
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000

8

Heuristics for Unrelated Parallel Machine
Scheduling with Secondary

Resource Constraints

Jeng-Fung Chen
Feng Chia University

TAIWAN, R.O.C.

1. Introduction

This research deals with the problem of scheduling N jobs on M unrelated parallel
machines. Each job has a due date and requires a single operation. A setup that includes
detaching one die and attaching another from the appropriate die type is incurred if the type
of the job scheduled is different from the last job on that machine. Due to the mechanical
structure of machines and the fitness of dies to each, the processing time for a job depends
on the machine on which the job is processed, and some jobs are restricted to be processed
on certain machines. Furthermore, the required detaching and attaching times depend on
both the die type and the machine. This type of problems may be encountered, for example,
in plastics forming industry where unrelated parallel machines are used to process different
components and setups for auxiliary equipment (e.g., dies) are necessary. This type of
scheduling problems is also frequently encountered in injection molding departments where
many different parallel machines are also used to produce different components and for
which setups are required for attaching or detaching molds.
In general, the dies (or molds) are quite expensive (tens of thousands dollars each) and thus
the number of each type of dies available is limited. Therefore, dies should be considered as
secondary resources, the fact of which distinguishes this research from many past studies in
unrelated parallel-machine scheduling in which secondary resources are not restricted.
This type of problems is NP-hard (So, 1990). When dealing with a large instance
encountered in industry, in the worst case, it may not be able to obtain an optimal solution
in a reasonable time. In this research heuristics based on guided search, record-to-record
travel, and tabu lists from the tabu search (TS) are presented to minimize the maximum
completion time (i.e., makespan or Cmax) and maximum tardiness (i.e., Tmax), respectively, to
promote schedule performance. Computational characteristics of the proposed heuristics are
evaluated through extensive experiments.
The rest of this research is organized in six sections. Previously related studies on parallel
machine scheduling are reviewed in Section 2. The record-to-record travel and tabu lists are
briefly described in Section 3. The proposed heuristic to minimize makespan and the
computational results are reported in Section 4. The proposed heuristic to minimize
maximum tardiness and the computational results are reported in Section 5. Conclusions
and suggestions for future research are discussed in Section 6. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria

Multiprocessor Scheduling: Theory and Applications 138

2. Previously related studies on parallel machine scheduling

Parallel machine scheduling problems have been widely studied in the literature. The
machines considered in parallel scheduling problems may be divided into three classes
(Allahverdi & Mittenthal, 1994): (1) identical machines, in which the processing time of a
specific job is the same on all machines; (2) uniform machines, in which the processing time
of a specific job on a given machine is determined by the speed factor of that machine; and
(3) unrelated machines, in which the processing time of a specific job among machines may
change arbitrarily.
Parker et al. (1977) formulated a parallel machine scheduling problem as a vehicle routing
problem and developed algorithms to minimize the total changeover cost. Geoffrion &
Graves (1976) developed a quadratic assignment heuristic to minimize the sum of
changeover costs. Hu et al. (1987) presented optimum algorithms to minimize the sum of
changeover costs. Sumichrast & Baker (1987) also presented an approach to minimize the
number of machine changeovers. A branch-and-bound procedure to minimize the number
of major setups was developed by Bitran & Gilbert (1990). Tang (1990) presented a heuristic
and two lower bounds for the makespan problem. An assignment algorithm to minimize
Cmax was developed by Bitran & Gilbert (1990). Monma & Potts (1993) proposed two
heuristics to minimize Cmax with preemption allowed. Lee & Guignard (1996) developed a
hybrid bounding procedure for the Cmax problem. Weng et al. (2001) proposed several
heuristics to minimize the total weighted completion time. Webster & Azizoglu (2001)
presented dynamic programming algorithms to minimize total weighted flowtime.
Baker (1973) selected the unscheduled job based on earliest-due-date-first (EDD) and
assigned it to a machine according to certain rules. Dogramaci & Surkis (1979) presented a
list-scheduling heuristic that generates three schedules and selects the one with least total
tardiness. Elmaghraby & Park (1974) proposed a branch-and-bound algorithm to minimize
some penalty functions of tardiness. An improved algorithm for this case was proposed by
Barnes & Brennan (1977). Dogramaci (1984) developed a dynamic programming procedure
to minimize total weighted tardiness. Ho & Chang (1991) sorted jobs based on the “traffic
congestion ratio” and assigned jobs to machines by applying the list-scheduling procedure
of Dogramaci & Surkis (1979). Luh et al. (1990) presented a Lagrangian-relaxation based
approach to minimize total weighted tardiness. An “earliest-gamma-date” algorithm to
minimize total weighted tardiness was proposed by Arkin & Roundy (1991). Koulamas
(1994) sorted jobs based on shortest-processing time-first and generated m copies of this list
for the m machines. He then applied certain rules to select the next job to be scheduled to
minimize total tardiness. In the later study, Koulamas (1997) presented a decomposition
heuristic and a hybrid heuristic to minimize mean tardiness. Suresh & Chaudhuri (1994)
presented a GAP-EDD algorithm to minimize maximum tardiness. Guinet (1995) employed
a simulated annealing method to minimize mean tardiness. Randhawa & Kuo (1994)
examined the factors that may have influence on the scheduling performance and proposed
heuristics to minimize mean tardiness. Schutten & Leussink (1996) proposed a branch-and-
bound algorithm to minimize the maximum lateness. Alidaee & Rosa (1997) developed a
“modified-due-date” algorithm to minimize total weighted tardiness. Azizoglu & Kirca
(1998) developed a branch-and-bound algorithm to minimize total tardiness. Dessouky
(1998) considered that all jobs are identical and have unequal ready times. He proposed a
branch-and-bound procedure and six single-pass heuristics to minimize maximum lateness.
Balakrishnan et al. (1999) proposed a mixed integer formulation to minimize the sum of

Heuristics for Unrelated Parallel Machine Scheduling with Secondary
Resource Constraints 139

earliness and tardiness. Funda & Ulusoy (1999) developed two genetic algorithms to
minimize the sum of weighted earliness and tardiness.
Armentano & Yamashita (2000) presented a TS heuristic to minimize mean tardiness. Yalaoui
& Chu (2002) derived some dominance properties and proposed a branch-and-bound
procedure to minimize total tardiness. Park et al. (2000) applied neural networks to obtain
some look-ahead parameters which were used to calculate the priority index of each job to
minimize total weighted tardiness. Lee & Pinedo (1997) presented a three-phase heuristic to
minimize total weighted tardiness. In the first phase, factors or statistics which characterize an
instance are computed; in the second phase, a sequence is constructed by an ATCS rule; in the
third phase, a simulated annealing (SA) method is applied to improve the solution obtained in
the second phase. Eom et al. (2002) also proposed a three-phase heuristic to minimize total
weighted tardiness with both family and job setup times. In the first phase, jobs are listed by
EDD and are divided into job sets based on a decision parameter; in the second phase, each job
set is organized into several families by using the ATCS algorithm and then a TS method is
applied to improve the sequence of jobs in each family; in the third phase, jobs are allocated to
machines by using a threshold value and a look-ahead parameter. An SA heuristic was
presented by Kim et al. (2002) to minimize total tardiness.
Although parallel-machine scheduling has been studied extensively, not much research has
considered the case in which a setup for dies is incurred if there is a switch from processing
one type of job to another type, the number of dies of each type is limited, the processing
time for a job depends on the machine on which the job is processed, and some jobs are
restricted to be processed on certain machines. In this research, effective heuristics based on
guided search, record-to-record travel, and tabu lists are proposed to deal with this type of
scheduling problems so that maximum completion time and maximum tardiness can be
minimized, respectively, to promote schedule performance. Computational characteristics of
the proposed heuristic are evaluated through extensive experiments.
Underlying assumptions are considered in this research:
1. A setup that includes detaching one die and attaching another from the appropriate die

type is incurred if there is a switch from processing one type of job to another type;
2. The detaching (attaching) time depends on both the die type and the machine on which

the die is detached (attached);
3. The processing time for a job depends on both the job and the machine on which the job

is processed, and each job is restricted to processing on certain machines; and
4. The number of dies of a die type is limited.

3. Record-to-record travel and tabu lists

The concept of record-to-record travel and tabu lists from the tabu search are briefly
described in this section. First, the record-to-record travel is described.

3.1 Record-to-record travel

The record-to-record travel (RRT) was introduced by Dueck (1993). Basically, RRT is very
similar to SA. The main difference between RRT and SA is the mechanism to determine
whether a neighborhood solution (Y) is accepted or not. SA accepts a worse neighborhood
solution with a controlled probability. RRT accepts a neighborhood solution if its solution value

Multiprocessor Scheduling: Theory and Applications 140

(V(Y)) is not worse than the current best solution (i.e., RECORD) plus a controlled DEVIATION.
The algorithm of record-to-record travel to minimization may be generalized as follows:

RRT for minimization
generate an initial solution
choose an initial DEVIATION > 0
set RECORD=the current best solution value
Repeat: generate a neighborhood solution that is a perturbation of the current solution (i.e., Y =
PERTURB (X))
 IF (V(Y)) <RECORD + DEVIATION
 THEN accept the move (i.e., X = Y)
 IF (V(Y)) <RECORD
 THEN set RECORD = (V(Y))
 IF no improvement on the solution quality after a number of iterations
 THEN lower DEVIATION
 IF the stop criterion is reached
 THEN stop
GOTO Repeat

3.2 Tabu lists

Since neighborhood solutions not leading to improvement are accepted in RRT, it is possible
to return to previously visited solutions and cause cycling solutions. Hence, tabu lists from
the tabu search (Glover, 1989) are applied to overcome this problem. The tabu lists store
attributes that identify certain moves are forbidden in the later search. By using tabu lists,
the solutions previously searched may be avoided and new regions of the search space may
be explored.
Theoretically the tabu lists need to store all previously visited solutions. However, this
would require too much memory and computational efforts. An practical way is to store
only the moves occurring in the last s iterations, in which s is known as the tabu size. By
using an appropriate tabu size, the likelihood of cycling solutions may be avoided.
An aspiration criterion is used to free a tabu solution if it is of sufficient quality and possibly
would not cause cycling solutions. Hence, a solution is not forbidden if its attributes are not
tabu or it passes the aspiration criterion test.

4. Heuristic procedure to minimize Cmax and computational results

The proposed heuristic to minimize Cmax, Heu_Cmax, and computational results are
presented in this section. The development of Heu_Cmax is based on observing secondary
resource constraints and process restrictions, and applying a guide search to improve the
solutions. In order to avoid being trapped in local optimum, the record-to-record travel
mechanism is applied. In addition, tabu lists are used to prevent obtaining cycling solutions.
Heuristic Heu_Cmax consists of a procedure to generate an initial solution, a group
scheduling procedure to improve makespans of machines, and several procedures to generate
neighborhood solutions. Before proceeding to the details of Heu_Cmax, the following
notations are defined:
group: a set of jobs that are allocated to the same machine and require the same type

of die
sub_group: a subset of a group

Heuristics for Unrelated Parallel Machine Scheduling with Secondary
Resource Constraints 141

j: index for jobs (j = 1, 2, …, N)
m: index for machines (m = 1, 2, …, M)
d: index for die types (d = 1, 2, …, D)

4.1 Generation of initial solutions

A rule based on process efficiency is applied to assign jobs and allocates dies to machines.
The jobs in each machine are then scheduled according to a group scheduling procedure. The
initial solution is generated as follows:

Step 1. Assign each job j J to its most efficient machine. If that machine is not allocated with
a required die type, allocate a required die type to that machine.

Step 2. (group scheduling procedure) Form groups on each machine and schedule the groups
with the longest detaching time last on each machine.

4.2 Generating neighborhood solutions

In order to minimize makespan, it is necessary to reassign jobs from the machine associated
with maximum completion time to another machine. However, there are situations in which
reassigning jobs from the latest completion machine to an earlier completion machine is not
allowed or makespan cannot be reduced. Hence, it is sometimes necessary to reassign jobs
from the latest completion machine to an intermediate machine and simultaneously reassign
jobs from this intermediate machine to another machine. Moreover, sometimes it is more
appropriate to reassign a group or several jobs than just a single job. Therefore, the
neighborhood solutions are generated according to the following procedures (Chen, 2005).

4.2.1 Group reassignment

This procedure reassigns one group along with its required die from the machine with the
latest completion time to another machine. The group and machine resulting in the least
makespan are selected.

4.2.2 Job reassignment

This procedure reassigns one job from the machine with the latest completion time to
another machine. The job and machine resulting in the least makespan are selected.

4.2.3 Sub_group reassignment

This procedure reassigns one sub_group from the machine with the latest completion time to
another machine. First, each group in the machine with the latest completion time is divided
into several equal sub_groups based on total processing time for the group. One sub_group is
then reassigned to another machine. The sub_group and machine resulting in the least
makespan are selected. The number of sub_groups in one group is randomly determined so
that a different number of jobs are reassigned in each iteration.

4.2.4 Group and group chain reassignment

In this procedure, one group along with its required die from the machine with the latest
completion time are reassigned to an intermediate machine and another group along with its
required die from this intermediate machine are reassigned to another machine. The groups
and machine resulting in the least makespan are selected.

Multiprocessor Scheduling: Theory and Applications 142

4.2.5 Group and sub_group chain reassignment

In this procedure, one group along with its required die from the machine with the latest
completion time are reassigned to an intermediate machine and one sub_group from this
intermediate machine is reassigned to another machine. The group, sub_group, and machine
resulting in the least makespan are selected.

4.2.6 Sub_group and sub_group chain reassignment

This procedure reassigns one sub_group from the machine with the latest completion time to
an intermediate machine and simultaneously reassigns one sub_group from this intermediate
machine to another machine. The sub_groups and machine resulting in the least makespan
are selected.

4.2.7 Sub_group and job chain reassignment

This procedure reassigns one sub_group from the machine with the latest completion time to
an intermediate machine and simultaneously reassigns one job from this intermediate
machine to another machine. The sub_group, job, and machine resulting in the least
makespan are selected.

4.2.8 Job and job chain reassignment

In this procedure one job from the machine with the latest completion time is reassigned to
an intermediate machine and another job from this intermediate machine is reassigned to
another machine. The jobs and machine resulting in the least makespan are selected. It is
noted that in the above procedures a sub_group or job can be reassigned to a machine only if
that machine is allocated with a required die or there is a required die not yet allocated to
any machine.

4.2.9 Reattachment

The above reassignment procedures do not apply any reattachments of dies. It is possible
that the maximum completion time can be reduced by reattaching dies to other machines. In
this reattachment procedure one job from the machine with the latest completion time is
reassigned to another machine that may not be allocated with a required die. The die to be
reattached is taken from other machines allocated with the required die. This job may be
processed very early or very late depending on the availability of the required die. If these
arrangements are accepted, they are performed. This procedure is applied repeatedly to
reduce the maximum completion time.
When performing the above procedures to generate neighborhood solutions, discard moves
that are tabu (unless a tabu move results in an overall best solution). If the makespan
obtained is accepted (i.e., (V(Y)) < RECORD + DEVIATION), perform the reassignment and
update the current solution. If the makespan is improved, update the best solution.

4.3 Heuristic Heu_Cmax

Heuristic Heu_Cmax is now outlined as follows.
Step 0. Initialization

Initialize Total_counter and set Inner_max, Outer_max, and initial DEVIATION RATE
(DR). Note that Total_counter is used to update DR.

Heuristics for Unrelated Parallel Machine Scheduling with Secondary
Resource Constraints 143

Step 1. Generate an initial solution and set RECORD = initial solution value and
DEVIATION = RECORD × DR.

Step 2. Apply the group reassignment procedure until an Inner_max number of moves are
performed without any improvement to the best known solution.

Step 3. Apply the job reassignment procedure until an Inner_ max number of moves are
performed without any improvement to the best known solution.

Step 4. Apply the sub_ group reassignment procedure until an Inner__max number of
moves are performed without any improvement to the best known solution.

Step 5. Apply the group and group chain reassignment procedure until an Inner__max
number of moves are performed without any improvement to the best known
solution.

Step 6. Apply the group and sub_ group chain reassignment procedure until an Inner _max
number of moves are performed without any improvement to the best known
solution.

Step 7. Apply the sub_ group and subgroup chain reassignment procedure until an Inner_
max number of moves are performed without any improvement to the best known
solution.

Step 8. Apply the sub_ group and job chain reassignment procedure until an Inner_ max
number of moves are performed without any improvement to the best known
solution.

Step 9. Apply the job and job chain reassignment procedure until an Inner_ max number of
moves are performed without any improvement to the best known solution.

Step 10. If an Outer__max number of moves are performed without any improvement to the
best known solution, reinitialize Total_counter, update DR, and go to Step 11.
Otherwise, set Total_ counter = Total_counter + 1, update DR, and return to Step 2.

Step 11. Apply the reattachment procedure.
Step 12. If an Outer_ max number of moves are performed without any improvement to the

best known solution, terminate Heu_Cmax. Otherwise, set Total_counter =
Total_counter + 1, update DR, and return to Step 11.

It is noted that the reattachment procedure may complicate the allocation of dies to
machines; hence it is not performed until all the other procedures cannot improve makespan
any further.

4.4 Computational results

A set of test problems are used to evaluate the computational characteristics of Heu_Cmax.
The runtime and solution quality of Heu_Cmax are compared with a basic simulated
annealing (BSA) method (Tamaki et al., 1993). Both Heu_Cmax and the SA method were
coded in C and all of the experiments were performed on a Pentium 4 1.6 GHz PC with
256M SDRAM

4.4.1 Data sets

The test problems were generated “randomly” according to the following factors:

number of jobs (N),

number of machines (M),

number of die types (D), and

Multiprocessor Scheduling: Theory and Applications 144

number of dies of a die type (bd).

It is known that all of these factors have impacts on the size and complexity of this
scheduling problem. The parameters for this data set are listed in Table 1, in which rd is the
number of jobs requiring die type d.

N 25, 30, 35, 40, 45 50, 55, 60, 65, 70
M 3, 4, 5 6, 7, 8
D N/6 +1, N/7 +1
bd rd /3 +1, rd /4 +1

Speed factor for jobs of type d on machine m, fdm 1/U[5, 15]
Processing time for job j on machine m, pjm 1/fdm *U[10, 40]

Attaching time for a die of type d on machine m, s1dm U[10, 30]
Detaching time for a die of type d on machine m, s2dm U[10, 30]
Probability that a die type can be attached to a
machine

0.5

Table 1. Parameters of the test data

4.4.1 Parameter settings

For the BSA (Tamaki et al., 1993), the solution is represented by a binary string

X
~

=(The neighborhood of a string).~ ... ~~~ ... ~~ ... ~ ... ~~~ ... ~~
 11011101 11011211 NNNNNNMN
wwwzzzyyyxxx X

~
is

the set of strings with Hamming distance 1 from X
~

. A procedure is used to transform a
binary string to a feasible schedule of

 , otherwise 0

 machine to assigned is job if 1 mj
xmj

 , otherwise 0

 job succeeds

yimmediatel job and machine same the to assigned are and jobs if 1

'

j

j'j'j

y
jj

 , otherwise 0

machines) different

on processed are and jobs (if indirectly job succeeds yimmediatel

 job or machine) same theon processsed are and jobs (if directly job

succeeds yimmediatel job and die of type same the require and jobs if 1

'
j'jj

j'j'jj

j'j'j

z jj

 , otherwise 0

does job that die same the uses job if 1
'

j'j
w jj

The temperature of the kth stage was set at T(k) = 0.9k × 100, the number of iterations in each

stage was set at 1000, and the termination criterion was T(k) 0.01
For heuristic Heu_Cmax, each improvement procedure utilized one tabu list with a size of 5,

Inner_max was set at 5, Outer_max was set at 5, and DR was updated by 0.9 (1+Total_counter)/5 .

Heuristics for Unrelated Parallel Machine Scheduling with Secondary
Resource Constraints 145

4.4.2 Results

According to the computational results, the performance of Heu_Cmax was very impressive.
The BSA method did not obtain any better solution value than Heu_Cmax in all of the 120
test problems. Heu_Cmax was better than the BSA method not only on the solution value but
also on the runtime. Table 2 shows the mean value comparisons of Heu_Cmax and BSA.
According to Table 2, on an overall average the solution value and runtime were improved
10.98% and 97.77%, respectively.
The improvement of Heu_Cmax is more significant when N or M is large. The magnitude of
N and M affects the size and complexity of this scheduling problem. Hence, this
computational experience may indicate that Heu_Cmax may perform much better than the
BSA method when this type of scheduling problems involves more jobs or more parallel
machines. The improvement of Heu_Cmax is also more significant when bd is small. The
number of dies of each type affects the availability of the secondary resource. Hence, this
computational experience may indicate that Heu_Cmax may perform much better than the
BSA method when secondary resources are tightly constrained.

5. Heuristic procedure to minimize Tmax and computational results

The heuristic proposed in section 4 can be modified to minimize Tmax. The modified heuristic
is named Heu_Tmax and is described in the followings.

(BSA-Heu_Cmax)/BSA*100%

Cmax CPU sec. Cmax CPU sec. Cmax CPU sec.

25 1355.52 32.70 1235.66 1.17 8.84% 96.42%
30 1635.08 49.95 1520.44 1.46 7.01% 97.09%
35 2048.58 113.80 1897.71 1.69 7.36% 98.52%
40 2401.92 214.60 2142.68 2.30 10.79% 98.93%

45 2630.00 246.65 2411.11 2.86 8.32% 98.84%
50 1744.20 289.80 1538.96 5.06 11.77% 98.25%
55 1900.24 299.70 1681.33 7.88 11.52% 97.37%
60 2075.28 365.50 1797.81 8.06 13.37% 97.79%
65 2250.09 395.20 1941.77 12.62 13.70% 96.81%

N

70 2415.63 442.20 2019.26 11.58 16.41% 97.38%

3 2772.22 133.65 2480.65 1.61 10.52% 98.80%
4 1801.42 119.85 1722.22 1.64 4.40% 98.64%
5 1469.02 141.15 1327.37 2.45 9.64% 98.27%
6 2590.42 343.85 2238.58 9.34 13.58% 97.28%
7 2024.74 364.60 1753.44 9.65 13.40% 97.35%

M

8 1616.10 366.95 1398.96 8.13 13.44% 97.78%

N/6 +1 2048.40 244.25 1832.60 5.77 10.54% 97.64%
D

N/7 +1 2042.91 245.75 1823.12 5.17 10.76% 97.90%

rd/3 +1 2008.85 245.30 1825.82 6.07 9.11% 97.53%
bd

rd/4 +1 2082.46 244.70 1829.90 4.87 12.13% 98.01%
Overall average 2045.65 245.00 1820.97 5.47 10.98% 97.77%

Table 2. Mean value comparisons of Heu_Cmax and BSA

Multiprocessor Scheduling: Theory and Applications 146

5.1 Generation of initial solutions

For the initial solution, each job is first assigned to its most efficient machine. If that machine
is not allocated with a required die, allocate a required die to that machine. The job sequence
in each machine is then improved by a rescheduling procedure. The rescheduling procedure is to
improve job sequence within a machine. It is applied whenever group, sub_group, and jobs
are reassigned from one machine to another. The rescheduling procedure includes the
following steps:
Step 1. Form groups in each machine and sequence jobs in the same group according to

EDD.
Step 2. Schedule the group last of the entire groups unscheduled if it would incur the least

maximum tardiness. Repeat this process until all groups are scheduled.
Step 3. Starting from the first job of the second group in the sequence, move the job along

with all its predecessors in the same family forward to the best position to improve
maximum tardiness.

5.2 Generating neighborhood solutions

The neighbourhood generation procedures are similar to those described in subsection 4.2
except that the group, subgroup, or job reassigned is selected from the machine associated
with maximum tardiness and that the group, subgroup, or job and machine resulting in the
least maximum tardiness are selected (Chen, 2006).

5.2.1 Group reassignment

This procedure reassigns one group along with its required die from the machine associated
with the maximum tardiness to another machine. The group and machine resulting in the
least maximum tardiness are selected.

5.2.2 Job reassignment

This procedure reassigns one job from the machine associated with the maximum tardiness
to another machine. The job and machine resulting in the least maximum tardiness are
selected.

5.2.3 Sub_group reassignment

This procedure reassigns one sub_group from the machine associated with the maximum
tardiness to another machine. First, each group in the machine associated with maximum
tardiness is divided into several equal sub_group based on the total processing time for the
group and the due date of every job in the first sub_group’s being earlier than that of any job
in the second sub_group, and the due date of every job in the second sub_group’s being earlier
than that of any job in the third sub_group and so on. One sub_group is then reassigned to
another machine. The sub_group and machine resulting in the least maximum tardiness are
selected.

5.2.4 Group and group chain reassignment

In this procedure, one group along with its required die from the machine associated with
the maximum tardiness are reassigned to an intermediate machine and another group along
with its required die from this intermediate machine are simultaneously reassigned to

Heuristics for Unrelated Parallel Machine Scheduling with Secondary
Resource Constraints 147

another machine. The groups and machine resulting in the least maximum tardiness are
selected.

5.2.5 Group and sub_group chain reassignment

In this procedure, one group along with its required die from the machine associated with
the maximum tardiness are reassigned to an intermediate machine and one sub_group from
this intermediate machine is simultaneously reassigned to another machine. The group,
sub_group, and machine resulting in the least maximum tardiness are selected.

5.2.6 Sub_group (job) and sub_group (job) chain reassignment

This procedure reassigns one sub_group (job) from the machine associated with the
maximum tardiness to an intermediate machine and simultaneously reassigns one sub_group
(job) from this intermediate machine to another machine. The sub_group(s), job(s), and
machine resulting in the least maximum tardiness are selected.

5.2.7 Reattachment

In this procedure, one job from the machine associated with the maximum tardiness is
reassigned to another machine that may not be allocated with a die. This job may be
processed very early or very late depending on the availability of the required die. The job
and machine resulting in the least maximum tardiness are selected.

5.3 Heuristic Heu_Tmax

The structure of heuristic Heu_Tmax is very similar to that of heuristic Heu_Cmax. Readers
may refer to subsection 4.3.

5.4 Computational experiments

A set of test problems is used to evaluate the computational characteristics of Heu_Tmax.
The runtime and solution quality of Heu_Tmax are compared with an EDD-based procedure
and a basic SA method (BSA) (Tamaki et al., 1993).

5.4.1 Data Sets

The test problems were “randomly” generated based on the following factors:
5. number of jobs (N);
6. number of machines (M);
7. number of die types (D);
8. number of dies of a die type (bd);
9. due date range factor (R); and

10. due date priority factor ().
The level settings for each factor are: 4 levels for N, 3 levels for M, and 2 levels each for the
other factors. This results in a total of 192 test problems. The parameters for the test
problems are given in Table 3. Note that in Table 3 the due dates of jobs were generated as
suggested by Potts & Van Wassenhove (1982), where

Cmax= and M’j is set of machines that can process job j.MMssp jjmjm
j jMm

jm /|)'|/)21((
'

Multiprocessor Scheduling: Theory and Applications 148

N 30, 50, 70, 90

M 4, 6, 8

D N/5 + 1, N/7 + 1
bd rd/4 + 1, rd/6 + 1

Speed factor for jobs of type d on machine m, fdm 1/U[5, 15]

Processing time for job j on machine m, pjm 1/fdm*U[10, 40]

Attaching time for a die of type d on machine m, s1dm U[10, 100]

Detaching time for a die of type d on machine m, s2dm U[10, 100]

R 0.4, 1

0.4, 0.8

Due date U[Cmax(1 - - R/2), Cmax(1 - + R/2)]

Probability that a die type can be attached to a
machine

0.5

Table 3. Parameters for the test data

The EDD-based procedure selects jobs on the basis of EDD and assigns jobs to the machine
where it can be completed as early as possible. However, if a required die is not available,
the next job is selected. For heuristic Heu_Tmax, each neighborhood generation procedure
use a tabu list of size 5, Inner_max and Outer_max were both set at 5, and DR was updated by

0.9 (1+Total_counter)/5 .

5.4.2 Results

According to the computational results, Heu_Tmax outperformed EDD and BSA in terms of
solution quality. EDD and BSA did not obtain better solutions than Heu_Tmax in all of the
192 tested instances. EDD and Heu_Tmax obtained the same solutions in 12 tested problems;
BSA and Heu_Tmax obtained the same solutions in 24 tested problems. As for the runtime
consumed, the EDD-based procedure required less than 1 second to solve each of the tested
instances. Depending upon the problem sizes, the runtime of Heu_Tmax ranged from less
than 1 second to near 6 minutes, which was much less than that of BSA.
Table 4 shows the corresponding mean values of EDD, BSA, and Heu_Tmax. According to
Table 4, maximum tardiness increases as the number of jobs (i.e., N) increases or the number
of machines (i.e., M) decreases. Maximum tardiness also increases when secondary

resources are more restricted (i.e., bd = rd/6 + 1) or the due dates of job are tight (i.e., =
0.8). On an overall average, the solution value of EDD was improved 42.88%; the solution
value and the runtime of BSA were reduced 27.92% and 90.48%, respectively. Heu_Tmax is
significantly better than EDD and SA when M is large. The sizes of M affect the size and
complexity of this scheduling problem. Hence, this computational experiment may indicate
that the performance of Heu_Tmax may be much better than EDD and BSA when this type
of scheduling problems involves more parallel machines.
Heu_Tmax is significantly better than EDD and SA when R is small (i.e., R = 0.4). The value
of R affects the dispersion of job due dates. Hence, this computational experience may
indicate that the performance of Heu_Tmax may be much better than EDD and BSA when
the due dates of jobs are more dispersive. Heu_Tmax is also significantly better than EDD

and BSA when is small (i.e., = 0.4). The value of influences the tightness of due dates.
Hence, this computational experiment may indicate that the performance of Heu_Tmax may
be much better than EDD and BSA when the due dates of jobs are loose.

Heuristics for Unrelated Parallel Machine Scheduling with Secondary
Resource Constraints 149

EDD BSA Heu_Tmax

Tmax Tmax CPU sec. Tmax CPU sec.
30 672.19 508.13 33.73 410.81 1.35
50 1012.77 853.58 120.93 645.79 4.17
70 1382.63 1130.48 268.30 740.65 19.67

N

90 1810.85 1373.35 468.83 989.21 59.69
4 1536.30 1241.33 219.69 909.64 25.71
6 1162.59 946.70 220.41 702.67 24.19M

8 959.94 711.13 228.74 477.53 13.75

N/5 +1 1276.10 1017.23 224.64 712.64 26.18
D

N/7 +1 1163.12 915.54 221.25 680.59 16.26

rd/4 +1 1202.87 944.29 246.28 678.71 27.21
bd

rd/6 +1 1236.35 988.48 199.61 714.52 15.23
0.4 1500.54 1090.60 221.85 661.97 18.32

R
1 938.68 842.17 224.04 731.26 24.12

0.4 459.09 212.14 223.02 51.04 6.13
0.8 1980.13 1720.64 222.88 1342.19 36.31

Overall average 1219.61 966.39 222.95 696.62 21.22

Table 4. Mean value comparisons of Heu_Tmax, EDD, and BSA

6. Conclusions and suggestions for future research

This research has dealt with scheduling jobs on unrelated parallel machines with secondary
resource constraints. Effective heuristics based on guided search, record-to-record travel,
and tabu lists from tabu search have been proposed to minimize makespan and maximum
tardiness, respectively. The solution quality of the proposed heuristics have been evaluated
in empirical comparisons with an BSA method and EDD. Computational results have
demonstrated that the presented heuristics outperform these method and procedures tested.
It is expected that this research may provide an innovative approach for production
managers to schedule jobs in the production environment where unrelated parallel
machines are used to process different components and for which setups are required for
auxiliary equipments. Since the development of the proposed heuristics observe secondary
resource constraints, family setup times, process restrictions, hence it is believed that the
proposed heuristics may also be effectively applied to solve the parallel-machine scheduling
problems with family and job setup times.
As for future research, it may be desirable to develop and study effective heuristics for the
dynamic case where jobs arrive over time. Considering that the jobs (orders) from important
customers have strict due-date constraints is another important issue for future research to
pursue.

7. Acknowledgements

This research is partially supported by the National Science Council on Grant number NSC
95-2213-E-035-082. Some of the material in this research is based on the work published in
the International Journal of Advanced Manufacturing Technology.

Multiprocessor Scheduling: Theory and Applications 150

8. References

Alidaee, B. & Rosa, D. (1997). Scheduling parallel machines to minimize total weighted and
unweighted tardiness. Computers & Operations Research, 24, 775-788

Allahverdi, A. & Mittenthal, J. (1994). Scheduling on M parallel machines subject to random
breakdowns to minimize expected mean flow time. Naval Research Logistics, 41, 677-
682

Arkin, M.E. & Roundy, R.O. (1991). Weighted-tardiness scheduling on parallel machines
with proportional weights. Operations Research, 39, 64-76

Armentano, V.A. & Yamashita, D.S. (2000). Tabu search for scheduling on identical parallel
machines to minimize mean tardiness. Journal of Intelligent Manufacturing, 11, 453-
460

Azizoglu, M. & Kirca, O. (1998). Tardiness minimization on parallel machines. International
Journal of Production Economics, 55, 163-168

Baker, K.R. (1973). Procedures for sequencing tasks with one resource type. International
Journal of Production Research, 11., 125-138,

Balakrishnan, N.; Kanet, J. & Sridharan, S.V. (1999). Earliness/tardiness with sequence
dependent setups on uniform parallel machines. Computers & Operations Research,
26, 127-141

Barnes, WJ. & Brennan, JJ. (1977). An improved algorithm for scheduling jobs on identical
machines. AIIE Transactions, 9, 25-31,

Brian, G.R. & Gilbert, S.M. (1990). Sequencing production on parallel machines with two
magnitudes of sequence-dependent setup cost. Journal of Manufacturing and
Operations Management, 3, 24-52

Chen J.-F. (2005). Unrelated parallel machine scheduling with secondary resource
constraints. International Journal of Advanced Manufacturing Technology, 26, 285-292

Chen J.-F. (2005). Minimization of maximum tardiness on unrelated parallel machines with
process restrictions and setups. International Journal of Advanced Manufacturing
Technology, 29, 557-563

Dessouky, M.I. (1998). Scheduling identical jobs with unequal ready times on uniform
parallel machines to minimize the maximum lateness. Computers and Industrial
Engineering, 34, 793-806

Dogramaci, A. & Surkis, J. (1979). Evaluation of a heuristic for scheduling independent jobs
on parallel identical processors. Management Science, 25, 1208-1216

Dogramaci, A. (1984). Production scheduling of independent jobs on parallel identical
machines. International Journal of Production Research, 16, 535-548

Dueck, G. (1993). New optimization heuristics: the great deluge algorithm and the record-to-
record travel. Journal of Computational Physics, 104, 86-92

Elmaghraby, S.E. & Park, S.H. (1974). Scheduling jobs on a number of identical machines.
AIIE Transactions, 6., 1-13

Eom, D.-H.; Shin, H.-J.; Kwun, I.-H.; Shim, J.-K. & Kim, S.-S. (2002). Scheduling jobs on
parallel machines with sequence-dependent family set-up times. International
Journal of Advanced Manufacturing Technology, 19, 926-932

Funda, S.-S. & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness
penalties. Computers & Operations Research, 26, 773-787

Heuristics for Unrelated Parallel Machine Scheduling with Secondary
Resource Constraints 151

Geoffrion, A.M. & Graves, G.W. (1976). Scheduling parallel production lines with
changeover costs: practical application of a quadratic assignment/LP approach.
Operations Research, 24, 595-610

Glover, F. (1989). Tabu search-part I. ORSA Journal on Computing, 1, 190-206
Guinet, A. (1993). Scheduling sequence-dependent jobs on identical parallel machines to

minimize completion time criteria. International Journal of Production Research, 31,
1579-1594

Guinet, A. (1995). Scheduling independent jobs on uniform parallel machines to minimize
tardiness criteria. Journal of Intelligent Manufacturing, 6, 95-103

Ho, J.C. & Chang, Y.L. (1991). Heuristics for minimizing mean tardiness for m parallel
machines. Naval Research Logistics, 38, 367-381

Hu, T.C.; Kuo, Y.S. & Ruskey, F. (1987). Some optimum algorithms for scheduling problems
with changeover costs. Operations Research, 35, 94-99

Kim, D.-W.; Kim, K.-H.; Jang, W. & Chen, F.F. (2002). Unrelated parallel machine scheduling
with setup times using simulated annealing. Robotics and Computer-Integrated
Manufacturing, 18., 223-231,

Koulamas, C. (1994). The total tardiness problem: review and extensions. Operations
Research, 42, 764-775

Koulamas, C. (1997). Decomposition and hybrid simulated annealing heuristics for the
parallel-machine total tardiness problem. Naval Research Logistics, 44, 109-125

Lee, H. & Guignard, M. (1996). A hybrid bounding procedure for the workload allocation
problem on parallel unrelated machines with setups. Journal of the Operational
Research Society, 47, 1247-1261

Lee, H. & Pinedo, M. (1997). Scheduling jobs on parallel machines with sequence-dependent
setup times. European Journal of Operational Research, 100, 464-474

Luh, P.B.; Hoitomt, D.J.; Max, E. & Pattipati, K.R. (1990). Schedule generation and
reconfiguration for parallel machines. IEEE Transactions on Robotics and Automation
6, 687-696

Monma, C.L. & Potts, C.N. (1993). Analysis of heuristics for preemptive parallel machine
scheduling with batch setup times. Operations Research, 41, 981-993

Park, Y.; Kim, S. & Lee, Y.-H. (2000). Scheduling jobs on parallel machines applying neural
network and heuristic rules. Computers & Industrial Engineering, 38, 189-202

Parker, R.G.; Deane, R.H. & Holmes, R.A. (1977). On the use of a vehicle routing algorithm
for the parallel processor problem with sequence dependent change over costs.
AIIE Transactions., 9, 155-160

Potts, C.N. & Van Wassenhove, L. (1982). Decomposition algorithm for the single machine
total tardiness problem. Operations Research Letters, 5, 177-181

Randhawa, S.U. & Kuo, C.H. (1997). Evaluating scheduling heuristics for non-identical
parallel processors. International Journal of Production Research, 35, 969-981

Schutten, J.M.J. & Leussink, R.A.M. (1996). Parallel machine scheduling with release dates,
due dates and family setup times. International Journal of Production Economics, 46-
47, 119-125

So, K.C. (1990). Some heuristics for scheduling jobs on parallel machines with setups.
Management Science, 36, 467-489

Multiprocessor Scheduling: Theory and Applications 152

Sumichrast, R.T. & Baker, J.R. (1987). Scheduling parallel processors: an integer linear
programming based on heuristics for minimizing setup time. International Journal of
Production Research, 25, 761-771

Suresh, V. & Chaudhuri, D. (1994). Minimizing maximum tardiness for unrelated parallel
machines. International Journal of Production Economics, 223-229

Tamaki, H.; Hasegawa, Y.; Kozasa, J. & Araki, M. (1993). Application of search methods to
scheduling problem in plastics forming plant: a binary representation approach.
Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 3845-3850, San
Antonio, TX, December, 1993

Tang, C.S. (1990). Scheduling batches on parallel machines with major and minor set-ups.
European Journal of Operations Research, 46, 28-37

Webster, S. & Azizoglu, M. (2001). Dynamic programming algorithms for scheduling
parallel machines with family setup times. Computers & Operations Research, 28, 127-
137

Weng, M.; Lu, X.J. & Ren, H. (2001). Unrelated parallel machine scheduling with setup
consideration and a total weighted completion time objective. International Journal
of Production Economics, 70, 215-226

Yalaoui, F. & Chu, C. (2002). Parallel machine scheduling to minimize total tardiness.
International Journal of Production economics, 76, 265-279

Multiprocessor Scheduling, Theory and Applications

Edited by Eugene Levner

ISBN 978-3-902613-02-8

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A major goal of the book is to continue a good tradition - to bring together reputable researchers from different

countries in order to provide a comprehensive coverage of advanced and modern topics in scheduling not yet

reflected by other books. The virtual consortium of the authors has been created by using electronic

exchanges; it comprises 50 authors from 18 different countries who have submitted 23 contributions to this

collective product. In this sense, the volume can be added to a bookshelf with similar collective publications in

scheduling, started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and

Punnen (2002), and Leung (2004). This volume contains four major parts that cover the following directions:

the state of the art in theory and algorithms for classical and non-standard scheduling problems; new exact

optimization algorithms, approximation algorithms with performance guarantees, heuristics and metaheuristics;

novel models and approaches to scheduling; and, last but least, several real-life applications and case studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jeng-Fung Chen (2007). Heuristics for Unrelated Parallel Machine Scheduling with Secondary Resource

Constraints, Multiprocessor Scheduling, Theory and Applications, Eugene Levner (Ed.), ISBN: 978-3-902613-

02-8, InTech, Available from:

http://www.intechopen.com/books/multiprocessor_scheduling_theory_and_applications/heuristics_for_unrelate

d_parallel_machine_scheduling_with_secondary_resource_constraints

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

