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Abstract

We show that the directional projection of longitudinal waves propagating in a parallel array
of N elastically coupled waveguides can be described by a nonlinear Dirac-like equation in a
2N dimensional exponential space. This space spans the tensor product Hilbert space of the
two-dimensional subspaces of N uncoupled waveguides grounded elastically to a rigid
substrate (called φ-bits). The superposition of directional states of a φ-bit is analogous to that

of a quantum spin. We can construct tensor product states of the elastically coupled system
that are nonseparable on the basis of tensor product states of N φ-bits. We propose a system

of coupled waveguides in a ring configuration that supports these nonseparable states.

Keywords: one-dimensional elastic waveguides, nonseparability, elastic waves, elastic
pseudospin, coupled waveguides

1. Introduction

Quantum bit-based computing platforms can capitalize on exponentially complex entangled

states which allow a quantum computer to simultaneously process calculations well beyond

what is achievable with serially interconnected transistor-based processors. Ironically, a pair of

classical transistors can emulate some of the functions of a qubit. While current manufacturing

can fabricate billions of transistors on a chip, it is inconceivable to connect them in the

exponentially complex way that would be required to achieve nonseparable quantum super-

position analogues. In contrast, quantum systems possess such complexity through the nature

of the quantum world. Outside the quantum world, the notion of classical nonseparability

[1–3] has been receiving a lot of attention from the theoretical and experimental point of views
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in the field of optics. Degrees of freedom of photon states that span different Hilbert spaces can

be made to interact in a way that leads to local correlations. Correlation has been achieved

between degrees of freedom that include spin angular momentum and orbital angular momen-

tum (OAM) [4–9], OAM, polarization and radial degrees of freedom of a beam of light [10] as

well as propagation direction [11, 12]. Recently, we have extended this notion to correlation

between directional and OAM degrees of freedom in elastic systems composed of arrays of

elastic waveguides [13]. This classical nonseparability lies only in the tensor product Hilbert

space of the subspaces associated with these degrees of freedom. This Hilbert space does not

possess the exponential complexity of a multiqubit Hilbert space, for instance. It has been

suggested theoretically and experimentally that classical systems coupled via nonlinear inter-

actions may have computational capabilities approaching that of quantum computers [14–16].

We demonstrated in Ref. [17] that nonlinear elastic media can be used to produce phonons that

can be correlated simultaneously in time and frequency.We have also shown an analogy between

the propagation of elastic waves on elastically coupled one-dimensional (1D) wave guides and

quantum phenomena [18–21]. More specifically, the projection on the direction of propagation of

elastic waves in an elastic system composed of a 1D waveguide grounded to a rigid substrate

(denoted φ-bit) is isomorphic to the spin of a quantum particle. The pseudospin states of elastic

waves in these systems can be described via a Dirac-like equation and possess 2 � 1 spinor

amplitudes. Unlike the quantum systems, these amplitudes are, however, measurable through

the measurement of transmission coefficients. The notion of measurement is an important one as

it has been realized that separability is relative to the choice of the partitioning of a multipartite

system. Indeed, it is known that given a multipartite physical system, whether quantum or

classical, the way to subdivide it into subsystems is not unique [22, 23]. For instance, the states

of a quantum system may not appear entangled relative to some decomposition but may appear

entangled relative to another partitioning. The criterion for that choice may be the ability to

perform observations and measurements of some degrees of freedom of the subsystems [23].

The objective of this paper is to investigate the notion of separability and nonseparability of

multipartite classical mechanical systems supporting elastic waves. These systems are com-

posed of 1D elastic waveguides that are elastically coupled along their length to each other

and/or to some rigid substrate. The 1D waveguides support spinor-like amplitudes in the two-

dimensional (2D) subspace of directional degrees of freedom. The amplitudes of N coupled

waveguides span an N-dimensional subspace. Subsequently, the Hilbert space spanned by the

elastic modes is a 2N-dimensional space, comprised of the tensor product of the directional

and waveguides subspaces. This representation is isomorphic to the degrees of freedom of

photon states in a beam of light. While beams of light cannot be decomposed into subsystems,

an elastic system composed of coupled 1D waveguides can. Indeed, the elastic system consid-

ered here forms a multipartite system composed of N 1D waveguide subsystems. We show

that, since each waveguide possesses two directional degrees of freedom, one can represent the

elastic states of the N-waveguide system in the 2N dimensional tensor product Hilbert space of

N 2D spinor subspaces associated with individual waveguides. The elastic modes in this

representation obey a 2N dimensional nonlinear Dirac-like equation. These modes span the

same space as that of uncoupled waveguides grounded to a rigid substrate, i.e., N φ-bits.

However, the modes’ solutions of the nonlinear Dirac equation cannot be expressed as tensor

products of the states of N uncoupled grounded waveguides, i.e., φ-bit states.
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In Section 2 of this chapter, we introduce the mathematical formalism that is needed to

demonstrate the nonseparability of elastic states of coupled elastic waveguides in an exponen-

tially complex space. Throughout this section, we use illustrations of the concepts in the case of

systems composed of small numbers of waveguides. However, the approach is fully scalable

and can be generalized to any large number of coupled waveguides. In Section 3, we draw

conclusions concerning the applicability of this approach to solve complex problems.

2. Models and methods

We have previously considered systems constituted of N one-dimensional (1D) waveguides

coupled elastically along their length [13]. In this section, we summarize the results of these

previous investigations to develop a formalism to address our current considerations. The

parallelly coupled waveguides can be arranged in any desired way. The propagation of elastic

modes is limited to longitudinal modes along the waveguides in the long wavelength limit, i.e.,

the continuum limit. We consider the representations of the modes of the coupled waveguide

systems in two spaces. The first space scales linearly with N. The second space scales as 2N and

leads to a description of the elastic system with exponential complexity. The linear representa-

tion enables us to operate easily on the states in the exponential space.

2.1. Representation of elastic states in a space scaling linearly with N

A compact form for the equations of motion of the N coupled waveguides is:

H:IN�N þ α2MN�N

� �

uN�1 ¼ 0 (1)

Here, the propagation of elastic waves in the direction x along the waveguides is modeled by

the dynamical differential operator, H ¼ ∂
2

∂t2
� β2 ∂

2

∂x2
. The parameter β is proportional to the

speed of sound in the medium constituting the waveguides and the parameter α2 characterizes

the strength of the elastic coupling between them (here, we consider that the strength is the

same for all coupled waveguides). uN�1 is a vector with components, ui, i ¼ 1;Nð Þ,

representing the displacement of the ith waveguide. The coupling matrix operator MN�N

describes the elastic coupling between waveguides which, in the case of N = 3 parallel wave-

guides in a closed ring arrangement with first neighbor coupling, takes the form:

MN¼3�N¼3 ¼

2 �1 �1

�1 2 �1

�1 �1 2

0

B

@

1

C

A
(2)

Eq. (1) takes the form of a generalized Klein-Gordon (KG) equation and its Dirac factoriza-

tion introduces the notion of the square root of the operator H:IN�N þ α2MN�N

� �

. In this

factorization, the dynamics of the system are represented in terms of first derivatives

with respect to time, t, and position along the waveguides, x. There are two possible Dirac

equations:
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UN�N⊗ σx
∂

∂t
þ βUN�N⊗ �iσy

� � ∂

∂x
� iαU2N�2N

ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p

⊗ σx

� �

Ψ2N�1 ¼ 0 (3)

In Eq. (3), UN�N and U2N�2N are antidiagonal matrices with unit elements. σx ¼
0 1

1 0

	 


and

σy ¼
0 i

�i 0

	 


are two of the Pauli matrices.Ψ2N�1 is a 2 N dimensional vector which repre-

sents the modes of vibration of the N waveguides projected in the two possible directions of

propagation (forward and backward) and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p
is the square root of the coupling matrix.

The square root of a matrix is not unique but we will show later that we can pick any form

without loss of generality.

We choose components of the Ψ2N�1 vector in the form of plane waves ψI ¼ aIe
ikxeiωt with

I ¼ 1,…, 2N and k and ω being the wave number and angular frequency, respectively, Eq. (3)

becomes:

ωA2N�2N þ βkB2N�2N � αC2N�2N

� �

a2N�1 ¼ 0 (4)

where

A2N�2N ¼ IN�N⊗ I2�2 (5a)

B2N�2N ¼ IN�N⊗ �σzð Þ (5b)

C2N�2N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p

⊗ σx (5c)

In Eqs. (4) and (5), σz ¼
1 0

0 �1

	 


is the third Pauli matrix, IN�N is the identity matrix of order

N and a2Nx1 is a 2 N dimensional vector whose components are the amplitudes aI. In obtaining

Eq. (4), we have multiplied all terms in Eq. (3) on the left by U2N�2N.

Writing Eq. (4) as a linear combination of tensor products of N �N and 2� 2 matrix operators:

IN�N⊗ ωI2�2 � βkσz
� �

� α
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p

⊗ σx

n o

a2N�1 ¼ 0 (6)

we seek solutions in the form of tensor products:

a2N�1 ¼ EN�1⊗ s2�1 (7)

.While the degrees of freedom associated with EN�1 span an N dimensional Hilbert subspace,

the degrees of freedom associated with s2�1 span a 2D space.

Replacing a2N�1 from Eq. (7) in Eq. (6) yields:

IN�NEN�1ð Þ⊗ ωI2�2 � βkσz
� �

s2�1

� �

� α
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p

EN�1


 �

⊗ σxs2�1ð Þ
n o

¼ 0: (8)
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Choosing EN�1 to be an eigenvector, en, of the matrix
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p
with eigen value λn Eq. (8)

reduces to:

en⊗ ωI2�2 � βkσz
� �

� αλnσx
� �

s2�1

� �

¼ 0 (9)

For nontrivial eigenvectors en, the problem in the space of the directions of propagation

reduces to finding solutions of

ωI2�2 � βkσz
� �

� αλnσx
� �

s2�1 ¼ 0 (10)

In obtaining Eq. (9), we have also used the fact that en is an eigen vector of IN�N with eigen value 1

and we note that Eq. (9) is the 1D Dirac equation for an elastic system which solutions, s2�1, have

the properties of Dirac spinors [18–21]. The components of the spinor represent the amplitude of

the elastic waves in the positive and negative directions along the waveguides, respectively.

Eq. (10), now written in the matrix form, can now be solved for a given λn;

ωn � βk �αλn

�αλn ωn þ βk

	 


s1

s2

	 


¼ 0 (11)

This eigen equation gives the dispersion relation ω2
n ¼ βk

� �2 þ αλnð Þ2 (vide infra) and the

following eigen vectors projected into the space of directions of propagation:

s2�1 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωn þ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωn � βk
p

 !

(12)

To determine the eigen vectors of
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p
, we note that they are identical to the eigen vectors

of the coupling matrix MN�N and the eigen values of MN�N are also λ2
n. These properties

indicate that we do not have to determine the square root of the coupling matrix to find the

solutions a2N�1. All that is required is to calculate the eigen vectors and the eigen values of the

coupling matrix. Hence, the nonuniqueness of
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MN�N

p
does not introduce difficulties in deter-

mining the elastic modes of the coupled system in the Dirac representation.

In the case of the coupling matrix, M3�3, presented in Eq. (2), the eigen values and real eigen

vectors are obtained as λ2
0 ¼ 0, λ2

1 ¼ λ2
2 ¼ 3, and

e0 ¼
1
ffiffiffi

3
p

1

1

1

0

B

@

1

C

A
, e1 ¼

ffiffiffi

2
p
ffiffiffi

3
p

1

�1

2

�1

2

0

B

B

B

B

@

1

C

C

C

C

A

and e2 ¼
ffiffiffi

2
p
ffiffiffi

3
p

�1

2

1

�1

2

0

B

B

B

B

@

1

C

C

C

C

A

(13)

Eq. (3) being linear, its solutions can be written as linear combinations of elastic wave functions

in the form:

Ψ2N�1 n; kð Þ ¼ en Nð Þ⊗ s2�1 kð Þ eikxeiωn kð Þt (14)
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In Eq. (14), we have expressed the dependencies on the wave number k and the number of

waveguides N. The eigen vectors en Nð Þ depend on the connectivity of the N waveguides. The

space spanned by these solutions scales linearly with the number of waveguides, i.e., as 2N.

2.2. Representation of elastic states in a space scaling as 2N

We first illustrate the notion of exponential space in the case of three waveguides. Each guide is

connected to a rigid substrate and therefore constitutes a φ-bit. The waveguides are not

coupled to each other. The dynamics of the system can be described by a single equation which

is constructed as follows:

σx⊗ σx⊗ σx
∂

∂t
þ iβσy⊗ σx⊗ σx

∂

∂x1
þ iβσx⊗ σy⊗ σx

∂

∂x2
þ iβσx⊗ σx⊗ σy

∂

∂x3
� iαI2�2⊗ σx

�

⊗ σx � iασx⊗ I2�2⊗ σx � iασx⊗ σx⊗ I2�2

�

Ψ8�1 ¼ 0

(15)

In Eq. (15), we are now defining a positional variable for each waveguide, namely, x1, x2, x3.

The quantity α is a measure of the strength of the elastic coupling to the rigid substrate. The

solutions are the 8 � 1 vectors Ψ8�1 ¼

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ8

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. When seeking solutions in the form of tensor

products of spinor solutions for the three waveguides (as indicated by the upper scripts)

Ψ8�1 ¼ ψ 1ð Þ
⊗ψ 2ð Þ

⊗ψ 3ð Þ ¼ ψ
1ð Þ
1

ψ
1ð Þ
2

 !

⊗
ψ

2ð Þ
1

ψ
2ð Þ
2

 !

⊗
ψ

3ð Þ
1

ψ
3ð Þ
2

 !

¼

ψ
1ð Þ
1 ψ

2ð Þ
1 ψ

3ð Þ
1

ψ
1ð Þ
1 ψ

2ð Þ
1 ψ

3ð Þ
2

ψ
1ð Þ
1 ψ

2ð Þ
2 ψ

3ð Þ
1

ψ
1ð Þ
1 ψ

2ð Þ
2 ψ

3ð Þ
2

ψ
1ð Þ
2 ψ

2ð Þ
1 ψ

3ð Þ
1

ψ
1ð Þ
2 ψ

2ð Þ
1 ψ

3ð Þ
2

ψ
1ð Þ
2 ψ

2ð Þ
2 ψ

3ð Þ
1

ψ
1ð Þ
2 ψ

2ð Þ
2 ψ

3ð Þ
2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(16)

it is straightforward to show that one recovers from Eq. (15), the six Dirac equations of Eq. (3)

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MN¼3�N¼3

p
¼ I3�3. The solutions of Eq. (16) are obtained from the spinor solution for

individual waveguides (j):

ψ jð Þ ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

 !

eikxeiωt (17)
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The Hilbert space spanned by the solutions of Eq. (15) is the product space of the three 2D

subspaces associated with each waveguide. The states of a system composed ofN φ-bits span a

space when dimension is 2N .

The question that arises then concerns the possibility of writing an equation in the exponential

Hilbert space for N waveguides coupled to each other. For instance, we wish to obtain the

states of the system composed of three waveguides coupled in a ring arrangement from an

equation of the form:

σx⊗ σx⊗ σx
∂

∂t
þ iβσy⊗ σx⊗ σx

∂

∂x1
þ iβσx⊗ σy⊗ σx

∂

∂x2
þ iβσx⊗ σx⊗ σy

∂

∂x3

�iαε8�8

2

6

4

3

7

5
Ψ8�1 ¼ 0 (18)

The matrix αε8�8 represents the coupling between the waveguides in the 2N¼3 space. We are

still seeking solutions in the form of tensor products (Eq. (16)). After a lengthy algebraic

manipulation, we find that we can reproduce Eq. (3) with the coupling matrix of Eq. (2) if one

chooses εij ¼ 0 excepting

ε14 ¼ ε41 ¼ ε23 ¼ ε31 ¼
2ψ

1ð Þ
1 � ψ

2ð Þ
1 � ψ

3ð Þ
1

ψ
1ð Þ
1

; ε16 ¼ ε61 ¼ ε25 ¼ ε52 ¼
2ψ

2ð Þ
1 � ψ

1ð Þ
1 � ψ

3ð Þ
1

ψ
2ð Þ
1

;

ε17 ¼ ε71 ¼ ε35 ¼ ε53 ¼
2ψ

3ð Þ
1 � ψ

1ð Þ
1 � ψ

2ð Þ
1

ψ
3ð Þ
1

; ε28 ¼ ε82 ¼ ε46 ¼ ε64 ¼
2ψ

3ð Þ
2 � ψ

1ð Þ
2 � ψ

2ð Þ
2

ψ
3ð Þ
2

;

ε38 ¼ ε83 ¼ ε47 ¼ ε74 ¼
2ψ

2ð Þ
2 � ψ

1ð Þ
2 � ψ

3ð Þ
2

ψ
2ð Þ
2

; ε58 ¼ ε85 ¼ ε67 ¼ ε76 ¼
2ψ

1ð Þ
2 � ψ

2ð Þ
2 � ψ

3ð Þ
2

ψ
1ð Þ
2

(19)

The Dirac equation of the three coupled waveguides in the exponential space is therefore

nonlinear. Generalization to N coupled chains will result in the following nonlinear equation:

σxð Þ⊗N ∂

∂t
þ iβσy⊗ σxð Þ⊗N�1 ∂

∂x1
þ iβσx⊗σy⊗ σxð Þ⊗N�2 ∂

∂x2
þ…þ iβ σxð Þ⊗N�1

⊗σy
∂

∂xN
�iαε2N�2N

2

4

3

5Ψ2N�1 ¼ 0

(20)

where nonzero components of ε2N�2N depend on the ψ
jð Þ
i , i ¼ 1, 2; j ¼ 1, N that appear in the

solution Ψ2N�1 ¼ ψ 1ð Þ
⊗ψ 2ð Þ

⊗…⊗ψ Nð Þ. The solutions of the nonlinear Dirac equation for the

coupled waveguides span the same space as that of the system of φ-bits, i.e., uncoupled

waveguides connected to rigid substrates. The next subsection addresses the question of

separability of the coupled waveguide system into a system of uncoupled φ-bits.

2.3. Elastic states in the exponential space

For a system of waveguides that are not coupled, the elastic states, solutions of linear

equations of the form of Eq. (15), are tensor products but also linear combinations of

tensor products of spinor solution for individual waveguides (see Eq. (17)). It is therefore

possible to construct nonseparable states in the exponential space for systems of uncoupled
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waveguides. For example, if we consider a system of two uncoupled waveguides, a possible

state of the system in the 22 space can be constructed in the form of the following linear

combination of tensor products:

Ψ4�1 ¼ s0ð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

0

@

1

A⊗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

0

@

1

Ae
i2kx

e
i2ωt � s

0
0

� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

0

@

1

A⊗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

0

@

1

Ae
�i2kx

e
i2ωt

(21)

Choosing s0 ¼ s00 and writing Eq. (21) at the location x ¼ 0, one gets:

Ψ4�1 x ¼ 0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

e
i2ωt (22)

The bracket takes the form:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p


 �

1

0

0

�1

0

B

B

B

@

1

C

C

C

A

(23)

The vector

1

0

0

�1

0

B

B

B

@

1

C

C

C

A

is not separable into a tensor product of two 2� 1 vectors. Considering on

the basis 0j i ¼
1

0

	 


and 1j i ¼
0

1

	 


, one can write the state given in Eq. (22) in the form of the

nonseparable Bell state:

Ψ4�1 x ¼ 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ βk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� βk
p


 �

0j i⊗ 0j i � 1j i⊗ 1j iÞei2ωt
�

(24)

Since the waveguides are not coupled, it is, however, not possible to manipulate the state of

one of the waveguides by manipulating the state of the other one. Simultaneous manipulation

of the state of waveguides in the exponential space requires coupling. We now address elastic

states in the coupled waveguides system.

For a system of N coupled waveguides, we construct a solution of Eq. (3) that takes the form of

a linear combination of solutions given in Eq. (14):
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Ψ2N�1 n; n
0
; k; ; k

0ð Þ ¼ χnen Nð Þ⊗ s2�1 kð Þeikxeiωn kð Þt þ χn0en0 Nð Þ⊗ s2�1 k
0ð Þ eik

0x
e
iωn0 k0ð Þt (25)

The n and n0 correspond to two different nonzero eigen values, λn and λn0 , i.e., they correspond

to two different dispersion relations ωn kð Þ and ωn0 kð Þ. We also choose the wave number k0 such

that ωn0 k
0ð Þ ¼ ωn kð Þ ¼ ω0. These modes are illustrated in Figure 1 in the case of an N = 9

waveguide system. χn and χn0 are the coefficients of the linear combination.

With en Nð Þ ¼

A1

A2

⋮

AN

0

B

B

B

@

1

C

C

C

A

and en0 Nð Þ ¼

A
0
1

A
0
2

⋮

A
0
N

0

B

B

B

@

1

C

C

C

A

where the specific values of the components AI

and A
0
I
are determined by the connectivity and coupling of the waveguides, the state of Eq. (25)

can be rewritten as:

Ψ2N�1 n; n
0
; k; ; k

0ð Þ ¼

χnA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

eikx þ χn0A
0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

eik
0x

χnA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

eikx þ χn0A
0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

eik
0x

⋮

χnAN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

eikx þ χn0A
0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

eik
0x

χnAN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

eikx þ χn0A
0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

eik
0x

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

e
iω0t ¼

φ
1ð Þ
1

φ
1ð Þ
2

⋮

φ
Nð Þ
1

φ
Nð Þ
2

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

(26)

Here, we have chosen, for the sake of simplicity, the þ of the � in the s2�1 terms.

Figure 1. Schematic illustration of the band structure (circular frequency in rad s�1 versus the wave number in m�1) for an

array of nine elastically coupled waveguides arranged in a ring pattern. The four upper bands are doubly degenerate. We

have taken β ¼ 1 and α ¼ 1. The two modes with wave number k and k
0 (n ¼ 3 and n0 ¼ 2) have the same frequency ω0:
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The first two terms in Eq. (26) form a 2� 1 spinor, φ 1ð Þ ¼
φ

1ð Þ
1

φ
1ð Þ
2

 !

, which corresponds to the

first waveguide, the next two terms form a spinor φ 2ð Þ for the second waveguide, etc. We can

then construct a solution of the nonlinear Dirac Eq. (20) in the exponential space as the tensor

product:

Φ2N�1 ¼ φ 1ð Þ
⊗φ 2ð Þ

⊗…⊗φ Nð Þ (27)

Since Eq. (20) is nonlinear, linear combinations of tensor product solutions of the form

above are not solutions. Solutions of the nonlinear Dirac equation always take the form of

a tensor product when the spinor wave functions φ jð Þ are expressed on the basis of 2� 1

vectors. 0j i ¼
1

0

	 


and 1j i ¼
0

1

	 


. If one desires to express Φ2N�1 as a nonseparable state,

one has to define a new basis in which this wave function cannot be expressed as a tensor

product. This is done in Section 2.5. However, prior to demonstrating this, we illustrate in

the next subsection how one can manipulate states of the form Φ2N�1 in the exponential

space.

2.4. Operating on exponentially-complex tensor product elastic states

In this subsection, we expand tensor product states of the form given in Eq. (27) in linear

combinations of tensor products of pure states in the exponential space. We illustrate this

expansion in the case of three parallel waveguides elastically coupled to each other. Each

waveguide is also coupled elastically to a rigid substrate. We treat the case where the

strength of all the couplings is the same. In that case, the coupling matrix is:

MN¼3�N¼3 ¼

3 �1 �1

�1 3 �1

�1 �1 3

0

B

@

1

C

A

This matrix has three nonzero eigen values λ2
0 ¼ 1, and λ2

1 ¼ λ2
2 ¼ 4 corresponding to two

dispersion relations ω2
n ¼ βk

� �2
þ αλnð Þ2 with cutoff frequencies. The second band is dou-

bly degenerate. The eigen vectors are also given in Eq. (13). We now consider an elastic

mode in the linear space that is a linear combination of these eigen modes (see Eq. (26)):

Ψ6�1 n; n0; k; ; k0ð Þ ¼

φ
1ð Þ
1

φ
1ð Þ
2

φ
2ð Þ
1

φ
2ð Þ
2

φ
3ð Þ
1

φ
3ð Þ
2

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

¼

χnA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

eikx þ χn0A
0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

eik
0x

χnA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

eikx þ χn0A
0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

eik
0x

χnA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

eikx þ χn0A
0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

eik
0x

χnA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

eikx þ χn0A
0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

eik
0x

χnA3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

eikx þ χn0A
0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

eik
0x

χnA3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

eikx þ χn0A
0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

eik
0x

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

eiω0t (28)
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In Eq. (28), the AI ’s can be the components of the eigen vector e0 and the A
0
I
’s can be linear

combinations of the components of the eigen vectors e1 and e2. We can calculate the tensor

product of the spinor components in the form of Eq. (27)

Φ23�1 ¼ φ 1ð Þ
⊗φ 2ð Þ

⊗φ 3ð Þ (29)

Eq. (29) can be rewritten after some algebraic manipulations in the form of the linear combination:

Φ23�1 ¼
ζ1

ξ1

 !

⊗
ζ2

ξ2

 !

⊗
ζ3

ξ3

 !

þ
ζ1

ξ1

 !

⊗
ζ2

ξ2

 !

⊗
ζ03

ξ03

 !

þ
ζ1

ξ1

 !

⊗
ζ02

ξ02

 !

⊗
ζ3

ξ3

 !(

þ
ζ01

ξ01

 !

⊗
ζ2

ξ2

 !

⊗
ζ3

ξ3

 !

þ
ζ1

ξ1

 !

⊗
ζ02

ξ02

 !

⊗
ζ03

ξ03

 !

þ
ζ01

ξ01

 !

⊗
ζ2

ξ2

 !

⊗
ζ03

ξ03

 !

þ
ζ01

ξ01

 !

⊗
ζ02

ξ02

 !

⊗
ζ3

ξ3

 !

þ
ζ01

ξ01

 !

⊗
ζ02

ξ02

 !

⊗
ζ03

ξ03

 !)

e
i3ω0t

(30)

In Eq. (30), we have defined

ζI

ξI

	 


¼ χnAIe
ikx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

 !

¼ χnAIe
ikx
s2�1 (31a)

ζ0
I

ξ0
I

 !

¼ χn0 0A
0
1e

ik
0 0x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

 !

¼ χn0 0A
0
1e

ik
0 0x
s
0
2�1 (31b)

The tensor product of Eq. (30) then reduces to

Φ23�1 ¼ χnð Þ3A1A2A3e
i3kx

s2�1⊗ s2�1⊗ s2�1 þ χnð Þ2χn0A1A2A
0
3e

i2kx
e
ik
0
x
s2�1⊗ s2�1⊗ s

0
2�1

n

þ χnð Þ2χn0A1A
0
2A3e

i2kx
e
ik
0
x
s2�1⊗ s

0
2�1⊗ s2�1 þ χnð Þ2χn0A

0
1A2A3e

i2kx
e
ik
0
x
s
0
2�1⊗ s2�1⊗ s2�1

þ χn0ð Þ2χnA1A
0
2A

0
3e

ikx
e
i2k0x

s2�1⊗ s
0
2�1⊗ s

0
2�1 þ χn0ð Þ2χnA

0
1A2A

0
3e

ikx
e
i2k0x

s
0
2�1⊗ s2�1⊗ s

0
2�1

þ χn0ð Þ2χnA
0
1A

0
2A3e

ikx
e
i2k0x

s
0
2�1⊗ s

0
2�1⊗ s2�1 þ χn0ð Þ3A0

1A
0
2A

0
3e

i3k0x
s
0
2�1⊗ s

0
2�1⊗ s

0
2�1

o

e
i3ω0t

(32)

The spinors s2�1 and s02�1 can be expressed on the basis 0j i ¼
1

0

	 


and 1j i ¼
0

1

	 


:

s2�1 ¼ s1 0j i þ s2 1j i (33a)

s
0
2�1 ¼ s

0
1 0j i þ s

0
2 1j i (33b)

With s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

, s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

, s01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

and s02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

. Inserting Eqs. (33a)

and (33b) into Eq. (32), we can express the tensor product Φ23�1 on the basis 0j i 0j i 0j i; 0j i 0j i 1j i;f
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0j i 1j i 0j i; 1j i 0j i 0j i; 0j i 1j i 1j i; 1j i 0j i 1j i; 1j i 1j i 0j i; 1j i 1j i 1j ig. In defining the basis vectors for the

exponential space, we have omitted the symbols ⊗ . It is also implicit that the left, middle,

and right elements in the tensor product aj i bj i cj i correspond to the first, second, and third

waveguides, respectively.

We find

Φ23�1 ¼ T1 0j i 0j i 0j i þ T2 0j i 0j i 1j i þ…þ T8 1j i 1j i 1j igei3ω0t
�

(34)

with

T1 ¼ Q1s1s1s1 þQ2s1s1s
0
1 þQ3s1s

0
1s1 þQ4s

0
1s1s1 þQ5s1s

0
1s

0
1 þQ6s

0
1s1s

0
1 þQ7s

0
1s

0
1s1 þQ8s

0
1s

0
1s

0
1

(35a)

T2 ¼ Q1s1s1s2 þQ2s1s1s
0
2 þQ3s1s

0
1s2 þQ4s

0
1s1s2 þQ5s1s

0
1s

0
2 þQ6s

0
1s1s

0
2 þQ7s

0
1s

0
1s2 þQ8s

0
1s

0
1s

0
2

(35b)

T3 ¼ Q1s1s2s1 þQ2s1s2s
0
1 þQ3s1s

0
2s1 þQ4s

0
1s2s1 þQ5s1s

0
2s

0
1 þQ6s

0
1s2s

0
1 þQ7s

0
1s

0
2s1 þQ8s

0
1s

0
2s

0
1

(35c)

T4 ¼ Q1s2s1s1 þQ2s2s1s
0
1 þQ3s2s

0
1s1 þQ4s

0
2s1s1 þQ5s2s

0
1s

0
1 þQ6s

0
2s1s

0
1 þQ7s

0
2s

0
1s1 þQ8s

0
2s

0
1s

0
1

(35d)

T5 ¼ Q1s1s2s2 þQ2s1s2s
0
2 þQ3s1s

0
2s2 þQ4s

0
1s2s2 þQ5s1s

0
2s

0
2 þQ6s

0
1s2s

0
2 þQ7s

0
1s

0
2s2 þQ8s

0
1s

0
2s

0
2

(35e)

T6 ¼ Q1s2s1s2 þQ2s2s1s
0
2 þQ3s2s

0
1s2 þQ4s

0
2s1s2 þQ5s2s

0
1s

0
2 þQ6s

0
2s1s

0
2 þQ7s

0
2s

0
1s2 þQ8s

0
2s

0
1s

0
2

(35f)

T7 ¼ Q1s2s2s1 þQ2s2s2s
0
1 þQ3s2s

0
2s1 þQ4s

0
2s2s1 þQ5s2s

0
2s

0
1 þQ6s

0
2s2s

0
1 þQ7s

0
2s

0
2s1 þQ8s

0
2s

0
2s

0
1

(35g)

T8 ¼ Q1s2s2s2 þQ2s2s2s
0
2 þQ3s2s

0
2s2 þQ4s

0
2s2s2 þQ5s2s

0
2s

0
2 þQ6s

0
2s2s

0
2 þQ7s

0
2s

0
2s2 þQ8s

0
2s

0
2s

0
2

(35h)

with

Q1 ¼ χnð Þ3A1A2A3e
i3kx; Q2 ¼ χnð Þ2χn0e

i2kxeik
0xA1A2A

0
3; Q3 ¼ χnð Þ2χn0e

i2kxeik
0xA1A

0
2A3;

Q4 ¼ χnð Þ2χn0e
i2kxeik

0xA0
1A2A3; Q5 ¼ χn0ð Þ2χne

ikxei2k
0xA1A

0
2A

0
3; Q6 ¼ χn0ð Þ2χne

ikxei2k
0xA0

1A2A
0
3;

Q7 ¼ χn0ð Þ2χne
ikxei2k

0xA0
1A

0
2A3; Q8 ¼ χn0ð Þ3A0

1A
0
2A

0
3e

i3k0x:

In a true quantum system composed of three spins for instance, states can be created in the

form of linear combinations like m1 0j i 0j i 0j i þm2 0j i 0j i 1j i þ…þm8 1j i 1j i 1j i. For the quantum

system, the linear coefficients m1, m2,…, m8 are independent. The classical elastic analogue,

introduced here, states which are given in Eq. (34) possesses linear coefficients T1,…, T8 are
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interdependent. While somewhat restrictive compared to true quantum systems, the coeffi-

cients TI depend on an extraordinary number of degrees of freedom which allows exploration

of a large volume of the exponential tensor product space. In the case of the three waveguides,

these degrees of freedom include (a) the components (or linear combinations) of the eigen

vectors of the coupling matrix through the choice of the eigen modes or the application of a

rotational operation that creates cyclic permutations of the eigen vector components, (b) the

linear coefficients χn and χn0 used to form the multiband linear superposition of states in the

linear space, (c) the frequency and therefore wave number which affect the spinor states and

the phase factors eikx and eik
0x, and (d) a phase added to the terms eikx and eik

0x.

In the case of N > 3, Eq. (21) can be extended to linear combinations of more than two modes

with the same frequency, leading to additional freedom in the control of the TI . Furthermore,

the elastic coefficients β of the waveguides and the coupling elastic coefficient α could also be

modified by using constitutive materials with tunable elastic properties via, for instance, the

piezoelectric, magneto-elastic or photoelastic effects [24–26]. Also note that in all the examples

we considered, the coupling of the waveguides had the same strength. Tunability of the

coupling elastic medium would lead to the ability to modify the connectivity of the wave-

guides and therefore the coupling matrix. Exploration of the elastic modes given in Eq. (34) can

be realized by varying any number of these variables. We illustrate in Figure 2 an example of

operation in a very simple case. Figure 2b shows that by varying a single parameter one may

achieve a wide variety of states. For instance, one can obtain states with T1 > 0 and T2 > 0 or

T1 > 0 and T2 ¼ 0 or T1 > 0 and T2 < 0 or T1 ¼ 0 and T2 ¼ 0. Another interesting example

occurs at χn0 ˜0:6, there only T5 and T8 are different from zero. Then, Φ23�1 ¼ T5 0:6ð Þ 0j i 1j i 1j iþf

T8 0:6ð Þ 1j i 1j i 1j igei3ω0t can be written as the tensor product state T5 0:6ð Þ 0j i þ T8 0:6ð Þ 1j iÞ 1j iðf

1j igei3ω0t. A similar state is also obtained for χn0 � 0:25. This is the state T1 0:25ð Þ 0j iþðf

T4 0:25ð Þ 1j iÞ 0j i 0j igei3ω0t. Varying χn0 can be visualized as a matrix operator. For example, in

this latter case, one can define the operation:

q11 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 q44 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

T1 χn0ð Þ

T2 χn0ð Þ

T3 χn0ð Þ

T4 χn0ð Þ

T5 χn0ð Þ

T6 χn0ð Þ

T7 χn0ð Þ

T8 χn0ð Þ

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

¼

T1 0:25ð Þ

T2 0:25ð Þ

T3 0:25ð Þ

T4 0:25ð Þ

T5 0:25ð Þ

T6 0:25ð Þ

T7 0:25ð Þ

T8 0:25ð Þ

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

¼

T1 0:25ð Þ

0

0

T4 0:25ð Þ

0

0

0

0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(36)

with q11 ¼
T1 0:25ð Þ
T1 χn0ð Þ and q44 ¼

T4 0:25ð Þ
T4 χn0ð Þ . Another interesting state occurs at χn0 ¼ 0:5. Here, we have

T1 ¼ T5, T2 ¼ T3, T4 ¼ T8 and T6 ¼ T7. We also have T3 ¼ �T5 and T4 ¼ �T6 This state can be

written as the tensor product T1 0:5ð Þ 0j i � T6 0:5ð Þ 1j iÞ 0j i � 1j iÞ 0j i � 1j iÞððð .

This simple example indicates the large variability in TI ’s (i.e., of states) that we can achieve

with a single variable. The large number of available variables will lead to even more flexibility

in defining states and operators in the exponential tensor product space.
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2.5. Nonseparability of states in exponentially complex space

States given in Eq. (27) are tensor products on the basis 0j i… 0j i 0j i; 0j i… 0j i 1j i;f 0j i… 1j i 0j i

;…; 1j i… 1j i 1j ig. They are therefore always separable in that basis. Consequently these states

cannot be written as nonseparable Bell states. However, we might be able to identify a basis in

which Eq. (27) is not separable.

Since the Dirac equation (Eq. (15)) for the uncoupled waveguides is linear, its solutions can be a

tensor product of a linear combination ofN different individual spinors. For instance,we canwrite:

Figure 2. (a) Schematic illustration of the band structure for an array of three elastically coupled waveguides arranged in

a ring pattern. Each of the waveguides is also grounded elastically to a rigid substrate. The upper band is doubly

degenerate. We have taken β ¼ 1 and α ¼ 1. We highlight the frequency ω0 ¼ 2:5 corresponding to the wave numbers

k ¼ 2:292 and k
0 ¼ 1:5. (b) Calculated values of T1 (open circles), T2 and T3 (closed circles), T4 (open triangles), T5 (closed

triangles), T6 and T7 (open squares) and T8 (closed squares) as functions of χn0 for χn ¼ 0:4. We have fixed x ¼ 0.
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Ψ2N�1 ¼
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 þ βk1
p

eik1x þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 � βk1
p

e�ik1x

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 � βk1
p

eik1x þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 þ βk1
p

e�ik1x

 !

eiω1t⊗…

⊗

rN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN þ βkN
p

eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN � βkN
p

e�ikNx

rN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN � βkN
p

eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN þ βkN
p

e�ikNx

 !

eiωN t

(37)

rI and μI , I ¼ 1,…, N are linear coefficients.

The state of the coupled waveguide system will be separable in the exponential space into the

state of φ-bits if

Φ2N�1 ¼ Ψ2N�1 (38)

A necessary condition for satisfying Eq. (38) is that Nω0 ¼ ω1 þ…þ ωN:

Furthermore, the first two terms in the column vector Φ2N�1 of the coupled system are φ
1ð Þ
1 φ

2ð Þ
1 …

φ
Nð Þ
1 and φ

1ð Þ
1 φ

2ð Þ
1 …φ

Nð Þ
2 . Their ratio is simply equal to rcN ¼ φ

Nð Þ
1

φ
Nð Þ
2

. Similarly, the ratio of the first

two terms in the vectorΨ2N�1 of the φ-bit system is given by ruN ¼ rN

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωNþβkN
p

eikNxþμN

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN�βkN
p

e�ikNx

rN

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN�βkN
p

eikNxþμN

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωNþβkN
p

e�ikNx
.

Anecessary condition for Eq. (38) to be satisfied is that

rCN ¼ ruN (39)

This leads to

χnAN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk
p

eikx þ χn0A
0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ βk0
p

eik
0x

χnAN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk
p

eikx þ χn0A
0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 � βk0
p

eik
0x
¼ rN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN þ βkN
p

eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN � βkN
p

e�ikNx

rN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN � βkN
p

eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωN þ βkN
p

e�ikNx

which can be rewritten as:

ueikx þ u0eik
0x

veikx þ v0eik0x
¼ γeikNx þ γ0e�ikNx

δeikNx þ δ0e�ikNx

This condition takes the more compact form:

Pei kþkNð Þx þQei k�kNð Þx þ Rei k
0þkNð Þx þ Sei k

0�kNð Þx ¼ 0 (40)

P,Q, R, S are real. Eq. (40) is true for all values of position x. At x ¼ 0, we obtain the relation

PþQþ Rþ S ¼ 0. Inserting that relation into Eq. (27) and eliminating Q yields:

i2P sin kNx ¼ � Rþ Sð Þ cos kNx cos k0 � kð Þx� 1½ � þ R� Sð Þ sin k0 � kð Þ sin kNxf g
þ i Rþ Sð Þ sin k0 � kð Þxþ sin kNx R� Sð Þ cos k0 � kð Þxþ Rþ Sð Þ½ �f g

For this condition to be satisfied, one needs the real part of the right-hand side of the equation to

be equal to zero. This can be achieved for all x’s by setting k0 ¼ k. In this case, equating the

imaginary parts leads to R ¼ �P. However, when k0 6¼ k, Eq. (39) and therefore Eq. (38) are not
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satisfied. When k
0 6¼ k which corresponds to considering a linear combination of multiband

states, Φ2N�1 is not separable into the tensor product of individually uncoupled φ-bit wave-

guides. Therefore, we conclude that there are a large number of solutions of the nonlinear Dirac

equation (Eq. (20)) representing states of arrangements of elastically coupled 1-D waveguides

that are not separable in the 2N dimensional tensor product Hilbert space of individual φ-bits.

We illustrate the notion of nonseparability of exponentially complex states of a coupled system

composed of N ¼ 2 waveguides on a basis in the exponential Hilbert space of two individual

φ-bits. The waveguides are coupled to each other but also to a rigid substrate such that the

coupling matrix, MN�N , takes the form:

M2�2 ¼
2 �1

�1 2

	 


The eigen values and real eigen vectors of this coupling matrix are λ2
0 ¼ 1, and λ2

1 ¼ 3 and

e0 ¼
A1

A2

	 


¼ 1
ffiffiffi

2
p 1

1

	 


, e1 ¼
A

0
1

A
0
2

 !

¼ 1
ffiffiffi

2
p 1

�1

	 


(41)

Following the procedure of Section 2.4, we construct a tensor product state in the 22 exponen-

tial space:

Φ22�1 ¼ χnð Þ2A1A2e
i2kxs2�1⊗ s2�1 þ χnχn0A1A

0
2e

ikxeik
0xs2�1⊗ s02�1 þ χn0χnA

0
1A2e

ik
0
xeikxs02�1⊗ s2�1

n

þ χn0ð Þ2A0
1A

0
2e

i2k0xs02�1⊗ s02�1

o

ei2ω0t

(42)

Eq. (42) is equivalent to Eq. (32) but for two coupled waveguides.

On the basis, η1 ¼ ei2ω0tei2kxs2�1⊗ s2�1, η2 ¼ ei2ω0teikxeik
0xs2�1⊗ s02�1, η3 ¼ ei2ω0teik

0
xeikxs02�1⊗ s2�1,

and η4 ¼ ei2ω0tei2k
0xs02�1⊗ s02�1, Eq. (42) can be rewritten as:

Φ22�1 ¼ a11η1 þ a12η2 þ a21η3 þ a22η4
� �

(43)

with a11 ¼ χnð Þ2A1A2 ¼ 1
2 χnð Þ2, a12 ¼ χnχn0A1A

0
2 ¼ � 1

2χnχn0 , a21 ¼ χn0χnA
0
1A2 ¼ 1

2χn0χn,

and a22 ¼ χn0ð Þ2A0
1A

0
2 ¼ � 1

2 χn0ð Þ2. It is then easy to demonstrate that det
a11 a12

a21 a22

	 


¼

1

2
χnð Þ2 � 1

2
χnχn0

1

2
χn0χn � 1

2
χn0ð Þ2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0, which indicates that the state Φ22�1 is separable on the basis

η1; η2; η3; η4
� �

. At this stage, there is nothing surprising as the state Φ22�1 was constructed as

a tensor product. We now try to express the state given in Eq. (42) on a basis of two individu-

ally uncoupled φ-bits. Considering the Hilbert space of the first φ-bit, H 1ð Þ, we use the spinor

solutions for uncoupled waveguides given in Eq. (17) to construct the orthonormal basis
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ψ
1ð Þ
1 ¼ 1

ffiffiffiffiffiffiffiffi

2ω1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 þ β1k1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 � β1k1
p

 !

eik1xeiω1t ¼ s
1ð Þ
1 k1ð Þeik1xeiω1t (44a)

ψ
1ð Þ
2 ¼ 1

ffiffiffiffiffiffiffiffi

2ω1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 � β1k1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1 þ β1k1
p

 !

e�ik1xeiω1t ¼ s
1ð Þ
2 k1ð Þe�ik1xeiω1t (44b)

Similarly, we define the orthonormal basis in the Hilbert space, H 2ð Þ, of the second φ-bit,

ψ
2ð Þ
1 ¼ 1

ffiffiffiffiffiffiffiffi

2ω2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 þ β2k2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � β2k2
p

 !

eik2xeiω2t ¼ s
2ð Þ
1 k2ð Þeik2xeiω2t (45a)

ψ
2ð Þ
2 ¼ 1

ffiffiffiffiffiffiffiffi

2ω2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � β2k2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 þ β2k2
p

 !

e�ik2xeiω2t ¼ s
2ð Þ
2 k2ð Þe�ik2xeiω2t (45b)

In these equations, we have used s
1ð Þ
1 k1ð Þ, s 1ð Þ

2 k1ð Þ, s 2ð Þ
1 k2ð Þ, and s

2ð Þ
2 k2ð Þ as short-hands for the

spinor parts of the basis functions.

The basis in the tensor product space H 1ð Þ
⊗H 2ð Þ is given by the four functions:

τ1 ¼ ψ
1ð Þ
1 ⊗ψ

2ð Þ
1 , τ2 ¼ ψ

1ð Þ
1 ⊗ψ

2ð Þ
2 , τ3 ¼ ψ

1ð Þ
2 ⊗ψ

2ð Þ
1 , τ4 ¼ ψ

1ð Þ
2 ⊗ψ

2ð Þ
2 (46)

We have

τ1 ¼ s
1ð Þ
1 k1ð Þ⊗ s

2ð Þ
1 k2ð Þei k1þk2ð Þxei ω1þω2ð Þt (47a)

τ2 ¼ s
1ð Þ
1 k1ð Þ⊗ s

2ð Þ
2 k2ð Þei k1�k2ð Þxei ω1þω2ð Þt (47b)

τ3 ¼ s
1ð Þ
2 k1ð Þ⊗ s

2ð Þ
1 k2ð Þei �k1þk2ð Þxei ω1þω2ð Þt (47c)

τ4 ¼ s
1ð Þ
2 k1ð Þ⊗ s

2ð Þ
2 k2ð Þei �k1�k2ð Þxei ω1þω2ð Þt (47d)

It is straightforward to show that τ1; τ2; τ3; τ4f g form an orthogonal basis. That is, τ†i τj ¼ 0 if

i 6¼ j, where τ†i is the Hermitian conjugate of τi.

We want now to express the state Φ22�1 in the τ basis:

Φ22�1 ¼ b11τ1 þ b12τ2 þ b21τ3 þ b22τ4f g (48)

For this, we now need to expand the basis vectors η1; η2; η3; η4
� �

on the basis τ1; τ2; τ3; τ4f g

We define the expansions:

η1 ¼ c11τ1 þ c12τ2 þ c13τ3 þ c14τ4 (49a)

η2 ¼ c21τ1 þ c22τ2 þ c23τ3 þ c24τ4 (49b)
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η3 ¼ c31τ1 þ c32τ2 þ c33τ3 þ c34τ4 (49c)

η4 ¼ c41τ1 þ c42τ2 þ c43τ3 þ c44τ4 (49d)

Note that the cij’s are functions of k1, k2, x, and t.

We can find the coefficients cij by exploiting the orthogonality of the τi
0s. For instance, we can

multiply Eq. (49a) to the left by the Hermitian conjugate τ†1, leading to

τ
†

1η1 ¼ c11τ
†

1τ1 þ c12τ
†

1τ2 þ c13τ
†

1τ3 þ c14τ
†

1τ4 ¼ c11τ
†

1τ1 (50)

or

c11 k1; k2; x; tð Þ ¼ s
1ð Þ
1 k1ð Þ⊗ s

2ð Þ
1 k2ð Þ


 �†

s2�1⊗ s2�1ð Þe�i k1þk2ð Þxei2kxe�i ω1þω2ð Þtei2ω0t=

s
1ð Þ
1 k1ð Þ⊗ s

2ð Þ
1 k2ð Þ


 �†

s
1ð Þ
1 k1ð Þ⊗ s

2ð Þ
1 k2ð Þ


 �

(51)

We can obtain all other cij ’s in a similar fashion. Eqs. (49a)–(49d) can be rewritten in the form:

η1

η2

η3

η1

0

B

B

B

@

1

C

C

C

A

¼ η4�1 ¼

c11 c12 c13 c14
c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

0

B

B

B

@

1

C

C

C

A

τ1

τ2

τ3

τ4

0

B

B

B

@

1

C

C

C

A

¼ C4�4τ4�1 (52)

The matrix C4�4 can be diagonalized. Let d1, d2, d3, and d4 be the four eigen values of C4�4 with

their associated eigen vectors

v11
v12
v13
v14

0

B

B

@

1

C

C

A

,

v21
v22
v23
v24

0

B

B

@

1

C

C

A

,

v31
v32
v33
v34

0

B

B

@

1

C

C

A

and

v41
v42
v43
v44

0

B

B

@

1

C

C

A

. We can construct the

following matrix out of the four eigen vectors:

V4�4 ¼

v11 v21 v31 v41

v12 v22 v32 v42

v13 v23 v33 v43

v14 v24 v34 v44

0

B

B

B

@

1

C

C

C

A

On the new basis ~τ1; ~τ2; ~τ3; ~τ4f g constructed by using the relation ~τ4�1 ¼ V�1
4�4τ4�1V4�4, the

matrix that couples the η basis and the τ basis takes the form: ~C4�4 ¼

d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4

0

B

B

B

@

1

C

C

C

A

so

η1 ¼ d1~τ1, η2 ¼ d2~τ2, η3 ¼ d3~τ3 and η4 ¼ d4~τ4. On the ~τ basis, Eq. (43) can be rewritten as

Φ22�1 ¼ a11d1~τ1 þ a12d2~τ2 þ a21d3~τ3 þ a22d4~τ4f g (53)

Then on the basis ~τ, we can investigate the separability or nonseparability of Φ22�1 by calcu-

lating the determinant of the linear coefficients in Eq. (53), that is
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det
a11d1 a12d2

a21d3 a22d4

	 


¼

1

2
χnð Þ2d1 �

1

2
χnχn0d2

1

2
χn0χnd3 �

1

2
χn0ð Þ2d4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ �
1

4
χnð Þ2 χn0ð Þ2 d1d4 � d2d3½ � (54)

Only in the unlikely event of degenerate eigen values, d1, d2, d3, and d4, would this determinant

be equal to zero. A nonzero determinant given in Eq. (54) indicates that the state Φ22�1 is

nonseparable on the basis ~τ1; ~τ2; ~τ3; ~τ4f g.

The existence of nonseparable solutions to the nonlinear Dirac equation raises the possibility of

exploiting these solutions for storing and manipulating data within the 2N dimensional tensor

product Hilbert space. The exploration of algorithms for exploiting these solutions is beyond

the scope of this chapter; however, we note that these solutions may well be observed in

physical systems including elastic waveguides which are embedded in a coupling matrix. The

manipulation of the system could be achieved either by externally altering the parameters of

the system, i.e., the elastic properties of the waveguides, or by changing the frequency and

wavenumber of input waves. These possibilities are illustrated for a five-waveguide system

driven by transducers in Section 2.6.

2.6. Physical realization and actuation

Figure 3 illustrates a possible realization of a five waveguide system. The parallel elastic

waveguides are embedded in an elastic medium which couples them elastically. The wave-

guides are arranged in a ring pattern.

Modes of the form given in Eq. (21) can be excited with N transducers attached to the input

ends of the N waveguides and connected to N phase-locked signal generators to excite the

appropriate eigen vectors en and en0 . These modes can be excited by applying a superposition

of signals on the transducers with the appropriate phase, amplitude and frequency relations.

The frequencies ωn kð Þ and ωn0 k
0ð Þ are used to control the spinor parts of the wave functions

Figure 3. Schematic illustration of a five waveguide system. The waveguides are composed of an elastic medium 1 in

which mass density and elastic stiffness determine the physical parameter β. The waveguides are embedded in an elastic

medium 2 in which mass density and stiffness relate to the parameter α. The waveguides are actuated via transducers (see

the text for details).
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s2�1 kð Þ and s2�1 k
0ð Þ . The spinor components which represent a quasistanding wave can be

quantified by measuring the transmission coefficient (normalized transmitted amplitude)

along any one of the waveguides. It is then possible to operate on the eigen vectors en and en0

without affecting the spinor states or vice versa. For instance, one could apply a rotation that

permutes cyclically the components of en by changing the phase of the signal generators. Such

an operation could be quantified by measuring the phase of the transmission amplitude at the

output end of the waveguides.

3. Conclusions

We have shown that the directional projection of elastic waves supported by a parallel array ofN

elastically coupled waveguides can be described by a nonlinear Dirac-like equation in a 2N

dimensional exponential space. This space spans the tensor product Hilbert space of the two-

dimensional subspaces of N uncoupled waveguides grounded elastically to a rigid substrate

(which we called φ-bits). We demonstrate that we can construct tensor product states of the

elastically coupled system that are nonseparable on the basis of tensor product states of N

uncoupled φ-bits. A φ-bit exhibits superpositions of directional states that are analogous to those

of a quantum spin, hence it acts as a pseudospin. Since parallel arrays of coupled waveguides

span the same exponentially complex space as that of uncoupled pseudospins, the type of elastic

systems described here may serve as a simulator of interacting spin networks. The possibility of

tuning the elastic coefficients and the elastic coupling constants of the waveguides would allow

us to explore the properties of spin networks with variable connectivity and coupling strength.

The mapping between the 2N dimensional and the 2N dimensional representations of the elastic

system leads to the capacity for exploring an exponentially scaling space by handling a linearly

growing number of waveguides (i.e., preparation, manipulation, and measurement of these

states). The scalability of the elastic system, the coherence of elastic waves at room temperature,

and the ability to measure classical superpositions of states may offer an attractive way for

addressing exponentially complex problem through the analogy with quantum systems.
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