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Abstract

Recent progress in periodontology intended to reduce the risk represented by periodontal 
disease for systemic disorders and general human health condition. In this chapter, we 
overview the advantages and limitations of current techniques based on occlusive mem-
branes for periodontal regeneration. Special emphasis is paid to advanced techniques using 
stem cells from dental pulp for the regeneration of bone defects caused by the chronic 
periodontal disease. Stem cells isolation, in vitro expansion and characterization techniques 
are presented. Therapeutic strategies of stem cells delivery using natural polymeric carri-
ers are discussed. Stem cell-scaffold constructs application in bone tissue engineering is 
proposed, taking into account the marked decline of healing, and regenerative processes in 
elderly individuals. Future researchers envisage multiple effects of engineered constructs 
with antimicrobial, anti-inflammatory, and regenerative activity for periodontal treatment.

Keywords: cell carrier, collagen, dental pulp, periodontitis, regenerative medicine, 
scaffold, stem cells, tissue engineering

1. Introduction

Periodontium is a structural and functional tissue, which facilitates the anchoring of teeth 

in the maxillary and mandibular bones. It consists of two hard tissues, the cementum and 

the alveolar bone, and two soft tissues, the gingival connective tissue, and the periodontal 

ligament [1]. The periodontal tissues provide structural support at the tooth-jaw interface, 

a resilient attachment of the teeth during mastication and protection against the pathogenic 
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microbial flora from the oral cavity [2]. Periodontal remodeling is a necessary process in 

response to occlusal changes and dental abrasion, while the gingiva can initiate an immune 

response against pathogenic bacterial flora [3]. At the molecular level, tissue remodeling is 

accomplished by resorption and deposition of extracellular matrix components [4].

Periodontitis is the second most common oral infectious disease after dental caries, which 

affects the periodontium. It is a result of the inflammatory response caused by the accumula-

tion of bacterial plaque at the gingival edge of the tooth. In its first phase, gingivitis, an inflam-

matory process occurs in the gingival tissue causing oral discomfort, but the following phases 

of periodontal disease are characterized by progressive destruction of the supporting tissues 

of the tooth, increased dental mobility, impairment of dental function, and, finally, tooth loss 
[5]. Periodontitis involves a cascade of temporally and spatially coordinated molecular pro-

cesses, which degrade the host tissues in a similar way to other tissue remodeling actions. 

Researchers indicated the involvement of main components of the periodontal ligament 

extracellular matrix in the initiation and progression of periodontitis [1, 2], but the molecular 

mechanisms have not been identified. The presence of chronic inflammation in association 
with bacterial plaque leaded to enzymatic degradation of the extracellular matrix components 

and an increase of soluble glycosaminoglycans fractions [6], carboxy-terminal telopeptides 

of type I collagen (COL) molecule [7], and the 40 kDa pro-apoptotic fragment of fibronectin 
(FN) [8]. In addition, increased levels of pro-inflammatory cytokines (tumor necrosis factor 
TNF-α, interleukin IL-1β), matrix metalloproteases (MMP-8, MMP-9) and apoptosis events 
called anoikis, which induce detachment of cells from the matrix, were observed [9]. The main 

mechanism of tissue damage encountered in periodontitis is extracellular matrix degradation, 

in particular, COL catabolism, by matrix metalloproteinases (MMP-1, MMP-3, MMP-8, MMP-
9, and MMP-13). These enzymes are synthesized and activated by resident fibroblasts and 
macrophages during the inflammatory process, under the action of proinflammatory cyto-

kines [10]. Their activity is regulated at the transcriptional level, post-translational level and 

through tissue inhibitors of metalloproteinases [11]. Other mechanisms coordinated by exter-

nal bacterial virulence factors or proinflammatory cytokines secreted by host T-lymphocytes, 
at the inflammatory situs, induce the expression of receptor activator of nuclear factor kappa-
B ligand (RANKL). RANKL is expressed by numerous cell types, including osteoblasts and 

lymphocytes, and is found in soluble form or associated with the cell membrane [12]. RANKL 

binds to its monocyte-expressed receptor RANK, inducing the formation of multinucleated 

osteoclasts. In the same time, osteoprotegerin (OPG) is a secreted receptor that acts as a com-

petitive inhibitor of RANKL. Unlike healthy periodontal tissues, there are very high levels 

of RANKL and low OPG concentrations found in the gingival crevicular fluid of damaged 
periodontal tissues [13]. The balance within RANKL/RANK/OPG system controls the physi-

ological processes involved in bone turnover and loss. Besides tissue damage, the cytokine 

network promotes fibroblast activation and proliferation, which can lead to fibrosis [5].

Periodontal disease presents a high risk for the general health, leading to systemic diseases, such 

as rheumatoid arthritis, chronic bronchitis, and pulmonary fibrosis [14]. Periodontal therapy 

targets the structural and functional regeneration of the complex structure of the periodontium, 

aiming the restoration of cementum lining the tooth root and the periodontal ligament attached 
to the cementum, together with the formation of new alveolar bone and gingiva. In the same 

time, the subgingival space needs protection against the pathogenic bacterial flora [2]. Stem 
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cell biology has enabled the development of innovative cellular therapies that stimulate the 

endogenous regenerative process of the periodontal tissue [15]. Thus, two-dimensional (2D) 

cell sheets or three-dimensional (3D) cell aggregates served as grafting materials, but only for 

small periodontal defects due to their low stability [16]. There are numerous stem cell sources 

with potential application in periodontal regeneration involving both oral and extra-oral tis-

sues. A major problem of stem cells clinical application in periodontal regeneration strategies is 

their low survival rate after transplantation [17]. In order to improve the therapeutic properties 

of stem cells, they are implanted in biomaterials that must meet the requirements of the biologi-

cal environment. A detailed investigation of stem cells-biomaterial interaction, in correlation 

with the role of stem cells secretome represented by cytokines, growth factors and chemokines 

is needed. Tissue engineering is a strategic approach for periodontal regeneration in controlled 

conditions. Clinically meaningful results were obtained using complex biomaterials capable of 

spatial and temporal guiding of the periodontal regeneration [18]. The use of composite bioma-

terials can be complementary to existing clinical procedures, such as guided tissue regenera-

tion (GTR) or combined with cellular therapies and/or bioactive molecules. These emerging 

technologies of regenerative medicine were tested in vitro, in preclinical studies, and clinical 

trials for periodontal tissue engineering [1, 19]. They facilitate the integration of stem cells into 

the surrounding milieu and functional reconstruction of the periodontal complex [16].

This chapter describes the advantages and limitations of current techniques and proposes 

advanced techniques based on stem cells and cell carriers for the treatment of periodontal 

disease. Special emphasis is paid to dental pulp stem cells (DPSCs) isolation, expansion con-

ditions in vitro, and their use for the regeneration of bone defects caused by the chronic peri-

odontal disease. Their delivery after injection within natural polymeric carriers is discussed 

as a new therapeutic strategy for periodontal lesions.

2. Current techniques of periodontal regeneration

2.1. Guided tissue regeneration

Many clinical and biological factors can impair the process of periodontal tissue regenera-

tion. The tissue is in permanent contact with the external environment of the oral cavity 

and presents a risk of infection during the regeneration process. There are several types 

of mechanical stress, caused by occlusal forces or dental gum stretching, which affects the 
mucous membranes and reduces bone resorption. Surgical techniques of periodontal tissue 

regeneration include root surface modification, bone grafting, and GTR. The most common 
regenerative treatment GTR is based on the application of barrier membranes, in order to 

restrict epithelial and gingival connective cells in periodontal defects and to increase the 

number of cementoblasts and osteoblasts that synthesize extracellular matrix and, finally, 
new functional tissue [20]. On GTR market, several products are intended for the clinical 

treatment of intraosseous defects or class II fissure defects. They consist of non-resorbable 
membranes of synthetic materials (expanded polytetrafluoroethylene, nylon on silicone) or 
resorbable membranes made of organic materials, presenting different composition, and 
structure. In case of using non-resorbable membranes, bone regeneration is low, and a second 
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surgery is needed to remove them. The resorbable membranes composed of COL types I 

or III extracted from bovine tendon or porcine skin are enzymatically degraded and their 

resorption time varies with the cross-linking degree. Polymeric membranes of polylactic acid 

or copolymeric materials of polylactic acid/polyglycolic acid are biocompatible, but their deg-

radation depends on composition, pH, and presence of enzymes and bacterial infection [21]. 

Resorbable membranes, such as Avitene® are obtained from bovine pericardium crosslinked 

with diphenylphosphorylazide, Collistat® is a semi-occlusive membrane (pore size 0.004 μm) 

prepared from bovine dermis, BioMend® is made of type I COL from bovine tendon and 

exhibit variable efficacy, depending on the shape and size of the defect [22], Paroguide® from 

COL, and chondroitin sulfate (CS) helps to repair the periodontal ligament, cementum, and 

alveolar bone, without signs of inflammation [23]. Resorbable membranes have many ben-

eficial properties as medical products, being hemostatic, chemotactic, and biocompatible, 
but they are not stable enough to allow the formation of new tissue. These membrane barri-

ers are used during GTR to stimulate selective cell repopulation of the periodontal defects. 

Therefore, biocompatibility is the most important feature of a barrier membrane and any sign 

of cytotoxicity can lead to irreversible destruction of the periodontal tissue. In addition, the 

membranes must exhibit structural and mechanical properties, in order to maintain space and 

to resist against external forces. They should initiate tissue integration and be easily used in 

order to reduce intervention time and patients discomfort [24].

2.2. Limitations

Clinical trials have showed that periodontal treatment is effective in achieving the primary 
goal of preventing disease progression and loss of affected tooth. Long-term studies on peri-
odontal disease noted that 95% of treated teeth were not lost for 10 years [25]. Although there 

are encouraging results, existing treatment methods have numerous limitations, and indicate 

the lack of complete periodontal tissue regeneration. Thus, most treatments of periodontal 

pocket lead to gingival retraction, which can progress over time in poor esthetics, increases 

tooth mobility, and affects dental functions [5]. In intraosseous defects, minor regeneration of 

periodontal tissue may occur in the apical region of the defect [26]. GTR can induce partial 

remodeling and restoration of the cortical bone, but total regeneration of bone or periodontal 

ligament does not occur [27]. It was noted that the biological process of epithelium growth 

and differentiation needed a layer of connective tissue to mediate the passage of signaling 
molecules [28]. Studies suggested that, in contrast to superficial connective tissue of the gin-

giva, deep connective tissue prevented epithelial migration and leaded to formation of a sim-

ple epithelium, phenotypically similar to the junctional epithelium [28]. Besides epithelium 

ingrowth, specific signaling pathway involved in the periodontal repair process is not known.

3. Stem cell therapy for periodontal regeneration

Stem cell research is one of the most promising areas of biology due to its therapeutic implica-

tions [29]. Stem cells are defined as immature, undifferentiated cells with self-renewal capac-

ity, clonogenicity (the ability to form cell colonies), and cellular differentiation capacity [30]. 

The regenerative capacity of adult tissues depends on their own stem cell populations that 
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have the ability to self-renew and form progenitor cells capable of differentiating into special-
ized cells. Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into any 
cell type from all three embryonic layers, including periodontal tissue associated cells. Due to 

their differentiation capacity, widespread tissue distribution and promising results obtained 
in both preclinical and clinical models of tissue repair, MSC are increasingly used in tissue 
engineering. Ideal stem cells must be non-immunogenic, easy to obtain, highly proliferative, 

and have the ability to differentiate into desired cell type. Extraoral stem cells from adipose 
tissue and bone marrow, as well as intraoral stem cells from periodontal ligament, dental 

pulp, papilla, and follicle cells were used in periodontal tissue engineering, to repair damaged 

parodontium [24, 31, 32]. Dental tissues are easily accessible sources of stem cells, which can 

be used in cell therapy of periodontal disease and maxillofacial reconstruction due to their 

ability to form bone, dentin and pulp tissue [15, 33, 34].

3.1. Dental pulp stem cells (DPSC) role in periodontal regeneration

The dental pulp is the vital organ of the tooth, presenting very good repair and regenerative 

capacity. DPSC with high proliferative capacity and multipotency were used in orthopedics 

and maxillofacial reconstruction for regeneration of bone and dental tissues, respectively [35]. 

DPSC transplantation into the human alveolar bone initiated dental pulp regeneration [36]. In 

addition, a graft of DPSC from the child to the parent differentiated into osteoblasts and regen-

erated the mineralized tissue [37] or into odontoblasts responsible for reparative dentin secre-

tion [38, 39]. Cultivation of a large number of DPSC in medium without xenogeneic serum 

granted these cells with major impact in regenerative medicine and clinic applications [40, 41]. 

Moreover, DPSC were reprogrammed into induced pluripotent stem cells at a higher rate than 
other cell types [42], confirming their periodontal tissue regenerative capacity [43, 44].

MSC was first isolated from the adult dental pulp by Gronthos et al. [45] and, then, from 

primary dentition extracted during periodontal and oral surgery [46]. DPSC from primary 

dentition presented higher proliferative capacity and differentiation potential, compared to 
DPSC from permanent teeth [47]. Still, scientific interest has lately turned to adult DPSC 
because the processing and storage of stem cells from primary dentition is not possible for the 

majority of the population [29]. DPSC were also isolated from inflamed pulp tissue and their 
markers profile was similar to that of cells from normal tissue [48]. DPSC is easily accessible 

and available in a larger amount than MSC from bone marrow due to their high proliferation 
rate [49, 50].

The regenerative quality of DPSC can be influenced by the isolation process and biological 
parameters, such as the age of the donor, its general health status and oral health, long-term 

storage conditions and post-freeze viability [29, 51, 52]. Dental pulp aging results in changes 

that are difficult to distinguish from physiological and pathological processes. An obvious 
change caused by aging is pulp size decrease due to continuous secretion of dentinal matrix 

(secondary dentinogenesis). As a result, the number of constituent cells (odontoblasts, fibro-

blasts, MSC) decreases, COL and crosslinked fibers increase, lipid infiltration and calcification 
take place [53]. These changes suggest a decline of DPSC characteristic functions with increas-

ing age. In conclusion, isolation of DPSC is recommended from healthy young adult donors, 

in order to present clinical applicability in stem cell therapy.
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3.2. DPSC isolation

Both explant culture and enzymatic digestion protocols are efficient for DPSC isolation from 
adult teeth, considering a pulp weight of at least 0.2 g for establishing a viable primary culture 

[54]. Third molars (wisdom tooth) are usually used after their extraction during mandatory 

surgical or orthodontic treatment of healthy adults (21–34 years), with patient’s agreement, 

according to the bioethics rules in force. Immediately after extraction, the molars are placed 

in 10 mM sterile phosphate buffered saline (PBS) supplemented with a mixture of antibiotics 
(200 U/ml penicillin, 500 μg/ml streptomycin, 400 μg/ml neomycin, and 2.5 μg/ml ampho-

tericin) and transported to the lab, on ice, for processing or storage at 4°C, for up to 24 h 

(Figure 1). Dental pulp is extracted from the pulp chamber of molars and subjected to enzy-

matic digestion in a solution of 3 mg/ml type I collagenase and 4 mg/ml dispase, at 37°C, for 

1 h (Figure 1). The obtained cell suspension is filtered through 70 μm cell strainer and cultured 
in minimum essential medium eagle-alpha modification (α-MEM) supplemented with 20% 
fetal bovine serum, 100 μM l-ascorbic acid, 2 mM l-glutamine and 1% antibiotics mixture, in 
a humid atmosphere with 5% CO

2
, and at 37°C. The culture medium is changed every 3 days.

3.3. DPSC properties

DPSC present typical characteristics of MSC isolated from other sources, like specific pheno-

type, in vitro renewal capacity, distinctive cell surface antigens, and clonogenicity [38]. Periodic 

observation of DPSC seeded in a culture plate is usually performed using an inverted micro-

scope. At 24 h of in vitro cultivation, DPSC adhered to the plastic surface, and in the first week of 
cultivation, they started to form colonies, similar to mesenchymal-type stem cells. At 12 days of 

cultivation, the colonies reached confluence, and the first passage was performed. Hematoxylin-
eosin staining of confluent DPSC revealed the fibroblast-like morphology, characteristic for the 
mesenchymal phenotype (Figure 2A). DPSC culture processed for transmission electron micros-

copy [55] exhibited typical ultrastructure of MSC with spherical or irregular shaped nucleus (N) 
containing a large amount of euchromatin and mitochondria-rich cytoplasm (Figure 2B). Some 

cells presented rough endoplasmic reticulum (ER) with dilated cisterns (Figure 2B).

DPSC cultures cultivated in standard conditions were investigated for self-renewal by colony-

forming units (CFU-F) analysis. At 14 days of cultivation, cell clusters of different sizes and 
densities were observed (Figure 2C). This demonstrated that subpopulations of cells were 

able to generate new colonies from a single cell.

MSC immunophenotyping consists in cell surface antigens analysis using flow cytometry. 
DPSC at passage 3 (2 × 105 cells) were washed in PBS and incubated with primary antibodies 

directed to specific antigens, at 4°C, for 30 min. After centrifugation at 1200 rpm, for 10 min, 
cells were resuspended in PBS and analyzed at a flow cytometer. Unlabelled cells were used 
as a control. Data are processed as histograms using provided software and the results are 

expressed as percentages. Flow cytometry of DPSC cultures showed similar profile to that of 
mesenchymal-type stem cells. Specific markers, such as CD29, CD44, CD73, and CD90 were 
expressed at high levels, ranging between 96 and 100%. DPSC were negative for hematopoi-
etic markers, CD34, CD45, and CD133, in accordance with previous studies [56]. STRO-1 is a 

specific marker present in stromal precursors from bone marrow with multiple differentiation 
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potentials and, in particular, osteo/odontogenic. To date, DPSC populations expressing this 

marker [57, 58], as well as populations characterized by STRO-1 negative immunophenotype 

[56] were reported.

3.4. DPSC multidifferentiation capacity

DPSC exhibit plasticity and can be differentiated into osteoblasts, odontoblasts, osteocytes, 
chondrocytes, adipocytes, myocytes, cardiomyocytes, neural, and hepatocyte cells [29, 35, 59]. 

Figure 1. Isolation of stem cells from the third molar dental pulp by enzymatic digestion. The sample was transported to 

the lab on ice (A). Third molar (B) was thoroughly washed in 70% ethanol and PBS, pH 7.4 (C). The pulp chamber was 
mechanically exposed (D), the dental pulp was extracted (E) and the tooth remained empty (F). The dental pulp was 
digested in enzymatic solution (G).
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For DPSC differentiation, isolated cells are expanded in vitro by trypsinization and, at passage 

5, 6, are seeded in 6-wells culture plates, at a density of 5 × 104 cells/ml in α-MEM until reach-

ing confluence. Then, the culture medium is replaced with osteogenic differentiation medium 
based on 1 μM dexamethasone, 20 mM sodium β-glycerophosphate, and 45 mM l-ascorbic 

acid-2-phosphate [60]. The plates are incubated in a humid atmosphere with 5% CO
2
, for 

21 days and the medium is changed every 3 days. For adipogenic differentiation of DPSC, the 
monolayers are cultivated in specific induction media based on 5 μg/ml insulin, 10−6 M dexa-

methasone, 0.5 mM isobutylmethylxanthine, and 60 μM indomethacin [60]. Chondrogenic 

differentiation is performed in pellet mass culture (2 × 105 cells/pellet) placed in conical poly-

propylene tubes, centrifuged at 500 × g, for 5 min and cultivated in specific induction medium 
based on 5 μg/ml linoleic acid, 1× insulin-transferrin-selenium concentrate, 10 ng/ml trans-

forming growth factor β1, 14 μg/ml ascorbic acid, and 10−7 M dexamethasone [60]. Specific 
staining protocols are used to analyze the morphology of differentiated stem cells.

Osteogenic differentiated cells fixed in 4% paraformaldehyde solution in PBS were stained 
with 2% alizarin red S, for 30 min [61], and images acquired at an inverted light microscope. 

DPSC cultivated in osteogenic differentiation medium, for 21 days presented characteristic 
calcium mineral deposits, visualized as strong red color (Figure 3A). Adipogenic differenti-
ated cells stained with 0.5% Oil Red O solution in isopropanol, for 30 min [61] showed mor-

phological changes, intracellular lipid droplets accumulation and reduced proliferation rate 

(Figure 3B). The spheroid of chondrogenic differentiated cells stained with 1% Alcian blue 
solution, pH 2.5, for 30 min [61] presented specific proteoglycans storage within the extracel-
lular matrix (Figure 3C).

Morphological observations can be confirmed by immunofluorescence [55] or microarray 

investigations [62] that evidentiate specific markers expression at protein and gene level, 
respectively. In osteogenic differentiated DPSC, analysis of osteocalcin, osteopontin, and type 
I COL is performed. Adipogenic differentiation is marked by secretion of adiponectin and 
lipoprotein lipase, while DPSC differentiated toward chondrocytes express aggrecan, SOX-9 
and type II COL [60, 62]. In each experimental model, control DPSC grown as undifferenti-
ated cells in normal culture medium have no reaction for these specific markers.

Figure 2. Light micrograph of DPSC at confluence showed characteristic spindle-shaped cell morphology (A, 
hematoxylin-eosin staining, bar = 10 μm). Transmission electron micrograph of DPSC revealed the N, mitochondria 

(M), and rough ER (B, bar = 2 μm). Colony-forming unit analysis of DPSC detected cell clusters after 14 days of in vitro 

cultivation (C, hematoxylin-eosin staining).
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4. Advanced techniques for periodontal regeneration

Gene therapy and cell therapy are two advanced techniques that represent an effective solu-

tion to maximize the delivery of molecules involved in periodontal regeneration and to 

reduce limitations of currently used regenerative treatments. Gene therapy is a strategy for 

modulating host immune response triggered by dental microbiota. It consists of the direct 

insertion of certain genes into patient cells or indirect gene delivery using a carrier [24]. Their 

cellular transport is considered a more secure approach because it requires isolation of target 

cells and insertion of therapeutic genes under controlled conditions [32].

Cell therapy envisages induction of complete periodontal regeneration using triple complexes 

of cells injected in scaffolds containing bioactive molecules. The scaffold helps maintain the 
space of lost tissue and to protect the regenerated tissues of infection and mechanical stress. 

In addition, a tailored scaffold in terms of viscosity can promote high percentage of cells 
retention in injectable transplantation therapies [63]. Bioactive molecules, including bone 

morphogenetic proteins (BMP), enamel matrix protein derivatives and growth factors, such 
as platelet-derived growth factor, were also used to stimulate periodontal regeneration. BMP 
are multifunctional polypeptides that belong to the transforming growth factor-β superfam-

ily, their main feature being the ability to induce ectopic bone formation. Bone regrowth in 

periodontal defects was achieved in various animal models by BMP application together with 
carrier systems [24]. Growth factors have regulatory effects on immune function, proliferation, 
and differentiation of periodontal tissue cells. Both in vitro and in vivo studies demonstrated 

the efficiency of platelet-derived growth factor in increasing osteoblast cells population for 
bone regeneration, endothelial cell multiplication for the capillary formation and fibroblasts 
proliferation for collagen synthesis and connective tissue regeneration [24].

4.1. Cell-scaffold constructs for periodontal regeneration

Solid biomaterials in which the cells of interest are seeded represent the most used cell 

transport method [64]. Their great advantages are the ease of application and the ability 

to encapsulate and concentrate cell suspensions at the target site. After implantation, these 

Figure 3. In vitro multilineage differentiation of DPSC after three weeks of cultivation in specific culture media. 
Osteogenesis was evidentiated by calcium deposits (A, Alizarin red S staining, bar = 100 μm). Adipogenesis was 

observed as intracellular lipid droplets accumulation (B, Oil Red O staining, bar = 50 μm). Chondrogenesis was showed 

by proteoglycans deposits in the extracellular matrix (C, Alcian blue staining, bar = 50 μm).
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cells-biomaterial constructs stimulate cell proliferation and differentiation, resulting in tissue 
development [15]. The structure and porosity of biomaterials are important to allow nutri-

ents absorption and to avoid cell apoptosis in the central region of the construct. Also, the 

structural integrity and mechanical properties of solid biomaterials should be adjusted for 

specific applications of bone and periodontal regeneration. Analysis of 1-year clinical trial on 
7 adult patients (24–40 years old) demonstrated that a construct of autologous DPSC in 3D 

COL sponge could restore the mandible bone defects occurring after molar extraction, with 

final regeneration scores of 70–100% [40]. Other polymeric composites, hybrid materials or 

biomaterials incorporating biological active factors, such as platelet-rich plasma and fibrin-
rich plasma, have been developed to transport DPSC for human periodontal tissue formation 

[65–68]. Implantation in animal models demonstrated repair of affected cementum, periodon-

tal ligament, and alveolar bone. In vitro and in vivo studies demonstrated that DPSC in 3D 

systems have high osteogenic potential and increased the bone tissue production [38, 69]. 

Further tailoring is needed in order to be used as dental implants for bone tissue engineering.

4.2. DPSC-scaffold constructs fabrication

Natural proteic, polysaccharidic, and glycoproteic polymers having high molecular weight, 

such as COL types I, III, and V, CS contained by decorin and biglycan proteoglycans and FN 

were reviewed as main components of the oral extracellular matrix [4]. They were mixed in 

different weight ratios, at room temperature, for 2 h, to obtain biocompatible variants of com-

posite material with regenerative properties. The mixtures were conditioned as 3D porous 

scaffolds by lyophilization [70]. Sterile scaffolds (~0.25 cm3) were placed in 24-wells culture 

plate and 200 μl α-MEM culture medium supplemented with fetal bovine serum, containing 
5 × 105 DPSC were injected into the scaffold. Cell suspension was absorbed during 30 min 
of incubation in a humid atmosphere with 5% CO

2
, at 37°C. Cell-scaffold constructs were 

covered with 500 μl culture medium and incubation continued in standard conditions. The 

culture medium was changed every 48 h.

4.3. Biologic activity of DPSC-scaffold constructs

Assessment of cell viability, membrane integrity, cell adhesion, and proliferation are useful 

tools, in order to select optimal ratios between scaffold’s polymers and to establish DPSC 
cultivation conditions.

A method for assessing DPSC viability within cell-scaffold constructs cultivated in stan-

dard conditions, for different periods of time is live/dead assay based on cellular esterase 
activity. Calcein AM penetrates living cells membrane and is transformed into fluorescent 
calcein under the action of esterases. Ethidium homodimer-1 penetrates only cells with the 
damaged membrane, intercalates DNA double helix, and emits red fluorescence. Live/dead 
assay allows simultaneous staining of live and apoptotic cells, measuring both cell viability 

and plasma membrane integrity. For the experiment, DPSC-scaffold constructs incubated in 
standard cultivation conditions, for 72 h are washed in PBS and, then, 20 μM calcein-AM and 
5 μM ethidium homodimer-1 in PBS are added. The plates are incubated in the dark, at room 
temperature, for 20 min. The images of cell-scaffold constructs are acquired at 490 nm using 
an inverted fluorescence microscope equipped with a photo camera. A large population of 
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viable cells colored in green was observed in COL-CS-FN composite material after 72 h of 

cultivation (Figure 4A). Adhered cells were distributed throughout the entire scaffold. Cells 
in different stages of apoptosis, colored in red, were present in very low number, indicating 
a very good biocompatibility of the natural composite scaffold toward stem cells from dental 
pulp tissue.

For observations on DPSC infiltration capacity and the degree of cell colonization within 
composite materials, scanning electron microscopy is a useful technique. Cross sections of 

cell-scaffold constructs cultivated in standard conditions, for 48 h are fixed in 2.5% glutaral-
dehyde in cacodylated buffer, at room temperature, for 20 min. Then, samples are visualized 
using an environmental scanning electron microscope, operated at 15 kV, in an inert nitrogen 

atmosphere. Scanning micrographs showed that DPSC infiltrated the 3D composite scaffold 
and adhered to pore walls as isolated cells (Figure 4B) or group of cells (Figure 4C).

For cell proliferation assessment in cell-scaffold constructs, MTS test is applicable after PBS 
washing to remove unattached cells. Cells are incubated with 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine metho-

sulfate, at 37°C, for 3 h. The tetrazolium salt is reduced in the presence of mitochondrial 

dehydrogenases from the viable cells and generates a colored product. Thus, its quantity 

measured as optical density at 490 nm is directly proportional to the number of metabolically 
active cells. The degree of DPSC proliferation in COL-CS-FN composite scaffold was reported 
to a control of DPSC on the 2D plastic surface. The results showed that, at 48 h of cultiva-

tion, cell proliferation was 1.46 times higher than in control and, at 96 h of cultivation, DPSC 
proliferated 1.62 times more than in control. These data indicated that 3D composite scaffold 
stimulated DPSC proliferation.

The influence of FN on cell adhesion within DPSC-scaffold constructs can be analyzed using 
DNA fluorometric assay. The constructs are minced and mixed with a lysis solution of 30 mM 
saline sodium and 0.2 mg/ml sodium dodecyl sulfate, at 37°C, for 1 h. The mixture is then 

centrifuged at 13,000 × g, for 15 min and the supernatant used to determine the DNA content. 

Figure 4. Constructs of DPSC in 3D porous composite scaffold based on collagen, CS and fibronectin in 10:1:10−8 (w/w/w) 

ratio. Fluorescence microscopy showed viable DPSC in biocompatible constructs after 72 h of cultivation in α-MEM (A, 
bar = 50 μm). Scanning electron micrographs revealed isolated DPSC (B, bar = 100 μm) or cell groups (C, bar = 100 μm) 

within the composite scaffold.
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Briefly, over 10 μl of supernatant, 190 μl of working solution is added, followed by a vor-

texing step, incubation at room temperature, for 2 min, and the optical density is recorded 

at a fluorometer for nanoquantities. Taking into account a content of 8 μg DNA/cell [71], 

the results can be expressed as cell count/scaffold. Statistical analysis using Student’s test on 
control-sample pairs of interest show differences considered significant at p < 0.05. The results 
obtained for DPSC cultivated in COL-CS-FN composite scaffold in standard conditions, for 
96 h showed the significantly higher number of DPSC (786,675 ± 23,600 cells/scaffold) than in 
COL-CS scaffold (718,335 ± 25,100 cells/scaffold). This could be due to FN presence in materi-
als composition and indicated its usefulness for improvement of cell adhesion. FN supports 

cell adhesion through synergistic action of both integrin-binging regions and N-glycans [72]. 

Variation of FN concentration and distribution is a topic of interest for cell-scaffold construct 
fabrication.

Further incubation of DPSC-scaffold constructs in standard conditions indicated that cell 
adhesion and proliferation decreased, probably as a result of cell migration outside the 

porous scaffold. Tailoring the pore size of 3D materials by polymer concentration, lyophiliza-

tion temperature or cross-linking should adjust the adhesion and proliferation of DPSC for 

longer periods of cultivation.

4.4. Osteogenic properties of DPSC-scaffold construct

Osteogenic differentiation of DPSC is of interest in repairing bone defects, including in den-

tistry for elderly people with a deficit of stem cells. DPSC-scaffold constructs could serve 
as biomimetic experimental models, in order to improve the fabrication of dental materials 

with modified surfaces, and enhanced bioactivity. Individual components of ECM, like type 
I COL and FN, promote osteogenic differentiation of stem cells, but the process is influenced 
by environmental culture conditions [73]. COL-CS-FN composite scaffolds injected with 
DPSC were cultivated in specific osteogenic differentiation medium, for 21 days. Conditioned 
medium was harvested at 3, 6, 9, and 12 days of cultivation and analyzed for secretion of 
specific markers, such as alkaline phosphatase, calcium, and type I COL, using specific and 
sensitive techniques.

MSC are characterized by the low activity of alkaline phosphatase, while its increased activity 
is an index of cell differentiation into fully functioning osteoblasts. The analysis of alkaline 
phosphatase activity uses 50 μl supernatant incubated with 7.34 mM p-nitrophenyl phos-

phate in diethanolamine buffer, pH 9.8, containing 2.58 mM MgCl
2
, at 37°C, and for 30 min. 

The reaction is stopped with 1 M NaOH solution and the optical density is recorded at 410 nm 
using a microplate reader. The alkaline phosphatase activity is calculated using a standard 

curve of p-nitrophenol and expressed as mM p-nitrophenol/min. For comparable results, the 
protein concentration of cell supernatants is determined using Bradford method. The results 

obtained for DPSC in COL-CS-FN scaffolds indicated that alkaline phosphatase activity 
increased by 4 times in the first 10 days of cultivation in osteogenic medium (Figure 5). After 

another 10 days of cultivation, the enzymatic activity reached 10 times higher values than at 

3 days of cultivation. The steep slope of alkaline phosphatase activity profile demonstrated 
the differentiation of DPSC into osteoblasts within 3D composite scaffolds of COL-CS-FN 
cultivated in osteogenic differentiation medium.
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Determination of calcium amount deposited by cells can be performed using a quantification 
assay kit based on o-cresolphthalein dye reagent, which forms purple stable complexes with 

calcium ions. Supernatant of culture medium (50 μl) is incubated with 90 μl chromogenic 
reagent and 60 μl buffer, at room temperature, for 10 min. The optical density is recorded at 
575 nm using a microplate reader and final results are expressed as nm calcium/μl. In case 
of DPSC in COL-CS-FN composite scaffold, the results indicated a rapid increase of calcium 
secretion in the first 10 days of osteogenic differentiation and, then, the values reached a pla-

teau (Figure 5).

An important marker of stem cells differentiation into osteoblasts is type I COL synthesis. To 
avoid the interference of COL present in composite materials or degraded during incubation in 

the culture medium, it is recommended to use an antibody that specifically detects the propep-

tides from the C-terminal end of type I procollagen molecule. These are enzymatically cleaved 

and released into the medium only during the synthesis of triple helical COL molecule. The 

amount of type I procollagen secreted is quantified by incubation of 50 μl culture supernatant 
in 96-wells culture plate pre-coated with a specific monoclonal antibody, at 37°C, for 1 h. After 
subsequent washing steps, as provided by ELISA protocol, the incubation with peroxidase 
conjugate polyclonal antibody is performed, followed by substrate addition. Optical density 

is read at 450 nm using a microplate reader and the results are calculated as ng type I procol-

lagen/ml. The results obtained for DPSC in COL-CS-FN scaffold presented similar variation 
to that of alkaline phosphatase activity (Figure 5). The curve profile of procollagen synthesis 
increased throughout the entire cultivation period, but higher concentrations of type I procol-

lagen were registered after 10 days of cultivation in osteogenic medium (Figure 5).

In conclusion, specific markers of osteoblastic differentiation, alkaline phosphatase, calcium, 
and type I COL were secreted by DPSC cultivated in direct contact with COL-CS-FN com-

posite materials. This indicates the possible use of these constructs not only as experimental 

models in vitro but as materials with osteogenic effect in periodontal tissue engineering. In 
addition, the values of all markers were significantly higher (p < 0.05) than those obtained 
in 2D DPSC cultures. The values demonstrated that 3D porous composite materials had a 

Figure 5. DPSC cultivated within 3D porous composite scaffold based on collagen, CS, and fibronectin in 10:1:10−8 

(w/w/w) ratios, in the presence of osteogenic induction medium, for 21 days. Increasing quantities of alkaline 

phosphatase, calcium, and type I collagen showed DPSC differentiation into osteoblasts.
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positive effect on calcium secretion and mineralization process useful in bone repair, as well 
as the capacity of cell-scaffold constructs to improve new extracellular matrix formation.

5. Conclusions

Periodontitis is a very common condition that poses a challenge to oral tissue engineering. 

Periodontal disease affects all four tissues of the periodontium, namely the gingival tis-

sue, periodontal ligament, cement and alveolar bone and can be partially treated by clas-

sic periodontal surgical methods. Specialized therapeutic methods, such as GTR, stem cell 

therapies, and innovative biomaterials including bioactive molecules, envisage the functional 

reconstruction of the periodontal complex, and reduction of periodontal disease risk for 

general health. Stem cells from numerous sources have potential application in periodontal 

regeneration because they are non-immunogenic, have high proliferation rate and ability to 

differentiate into the desired cell type. Stem cells from dental pulp are easy to obtain and 
currently studied in combination with 3D porous biomaterials of certain porosity, mechani-

cal and regenerative properties. Cell culture data demonstrated that COL-CS-FN composite 

material had the capacity to improve the secretion of osteogenic markers and the synthesis 

of bone matrix. These studies are important and can provide progress in periodontology, 

especially for elderly individuals presenting marked decline of healing and regenerative pro-

cesses. Future researchers envisage multifunctional engineered constructs with antimicrobial, 

anti-inflammatory, and regenerative activity for use in periodontitis treatment.
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