral indices in LCar retrieval with the ANGERS 
dataset, the scatter diagrams of the best four ranking spectral indices were presented in 
Figure 3. The results showed that compared with other indices, the fitting line of the scat-
terplot of RBRI is closer to the 1:1 straight line (the slope of the fitting line is 0.730).In addition, 
RBRI index was more sensitive to higher leaf carotenoid content (>15 μg/cm2). The CARI index 
also showed good estimation results, except for the samples that had LCar values greater than 
15 μg/cm2, and the estimated values of most sample points were evenly distributed around 

the 1:1 straight line with the measured values. Compared with RBRI, CARI was more sensi-
tive to lower LCar values (<3 μg/cm2), but it showed a slight “saturation effect” on high LCar 
values (>15 μg/cm2). RARS and PSSRc indices also showed satisfactory estimation results. 
Similar to CARI, these indices were not sensitive to higher LCar values (>15 μg/cm2).

3.3. Car retrieval with leaf level experimental data

Leaf level experimental data of winter wheat were used to further investigate the capability of the 
above spectral indices in LCar estimation. Results in Table 4 showed that the estimation accu-

racy of CRI
550

 and CRI
700

 is the worst. CAR
red-edge

 and CAR
green

 have slightly improved LCar estimat-
ing accuracy. RARSc presented an excellent estimation result (R2 = 0.674, RMSE = 1.443 μg/cm2),  

which is consistent with its estimation results with the ANGERS data. Different from its good 
estimation accuracy in ANGERS data, RBRI showed poor estimation accuracy in the experi-
mental data (R2 = 0.222, RMSE = 2.234 μg/cm2). PSNDc and PSSRc have a performance with 
good results in LCar estimation with the experimental data (R2 > 0.57, RMSE < 1.65 μg/cm2). 

Compared with its poor estimation results in the ANGERS data, PRI showed the highest estima-

tion accuracy of LCar in the experimental data (R2 = 0.710, RMSE = 1.369 μg/cm2). PRIm1 showed 
poor estimation results in the experimental data, which was consistent with the ANGERS data. 
Compared with the ANGERS data, the estimation accuracy of PSRI and SRcar in LCar with the 
experimental data had slightly improved. Similar to its performance with the ANGERS data, 
CARI had high estimation accuracy in LCar retrieval with the experimental data (R2 = 0.639, 

RMSE = 0.639 μg/cm2), showing that CARI was accurate and robust for LCar estimation with 
different leaf level datasets.

Similar to the results with the ANGERS dataset, scatter diagrams of the best four ranking spec-

tral indices were presented in Figure 4. The results showed that the estimation results obtained 
by PRI were the best. LCar values estimated by PRI and the measured values were concentrated 
near the 1:1 line, and the slope of the scatter plot was 0.76. In addition, RARSc, CARI and 
PSNDc also showed good estimation results. Unlike the ANGERS data (Figure 3), The LCar 
values of the leaf level experimental data were in the range from 3.05 to 12.59 μg/cm2, and LCar 
was in low to moderate numerical range. According to Figure 4, the majority of LCar values 
of the samples were around 10 μg/cm2, this was mainly because most of the samples that were 

collected at the booting, head emergence and pollination stages had little LCar variation.
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3.4. Assessing CARI for LCar retrieval with canopy spectra

The above results with leaf level measured data showed that CARI was accurate and robust 
in LCar estimation. Canopy level simulations and measured data were then used to further 
explore the effect of LAI and soil moisture on CARI for LCar retrieval. Canopy simulation results 
in Figure 5a showed that the overall correlation between CARI and LCar was high (R2 = 0.675, 

RMSE = 0.675 μg/cm2); however, the correlation differed when LAI values varied. The relation-

ship between CARI and LCar was the worst (R2 = 0.455, RMSE = 0.455 μg/cm2) when LAI values 
were around 1, which suggests that when LAI values were small, CARI was not sensitive to LCar 
variations. Indeed, when LAI values were around 1, the information obtained by the canopy 
spectrum was mostly related to soil background, thus it affected the estimation of LCar. The 
influence of soil moisture parameter on LCar retrieval with CARI was then investigated when 
LAI values were 1. Results in Figure 6 suggested that variations of soil moisture parameter did 

affect the correlation between CARI and LCar. When the value of soil moisture parameter was 
1 (i.e., simulated dry soil), CARI correlated worst with LCar (R2 = 0.614, RMSE = 0.614 μg/cm2).  

When its value was 0 (i.e., simulated wet soil), CARI showed the best correlation with LCar 
(R2 = 0.922, RMSE = 1.398 μg/cm2). In general, with the increase of LAI values, the correlation 
between CARI and LCar increased, and when LAI exceeded 4, the correlation reached 0.89 
and remained unchanged. When the LAI values exceeded 4, the fitting equations between 
CARI and LCar hardly changed, suggesting that when LAI values were larger than 4, CARI 
might be less sensitive to LCar variations based on canopy spectral data.

Figure 4. Scatterplots of measured LCar versus predicted LCar for spectral indices with leaf level experimental data. 
Dashed lines indicate 1:1 lines.
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Based on the canopy level measured data of winter wheat, LCar estimation results with CARI is 
shown in Figure 5b. Compared to the results that used leaf level data, the estimation accuracy 

was rather low for LCar retrieval with canopy level spectrum (R2 = 0.366, RMSE = 0.366 μg/cm2), 

and LCar values lower than 5 μg/cm2 were obviously overestimated (Figure 5b). However, it 

should be noted that these low LCar samples were collected at the wheat kernel milk stage, 
when leaves were close to senescence and LAI values were less than 1. The inaccurate estima-

tion of these low LCar samples would confirm to use caution in the assessment of LCar from 
CARI, using canopy reflectance, when LAI values are low.

3.5. Discussion

The spectral absorption features of carotenoids in the visible range make it possible for 
analysis of nondestructive estimation of leaf carotenoids content. However, the overlaps of 

spectral absorption characteristics of carotenoids and chlorophylls in the visible band making 

Figure 5. (a) Correlation between CARI and LCar at different LAI values, from all canopy simulations with 4SAIL model 
(n = 40,800). (b) Scatterplots of measured LCar versus predicted LCar for CARI with canopy reflectance obtained from 
field data (n = 44). Dashed lines indicate 1:1 lines.

Figure 6. Relationships between CARI and LCar using canopy reflectance simulations with LAI value fixed to 1 at 
different soil moisture levels. P

soil
 value set as (a) 0, (b) 0.5 and (c) 1. All other parameters for 4SAIL were fixed based on 

Table 3 (n = 1700).
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it challenging to assess LCar with its own absorption features [16]. Based on the reviewed 

studies on LCar estimation with remote sensing techniques, this chapter established a new 
carotenoid index (CARI) based on the spectral absorption features of carotenoids. Abundant 
synthetic data simulated from leaf and canopy models, and measured dataset, including the 

ANGERS and winter wheat data, were then used to comprehensively investigate its capabil-
ity in LCar assessment. CARI was established in the form of chlorophyll indices, that is, CI

red-

edge
 and CI

green
. These chlorophyll indices proposed by Gitelson et al. [15] utilized red-edge (or 

green) band that was sensitive to chlorophyll variation. Meanwhile, a near infrared waveband 
was also considered to eliminate the effect of other pigments and backward scattering effect. 
Many studies had shown that CI

red-edge
 and CI

green
 can be used to estimate leaf chlorophylls 

content accurately [34, 35]. Through analyzing the correlation between LCar and reflectance 
in the visible range from 400 to 800 nm wavelength, we utilized the reflectance of 521 nm 
band to establish the CARI index. The 521 nm waveband was located in the spectral absorp-

tion band of carotenoids and was significantly related to LCar. However, strong correlation 
between reflectance of 521 nm waveband and LChl existed. In order to eliminate the effect 
of chlorophylls on carotenoids retrieval, 720 nm waveband was also used in CARI; owing to 
that, the reflectance of 720 nm band was the most correlated with LChl. With PROSPECT-5 
simulations, the new CARI showed a significantly strong linear relationship with LCar. 
Moreover, CARI showed low correlation with LChl (R2 = 0.315), showing that it was less 

sensitive to LChl variations and the use of 720 nm band obviously decreased the effect of LChl 
on LCar estimation to some extent. In addition, CARI showed good estimation of LCar with 
both the ANGERS data and leaf level experimental data of winter wheat, indicating that it was 
accurate and robust for LCar assessment with CARI.

With different foliar datasets (leaf simulations, the ANGERS data and winter wheat 
experimental data), performance of published spectral indices in LCar estimation varied. 
Carotenoids index, including CRI

550
, CRI

700
, CAR

red-edge
 and CAR

green
, showed significant linear 

relationship with LCar with foliar simulated data. However, those indices exhibited poor 
results for LCar estimation with the ANGERS data and experimental data of winter wheat, 
suggesting that the accuracy and robustness of these indices in LCar estimation needed to 
be improved. Compared with CRI

550
 and CRI

700
, the estimation accuracy in LCar retrieval 

with CAR
red-edge

 and CAR
green

 slightly improved. This suggested that adding of a near infrared 
band (770 nm) in CRI

550
 and CRI

700
 could improve the estimation accuracy [15]. Based on 

foliar measured data, RARSc showed accurate estimation of LCar (ranking third with the 
ANGERS data, while ranking second with winter wheat data). These results were consistent 
with previous studies using RARSc to estimate LCar with measured data [36, 37], suggesting 

that RARSc was robust in LCar estimation. Performance of RBRI in LCar estimation with 
simulated and measured data significantly varied: it showed low correlation with LCar in 
foliar simulations, best results in LCar retrieval with the ANGERS data and poor results with 
winter wheat experimental data. Based on the spectral absorption features of chlorophylls, 

Datt [13] proposed the RBRI spectral index, which was used for chlorophylls and carotenoids 
retrieval. In his study, chlorophylls and carotenoids were significantly correlated. However, 
in the foliar simulations, their correlation was low (R2 = 0.235), although LChl was signifi-

cantly related with RBRI (R2 = 0.847). This could explain the correlation between RBRI and 
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LCar in simulations. In ANGERS data, LCar and LChl were significantly linear correlated 
(R2 = 0.908) and RBRI showed strong relationship with LChl (R2 = 0.785); therefore, RBRI 
showed high estimation accuracy in LCar retrieval. The RBRI was established on the equation 
R

672
/ (R

550
 × R

708
), which was different from the normalization and ratio form that most indices 

adopted. The form of the denominator (R
550

 × R
708

) might help to increase the numerical range 

of RBRI, making it more sensitive to large values of LCar. However, RBRI might not be sensi-
tive to low values of LCar (<3 μg/cm2), as samples with LCar values lower than <3 μg/cm2 

were obviously overestimated. In the experimental data of winter wheat, although LCar and 
LChl were significantly linear related (R2 = 0.888), RBRI showed poor estimation results for 
LCar retrieval. This suggested that RBRI might not be stable when used in various datasets 
for LCar estimation.

Blackburn [14] pointed out that the overlaps between spectral absorption features of 

carotenoids and chlorophylls might affect the relationship between LCar and PSNDc (or 
PSSRc). Moreover, 470 nm waveband was used in these spectral indices, which was not the 
best absorption band for carotenoids. Their performance with the leaf-simulated data and 
the ANGERS data supported this viewpoint. However, PSNDc and PSSRc showed rather 
good estimation accuracy in LCar retrieval with winter wheat data. This may be due to 
the fact that LCar values of the measured foliar data of winter wheat were in the range of 
4–12 μg/cm2. Unlike the ANGERS data numerical range, these indices may be more sensi-
tive to LCar changes in this range. PRI was successfully applied to a variety of studies [38, 

39]. In this chapter, PRI showed poor performance in LCar estimation with leaf-simulated 
data and the ANGERS data. The 531 nm waveband of PRI was used to detect variations of 
xanthophyll cycle components [31], PRI’s relationship with LCar may be overly influenced 
by a single carotenoid component [40].Compared with the estimated results in simulated 

data and the ANGERS data, PRI showed the best estimation accuracy in LCar retrieval 
with winter wheat data. Previous study had also shown that PRI was accurate in LCar 
estimation in cotton plants [37]. These results indicated that PRI may be suitable for LCar 
estimation in single-species vegetation. Unlike PRI, PRIm1 showed poor estimation results 
in all the used datasets. This may be because PRIm1 was devised to reduce the effect of the 
canopy structure effect and indicated water stress [32]. These results indicated that PRIm1 
was not suitable for LCar estimation. Similarly, PSRI was devised to indicate leaf senes-

cence and fruit ripening, it was sensitive to changes of the content ratio of carotenoids to 

chlorophylls [8]. The assessment results also indicated that PSRI was not suitable for LCar 
estimation. SRcar showed poor correlation with LCar in simulated data, this was mainly 
because that the parameters of the leaf-simulated data in this chapter were more compli-

cated than that of Hernandez-Clemente et al. [16]. Similarly, the poor estimation results 
of LCar with SRcar in the ANGERS data may be related to the diversity of vegetation 
types. However, SRcar showed good estimation accuracy in LCar assessment with winter 
wheat data, which indicated that it might be suitable for LCar retrieval with single-species 
vegetation.

Although the new index CARI showed good estimation results for LCar retrieval with dif-
ferent foliar datasets, the simulation results with canopy level data suggested that CARI was 
not sensitive to LCar variations when LAI was low (e.g., LAI = 1). Moreover, soil moisture 
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parameters affected the estimation accuracy of LCar with CARI. When LAI values are low, 
and soil is in a dry condition, canopy spectral reflectance of plants is mainly controlled by 
soil reflection; this could weaken plant canopy information, thus reducing LCar estimation 
accuracy (Figure 6c). When the soil is in a wet condition, the overall soil reflectance is lower, 
thus its confounding effect on LCar estimation seems to be reduced (Figure 6a). Our results 

with measured datasets thus supported the insensitivity of CARI to LCar detection using 
canopy reflectance when LAI is low. Further investigations on CARI using canopy reflectance 
acquired with hyper- or multispectral sensors (such as Sentinel-2), are still needed to achieve 
accurate and robust LCar calibrations, thus providing a promising new tool for assessing 
information on plant physiological status at the regional scale.

4. Conclusions

This chapter mainly focused on leaf and canopy level radiative transfer model PROSPECT-5 
and 4SAIL to simulate abundant leaf and canopy synthetic data and to establish a new 
carotenoid index (CARI) for LCar assessment based on the spectral absorption features 
of carotenoids. Abundant measured data, including the ANGERS data and experimen-

tal data of winter wheat, were then used to comprehensively evaluate the capability and 

robustness of CARI in LCar retrieval. Results showed that CARI correlated best with LCar 
among all the selected spectral indices with leaf-simulated data. Moreover, CARI showed 
accurate and robust estimation results of LCar with the ANGERS data and experimental 
data of winter wheat. Further investigation of CARI in LCar retrieval with simulated and 
measured canopy level data showed that CARI was insensitive to LCar variations when 
LAI values were low. In these conditions, soil moisture parameters affected the estimation 
accuracy of LCar with CARI. Overall, we suggest that CARI is suitable for LCar assess-

ment, which could provide basis for LCar nondestructive estimation with remote sensing 
techniques.
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