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1. Introduction      

The face recognition problem has been faced for more than 30 years. Although a lot of 

research has been done, much more research is and will be required in order to end up with 

a robust face recognition system with a potential close to human performance. Currently 

face recognition systems, FRS, report high performance levels, however achievement of 

100% of correct recognition is still a challenge. Even more, if the FRS must work on non-

cooperative environment its performance may decrease dramatically. Non-cooperative 

environments are characterized by changes on; pose, illumination, facial expression. 

Therefore FRS for non-cooperative environment represents an attractive challenge to 

researchers working on the face recognition area. 

Most of the work presented in the literature dealing with the face recognition problem 

follows an engineering approach that in some cases do not incorporate information from a 

psychological or neuroscience perspective. It is our interest in this material, to show how 

information from the psychological and neuroscience areas may contribute in the solution of 

the face recognition problem. The material covered in this chapter is aimed to show how 

joint knowledge from human face recognition and unsupervised systems may provide a 

robust alternative compared with other approaches. 

The psychological and neuroscience perspectives shows evidence that humans are deeply 

sensible to the face characteristic configuration, but the processing of this configuration is 

restricted to faces in a face-up position (Thompson, 1980), (Gauthier, 2002). This 

phenomenon suggests that the face perception process is a holistic configurable system. 

Although some work has been done in these areas, it is still uncertain, how the face feature 

extraction processes is achieved by a human being. An interesting case is about newborn 

face feature extraction. Studies on newborns demonstrate that babies perceive a completely 

diffuse world, and their face perception and recognition is based on curves and lines from 

the face (Bower, 2001), (Johnson, 2001), (Nelson, 2001), (Quinn et al., 2001) and (Slater A. & 

Quinn, 2001). 

Nowadays, there exists some research work on face recognition that has intended to 

incorporate psychological and neuroscience perspectives (Blanz & Vetter, 2003), (Burton et O
pe
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al., 1999). However, the solution to the face recognition problem is stated only on bases of 

matrix operations and general pattern recognition methodologies, without considering other 

areas as visual perception. 

On the engineering area, patter recognition systems approaches offer a large variety of 

methods. In recently years, unsupervised systems have provided a new paradigm for the 

pattern recognition problem (Chacon & Ramirez, 2006a). These systems allow data mining 

or data discovering information that traditional pattern recognition systems do not 

incorporate. This feature makes it possible to find information in the feature vectors that 

may not be considered in traditional pattern recognition approaches. 

Based on these points, we present in this chapter a new face recognition approach taking 

into account recently face perception theories and an unsupervised classifier in order to 

improve the performance of the FRS in non-cooperative environments. 

2. Literature analysis 

This section presents a survey of 30 representative papers published in recently years. The 

purpose of this analysis is to provide the reader with a flavor of the variety of paradigms 

used in the face recognition problem, and to propose a method to compute an index 

performance of such methods. Table 1 shows the 30 published works analyzed. The 

numbers on the column No. are used later as references in figures and tables.  

The first analysis shown in Table 2 is the robustness of the method with respect to variations 

on face; Pose, Illumination, Expression and / or Rotation. We can observe from Table 2 that 

only one method assumes tolerance to PIE/R, five of the methods are tolerant to PIE, eight 

only consider robustness to two variations. Eight methods are designed to be invariant to 

only one variation, and eight methods are not tolerant to any variation. The most 

considerable change in the works is E, followed by P, I, and the less is R. The performances 

reported vary from good, No. 1, to very poor No.5. 

Figure 1 illustrates the feature extraction methods used in these papers, and Figure 2 

shows the type of classifier used. The feature extraction methods are 3D models, 

Fisher´s Linear Discriminant FLD, Discrete Cosine Transform DCT, Linear Discriminant 

Analysis LDA, Principal Component Analysis PCA, wavelet based, Bayesian and other 

methods. It was observed that feature extraction methods that represent data in sub-

spaces are the most commonly used.  Among the classifier methods the Euclidean 

distance is the most used, followed by other methods, and the artificial neural network 

method approach.  

With respect to the data bases, ORL, YALE, AR and MIT, are among the most used data 

bases. The ORL data base presents variations on pose, illumination, and expression (Li & 

Jain, 2004), (Samaria & Harter, 1994), (Olivetti, 2006). YALE has face images with 

individuals in different conditions, with and without glasses, changes in illumination, and 

expression (Li & Jain, 2004), (Yale, 2002). The AR data base includes changes on facial 

expression, illumination, and occlusion (Li & Jain, 2004), (Martinez & Benavente, 1998). 

The MIT data base is composed of face images involving variations on pose, illumination 

and facial expression (Weyrauch et al., 2004). Some examples of these data bases are 

shown in Figure 3.  
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No. Publication 

1 Deformation analysis for 3d face matching (Lu  & Jain, 2005) 

2 Discriminative common vectors for face recognition (Cevikalp et al., 2005) 

3 Face recognition using laplacianfaces (He  et al.,  2005) 

4 
High-Speed face recognition based on discrete cosine transform and rbf neural 
networks (Er et al.,  2005) 

5 
Locally linear discriminant analysis for multimodal distributed classes for face 
recognition with a single model image (Kim  & Kittler, 2005) 

6 Wavelet-based pca for human face recognition (Yuen, 1998) 

7 Real-time embedded face recognition for smart home (Zuo  & de With, 2005) 

8 
Acquiring linear subspaces for face recognition under variable lighting (Lee & 
Kriegman, 2005) 

9 Appearance-Based face recognition and light-fields (Gross et al., 2004) 

10 
Bayesian shape localization for face recognition using global and local textures (Yan et 
al.,  2004) 

11 A unified framework for subspace face recognition (Wang  & Tang, 2004) 

12 Probabilistic matching for face recognition (Moghaddam  & Pentland, 1998) 

13 Face recognition based on fitting a 3d morphable model (Blanz & Vetter, 2003) 

14 
Face recognition using artificial neural network group-based adaptive tolerance (gat) 
trees (Zhang  & Fulcher, 1996) 

15 
Face recognition by applying wavelet subband representation and kernel associative 
memory (Zhang et al., 2004) 

16 Face recognition using kernel direct discriminant analysis algorithms (Lu et al., 2003) 

17 
Face recognition using fuzzy integral and wavelet decomposition method (Kwak  & 
Pedrycz, 2004) 

18 Face recognition using line edge map (Gao  & Leung, 2002) 

19 Face recognition using the discrete cosine transform (Hafed & Levine, 2001) 

20 
Face recognition system using local autocorrelations and multiscale integration 
(Goudail et al., 1996) 

21 Face recognition using the weighted fractal neighbor distance (Tan & Yan, 2005) 

22 
Gabor-Based kernel pca with fractional power polynomial models for face recognition 
(Liu, 2004) 

23 Gabor wavelet associative memory for face recognition (Zhang et al., 2005) 

24 N-feature neural network human face recognition (Haddadnia  & Ahmadi, 2004) 

25 
GA-Fisher: a new lda-based face recognition algorithm with selection of principal 
components (Zheng et al., 2005) 

26 
Kernel machine-based one-parameter regularized fisher discriminant method for face 
recognition (Chen et al., 2005) 

27 Generalized 2d principal component analysis (Kong  et al., 2005) 

28 
Face detection and identification using a hierarchical feed-forward recognition 
architecture (Bax et al., 2005) 

29 Nonlinearity and optimal component analysis (Mio et al.,  2005) 

30 
Combined subspace method using global and local features for face recognition (Kim  
et al., 2005) 

Table 1. List of analyzed references. 
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No. 1 2 3 4 5 6 7 8 9 10 

P X  X  X    X X 

I X  X X    X   

E X  X X       

R           

%Rec. 91.00 98.34 91.96 91.20 53.00 - 95.0 98.82 70.65 93.66 

No. 11 12 13 14 15 16 17 18 19 20 

P   X     X   

I   X    X X X  

E   X    X X  X 

R         X  

%Rec. 96.0 89.5 82.70 - 91.20 - 99.24 73.30 84.58 95.00 

No. 21 22 23 24 25 26 27 28 29 30 

P X X   X  X X   

I X    X X   X  

E X X X X X X X X X X 

R X          

%Rec. 67.40 95.30 99.30 99.50 89.63 92.03 95.48 79.00 93.00 97.00 

Table 2.  Robustness analysis with respect to Pose, Illumination, Expression, and Rotation.  

 

 

Fig. 1.  Feature extraction methods.  3D models, Fisher´s Linear Discriminant, Discrete 
Cosine Transform, Linear Discriminant Analysis, Principal Component Analysis, Wavelet 
Transform, Bayesian  methods, other methods. 
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Fig. 2.  Analysis by classifier scheme. Support Vector Machine, Euclidean distance, Artificial 
Neural Networks, Convolution , Manhattan, Other.  

Since the experimentation to obtain the performance of the proposed method in the 

analyzed works is different, it is difficult to achieve a comparison among the methods. 

Therefore, in order to obtain a comparable performance index we proposed one. The 

proposed performance index assigns a weight of 10 to the number of individual that can be 

recognized by the system and a weight of 90 to the recognition performance. These weights 

were assumed arbitrarily and can be adjusted to a particular criterion. The performance 

index is defined as follows. Let maxp be the maximum recognition performance of FRS and 

kprec the recognition of the k th− method in its different performances.  Let also maxn be the 

maximum number of faces that the k th− method can recognize. knfaces is the number of 

individuals that the k th−  method can recognize for { }1,2,3,...,k N= . Then the performance 

index is given by 

 ( )max maxmax ,       100kp prec p= <   (1) 

 ( )max max kn nfaces=   (2) 

 max maxk k
k

prec nfaces

prec p nfaces n
r

w w

× ×
= +   (3) 

where kr  is the proposed performance index of the k th− method. precw is the facial 

recognition performance weight, and nfacesw the weight for the number of individuals that 

can be recognized. Using this performance index, the best method is the k th− method that 

maximizes 

 ( )max max kd r=   (4) 
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a) 

 
b) 

 

 

 
c) 

 
d) 

Fig. 3.  Example of data base images.  a) ORL,  b) YALE,  c) AR, and d) MIT. 

Fig. 4. shows the summary of the performance of the best three methods for each 
combination of robustness. In Figure 4, the bars indicate the recognition performance for 
each method, and the lines indicate the number of faces that each method can recognize.  
It can be noticed that the performance of the method increases as the number of faces 
decreases and vice versa. It can also be observed that the methods No. 22 (Liu, 2004), No. 17 
(Kwak & Pedrycz, 2004) and No. 3 (He et al., 2005) appear like best methods in more than 
one robustness category. 
A summary of the two best methods is shown in Table 3. It shows the classifier type, and the 
face feature extraction method used. The best method tolerant to PIE has a performance of 
91.96%. From Table 3 it is observed that methods that appear more frequently among the 
best face feature extraction are based on wavelets. It is also noticed that most of the methods 
are baseed on simple classifiers like nearest-neighbor, which open the opportunity to 
investigate with other classifiers like support vector machine, and artificial neural networks 
in order to improve their performance. 
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Fig. 4.  General results of the evaluation. Bars indicate the percentage of performance. Black 
lines indicate the number of individual that the method can recognize. 

Tolerant to No. Classifier Characteristics 

P 10 Euclidian distance 
Gabor wavelet representation y Bayesian 

Shape Localization 

P 22 
Nearestneighbor using  

Euclidean distance 
Gabor wavelet representation of face images 

and the kernel PCA method 

I 8 9 illumination points(9PL) 9 illumination points(9PL) 

I 17 
Euclidian distance and 

fuzzy integral 
Wavelet decomposition, Fisherface method 

E 23 GWAM Gabor wavelet associative memory GWAM 

E 24 RBF Neural Network Ellipse of a facial image 

PI 1 SVM Deformation analysis of a 3D figure 

PI 3 
Nearestneighbor using  

Euclidean distance 

The Laplacianfaces are obtained by finding 
the optimal linear approximations to the 
eigenfunctions of the Laplace Beltrami 

operator on the face manifold 

PE 22 
Nearestneighbor using  

Euclidean distance 
Gabor wavelet representation of face images 

and the kernel PCA method 

PE 27 Nearest-neighborhood K2DPCA 

IE 17 
Euclidian distance and 

fuzzy integral 
Wavelet decomposition, Fisherface method 

IE 26 RBF kernel function K1PRFD algorithm 

PIE 3 
Nearestneighbor using  

Euclidean distance 

The Laplacianfaces are obtained by finding 
the optimal linear approximations to the 
eigen functions of the Laplace Beltrami 

operator on the face manifold 

PIE 25 
Optimal projection matrix 

of GA-Fisher 
GA-Fisher 

Table 3. Summary of the two best methods. 

Paper number

Number  
of faces  Performance 
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At this point, we have presented an analysis of reported work on FRS considering, 
robustness, features used and type of classifiers. In the next section, we present important 
results on human face perception theory that can be considered in the design of new FRS. 

3. Human facial perception theory 

Notwithstanding the tremendous effort to solve the face recognition system, it is not 
possible yet, to have a FRS that deploys effectively in unconstrained environments, tolerant 
to illumination, rotation, pose, expression, noise, and viewing distance. The most efficient 
system without any doubt is the human system, therefore, it makes sense to try to discover 
the secret of this system. 
There are some studies in the fields of psychology and neuroscience related to face 
recognition (Thompson, 1980), (Gauthier & Tanaka, 2002), (Haxby et al., 2001), (Kalocsai, 
1998), (Bower, 2001), (Mareschal & Thomas, 2006). However, aside from the diversity of 
experiments and approaches, it is notorious that there is not a final conclusion about 
questions like; What features does the brain use to recognize a face?, Is there a specialized 
region of the brain for face recognition?. From the psychological and neuroscience point of 
view there exists evidence that humans are very sensible to face configuration, that is, 
relationship among the face constituents, nose, mouth, eyes, etc. But, the process is related 
only to upright faces (Thompson, 1980), (Gauthier & Tanaka, 2002). This phenomenon is 
known as the “Margaret Thatcher Illusion”, (Sinha, 2006) and (Thompson, 1980). Figure 6 
illustrates this phenomenon. Apparently the brain does not perceive differences between a 
modified upright face and a normal face, Figures 6a and 6b. This is because for the brain it is 
easier to process an inverted face. However, when the face that apparently does not have 
differences in comparison with the normal face is rotated, we can perceive the differences 
between these two faces, Figure 6c and 6d. This phenomenon indicates that it is possible that 
face perception is a holistic – configural system, or configuration based. 
 

    
                   a)                                     b)                                  c)                                   d) 

Fig. 6. Examples of the “Margaret Thatcher Illusion”.  a) Upright face with eyes inverted, b) 
normal upright face, c) and d)  corresponding right faces of a) and b) 

The work in (Gauthier & Tanaka, 2002) distinguish between two concepts; holistic – inclusive 
and holistic – configural. Holistic – inclusive is defined as the use of a part of an object even 
though it is said to be ignored. On the other hand, holistic – configural is defined as the use of 
relations among the parts of the object. Therefore, under a holistic – configural approach it is 
important to consider those relationships to achieve a good recognition performance. 
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In other studies, the area of neuroscience has suggested that the face recognition process is 

achieved in the brain by a specialized region (Thompson, 1980), (Haxby et al., 2001). These 

studies are based on analysis of PET and MRI images during object and face recognition 

experiments by humans. The laterar fusiform gyrus or Fusiform Face Area, region shows 

activity during the face recognition task, but this activity is not detected during object 

recognition (Kanwisher, 1997), (Tong et al., 2000). 

Other evidence suggests a specific region in the brain related to the face identification that is 

related to the disease called prosopagnosia. People with this problem can recognize objects 

and face expressions but not faces.  

Notwithstanding all this research it is not possible yet, to define a coherent theory for the 

face recognition process in humans. Nevertheless, some works, (Haxby et al., 2001), 

(Kanwisher, 2006), (Kalocsai, 1998), can state guidelines that can improve the performance 

of computer FRS. For example the work in (Bower, 2001) indicates that newborns perceive a 

fuzzy world and they resort to line and curve face shapes for face recognition. Figure 7 

illustrates the perception and visual sharpness of newborns during their development 

(Brawn, 2006). The sequence is Figure 7a newborn, 7b four weeks, 7c eight weeks, 7d three 

months, and 7e six months. The work in (Peterson & Rhodes, 2003) demonstrates that lines 

are better features in the holistic configuration to provide discrimination among other type 

of geometric objects. This could lead to the fact of why newborns have the ability to 

recognize people using diffuse lines features. 
 

 

a) b) c) 

  

d) e) 

Fig. 7. Newborn visual perception variation. a) Newborn, b) 4 weeks, c) 8 weeks, d) 3 
months, e) 6 months. From professor Janice Brown’s class presentations (Brawn, 2006). 
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As a conclusion of this section we recommend the work reported by Sinha (Sinha et al., 
2006), where the reader could find nineteen important points a computer vision research 
interested on face recognition should consider in FRS design. Among those points we can 
mention; human recognize familiar faces in very low resolution images, high – frequency 
information by itself is insufficient for good face recognition performance, facial features are 
processed holistically, pigmentation cues are at least as important as shape cues. 
These points are results of human visual perception experiments that are related to the main 
idea presented in this section, and more details can be found in that reference. 

4. Face feature lines, hough-KLT human facial perception theory 

Considering the theories presented in section 3 we decided to implement a face recognition 
scheme based on facial features containing information of the most prominent lines in low 
resolution faces. Besides the perceptual justification of this theory, an engineering 
justification to use features lines are the works reported in (Zhao et al., 2003) where lines are 
combined with PCA and (Konen , 1996), where the ZN-Face algorithm is able to compare 
drawing faces against gray scale faces using lines. Besides, other works show the 
advantages, like representation simplicity (Singh et al., 2003), low computational cost (Singh 
et al., 2002), invariance tolerance of face recognition algorithms based on lines, (Aeberhard 
& del Vel, 1998) and (Aeberhard & de Vel, 1999).  

4.1 Face feature lines 
The proposed method is based on the features that we will denominate, face feature lines, 
FFL.  FFL are prominent lines in low resolution face images, and can be extracted using the 
Hough transform. The Hough transform is a transformation that allows to detecting 
geometric patterns in images, like lines, circles, and ellipses.  The Hough transform, HT, 
works on a parametric space to define a line by 

 cos sinx yρ θ θ= +   (5) 

where x and y represent the coordinate of a pixel, ρ is the distance of the line to the origin, 

and θ  is the angle of the line with respect the horizontal axis. FFL can be extracted from the 
HT by obtaining the maximum values in the transformation. We consider that four face 
feature lines are enough to represent a face, based on the experiments related to the 
newborns vision system. These four FFL have shown significant improvement in the 
performance of fuzzy face recognition systems (Chacon et al., 2006b). The information of 
these four FFL will be included as components of the feature vector which is defined with 
detail on further subsections. Figure 8 illustrates how the FFL are obtained. 
The feature vector including the FFL is generated as follows: 
Step 1.   Find the four maximum peak of the HT. 
Step 2.   Obtain the four characteristic lines coordinates. 
Step 3.   Encode the coordinates information by taking the value of the first coordinate of the 

i-th line, 
1i
x  and add it to 1

1000

iy , and include the result to 
1i
l . 

Step 4.  Take the value of the second coordinate of the i-th line, ix
2

 and add it to 
1000

2iy , and 

include the result to 
2i
l .  

www.intechopen.com



Face Recognition Based on Human Visual Perception Theories and Unsupervised ANN 

 

205 

The FFL feature vector can be defined by 

 

1 2

11 21
11 21

1 2
1 2

                       [ ]

, ...
1000 1000

,
1000 1000

i i i

i
i i

i i

l l

y y
x x

y y
x x

=

⎡ ⎤+ +⎢ ⎥
⎢ ⎥=
⎢ ⎥+ +⎢ ⎥⎣ ⎦

z

z
  (6)  

  

  
 

a) b) c) d) 

Fig. 8. FFL extraction: a) Original image, b) Face edges, c) Accumulator of the HT. d) 
Original image plus its four FFL. 

The iz vector must be concatenated with the original image ( ),I x y , in a canonical form 

(vector column) xyi , to construct the final feature vector  

 [ ]
i xy i xy+ =x z i   (7) 

The vector iz  is linked to the information of the original image in order to contribute and 

complement the face information representation before the transformation via KLT. 

4.2 Principal component analysis and Karhunen-Loeve transformation 
The feature vector is now processed by Principal Component Analysis, PCA, in order to 
reduce the features dimensionality. This reduction is achieved by the PCA that transforms 
the representation space X into a new space Y, in which the data are uncorrelated.  The 
covariance matrix in this space is diagonal.  The PCA method leads to find the new set of 
orthogonal axis to maximize the variance of the data.  The PCA transformation is 
accomplished by   

Step 1. The covariance matrix Cov
X

 is calculated over the input vectors set ix  that  

corresponds to i facial images represented as vectors x. The covariance is defined   as 

 ( )( )
1

1
Cov

1

Tn

i i

i
n

=

= − −
− ∑X x x x x   (8) 

where x  denotes the mean of each variable of the vector x , and n  is the amount  

of input vectors.   

  Step 2. The n eigenvalues of Cov
X

 are extracted and defined as 
1 2
, ,...

n
λ λ λ , where  

1 2
...

n
λ λ λ≥ ≥ ≥ .   

www.intechopen.com



 State of the Art in Face Recognition 

 

206 

  Step 3. The n eigenvectors are 
1 2
, ,...

n
Φ Φ Φ  and are associated to 

1 2
, ,...

n
λ λ λ .   

  Step 4. A transformation matrix, 
PCA

W , is created 
1 2

[ , ,... ]
PCA n

= Φ Φ ΦW .   

  Step 5. The new vectors Y  are calculated using the following equation 

 T
PCA=Y W X   (9) 

where T  denotes the transpose of 
PCAW , and Xdenotes the matrix containing all 

the input vectors.   

The Karhunen-Loeve transformation, KLT, is similar to the PCA (Li & Jain, 2004), however 

in the KLT the input vectors 
i

x are normalized to the interval [0,1] before applying the PCA 

steps.  

4.3 SOM- kmeans face recognition system 
The face recognition system is based on a combination of the k-means and SOM methods. Its 
description is presented next.  
The system is designed to recognize 10 persons. The design samples considered are the first 
8 samples of each individual. This approach generates a training matrix size of 3408x80.        
The face databases used were the ORL and the YALE. 
The classifier design is performed in two steps. First the SOM is trained with the trained 

samples. The parameters of the SOM using the Kohonen algorithm are; input dimension 

3488, map grid size 15X13, lattice type hexagonal, shape sheet, neighborhood Gaussian. 

Once the SOM has detected the possible classes, Figure 9 a, they are reinforced through the 

k-means algorithm. The k-means is applied trying to find 10 clusters, one for each class.  

Graphical representations of the clusters generated are shown in Figure 9b.  Each hexagon in 

Figure 9b includes the label corresponding to the subject that has been assigned to a specific 

neuron on the map.  The color scale represents the clusters found when the SOM is trained 

with 8 samples per subject. The U-matrix is a class distribution for graphic representation.  

 

  

                                       a)                                                                             b) 

Fig. 9.  The final map after Kohonen’s training algorithm over ORL is shown in a).  b) U-
matrix of the SOM map when the k-means is applied over ORL. 

www.intechopen.com



Face Recognition Based on Human Visual Perception Theories and Unsupervised ANN 

 

207 

The performance achieved for the ORL was 100% and 90% for design and testing 
respectively. For the YALE database the performance achieved was 100% and 70% for 
design and testing respectively. The use of the k-means-clustering algorithm, that reinforces 
the grouping, may justify this higher recognition rate.  As expected, the performance has 
lower rates on the YALE database because of the variations in lighting conditions of the 
YALE database.  However the performance is comparable with current face recognition 
systems based on PCA which achieves 77%.  
The general scheme for the SOM-Hough-KLT proposed method is shown in Figure 10.  
 

 

Fig. 10. General scheme for the SOM-Hough-KLT face recognition method. 

The propose FRS based on the SOM was compared against a feedforward back propagation 
scheme for face recognition called FFBP-Hough-KLT.  The highest recognition rate on 
testing reaches 60% on the YALE database, and 92% on the ORL. This result indicates an 
advantage of unsupervised over supervised systems. 
The results obtained in this work are comparable to PCA, LDA, FLDA methods.  For the 

YALE database the highest performance reported in the literature analyzed is 80% and for 

ORL database is 97%. Another important result is that the SOM network improved with the 

k-means performed better than the FFBP network. This leads us to think that hybrid systems 

will offer new alternatives to design robust face recognition systems. 

5. Comparison of the proposed method with other classifiers 

This section presents a set of experiment results where we compare the performance of 

several FRS by evaluating the classifiers and the feature vectors. The comparison is 

considering the average performance of each classifier with respect to the data bases AR, 

YALE, MIT, and ORL. Table 4 shows the average performance by classifier by data base for 

the different data bases. ED stands for Euclidean distance, NFL is nearest feature line, FFBP1 

and FFBP2 are feedforward neural networks, GG is the fuzzy clustering algorithm Gath-

Geva modified by Abonyi – Szeifert (Abonyi et al., 2002), N-D corresponds to a fuzzy neural 

system using RBF. It can be noted that the SOM has the best performance in two of the four 

data bases, and it is not far from the best performance of the best FRS in the other two cases. 

Besides the SOM has the higher performance reached of all FRS, with 92.86%. The highest 

performance is in the ORL data base as expected because it has less variation with respect to 

PIE. Contrary to the AR and YALE data bases that have more PIE variations. 
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With respect to the type of classifier system, the systems based on Artificial Neural 
Networks and Fuzzy Logic resulted to be the most consistent on their performance over a 
set of 14 recognition experiments taking different sets of faces as shown in Figure 11.The 
experiment number 8 had the lowest performance because some of the worst face images 
were included on that testing set. We can also observe that the SOM approach was the best 
FRS among the fuzzy and ANN classifiers. 
 

Data base FRS 

 ED NFL FFBP 1 FFBP 2 SOM GG N-D 

AR 85.49 87.00 83.25 85.15 88.59 78.82 75.61 

YALE 89.79 90.73 84.79 86.76 89.76 80.17 75.61 

MIT 90.52 91.29 86.48 88.11 91.11 81.66 79.24 

ORL 84.49 85.38 88.78 90.05 92.86 83.62 83.27 

Table 4. Classifier performance by data base. 
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Fig. 11. Performance by type of classifier in the 14 experiments. 

Another important finding in these experiments is that the Hough-KLT feature yielded the 
best performance compared with the other features as shown in Table 5 over the different 
data bases. This result may reinforce the use of the face feature line feature. In this table 
DDWT stands for Wavelet features, and dB is the wavelet level used.  

6. Results, conclusion and future work 

The chapter presented an analysis of 30 works on FRS. The works were analyzed for 
tolerance to image variations, feature extraction methods and classifier system used. Results 
indicate that the most considered variation in the works is related to face expression, one of 
the most used method for feature extraction turned to be wavelet based methods, and the 
classifiers with more use are based on Euclidean distance. In order to compare the 
performance of the different works a new performance index was proposed. The best 
performance for a FRS assuming PIE tolerance reached 91.96%. 
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Feature Data base 

 AR YALE MIT ORL 

DDWT-KLT 
db1 

82.12 85.18 87.42 86.56 

DDWT-KLT 
db2 

82.82 85.13 87.36 86.98 

DDWT-KLT 
db4 

83.42 86.24 87.74 86.66 

KLT 82.09 83.95 85.52 86.01 

Gabor-KLT 81.81 84.18 85.10 86.02 

Hough-KLT 86.69 88.57 89.32 89.43 

Eigenfaces 80.51 82.52 84.59 85.12 
 

Table 5. Performance by features. 

The chapter also covered an alternative point of view for FRS based on human facial 

perception theories. This part of the chapter, presented some neurophysiologic theories that 

may be useful to design more robust FRS. In fact, one of these theories, newborn visual 

perception, is proposed to be incorporated in a novel face recognition approach that is 

described in the chapter. The newborn visual perception idea led us to consider low 

resolution features extracted with the Hough transform, FFL, to design a FRS.  

The FRS designed is based on a SOM- kmeans classifier. The performance achieved during 

testing were, 90% for the ORL, 70% for the YALE database. As expected, the performance 

has lower rates on the YALE database because of the variations in lighting conditions of the 

database.  However the performance is comparable with current face recognition systems 

based on PCA which achieves 77%.  

In a final experiment, the proposed method was compared against 6 other methods using 

the AR, YALE, MIT, and ORL data based. The proposed method turned to achieve the best 

performance in two of the test, with 88.59% and 92.86%, and it was the second best in the 

other two, 89.76% and 91.11%. Another important result in this experiment is that with 

respect to the type of classifier system, the systems based on Artificial Neural Networks and 

Fuzzy Logic resulted to be the most consistent on their performance over a set of 14 

recognition experiments. Besides, the SOM approach was the best FRS among the fuzzy and 

ANN classifiers. 

Still another important finding in these experiments is that the Hough-KLT feature, that 

incorporates the FFL, yielded the best performance compared with the other features.  

Based on the previous results, we can conclude that incorporation of neurophysiologic 

theories into the design of FRS is a good alternative towards the design of more robust 

systems. We also may conclude that FRS based on ANN, specially with unsupervised 

systems, represent a good alternative according to the results of the experiments reported in 

this chapter.   

As future work, we propose to achieve a more complete research towards the integration of 

the results presented in (Sinha et al., 2006) into FRS design in order to evaluate the real 

impact of these theories in real world applications. 
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