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Abstract

Iron is an essential nutrient for most living organisms. Due to the low solubility of ferric 
iron at physiological pH, the transition from an anaerobic atmosphere to the actual oxi-
dant environment caused a dramatical decrease of iron bioavailability. Therefore, most 
organisms had to adapt their lifestyle to survive under an iron-depleted environment. In 
cyanobacteria, the electron transport chains involved in photosynthesis and respiration, 
as well as the enzymes involved in nitrogen metabolism have a high content of iron. 
Hence, cyanobacterial iron requirements are much higher than those of heterotrophic 
organisms. In this chapter, we revise different strategies developed by this important 
group of microorganisms to cope with iron deficiency, as well as the regulatory networks 
involved in the homeostasis of this indispensable element.

Keywords: cyanobacteria, iron stress, regulation, photosynthesis, nitrogen metabolism, 
cross-talk, cyanotoxin production

1. Introduction

The biological importance of iron almost entirely resides in its incorporation into proteins, 

either as a mono- or binuclear species, or as part of iron-sulfur clusters and heme groups. 

Through these forms, iron acts as a cofactor of a plethora of crucial enzymes and electron 

carriers involved in major biological processes including photosynthesis, respiration, tricar-

boxylic acid cycle, DNA biosynthesis and nitrogen fixation, among others [1]. Despite iron 

is the fourth most abundant element on earth crust, its bioavailability is extremely limited 

because of its poor solubility in the actual oxygenic atmosphere. Hence, whereas free Fe3+ 
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 concentration ranges from 10−9 to 10−18 M, virtually all living microorganisms require a mini-

mum effective concentration of 10−8 M to live and growth, and at least 10−7 to 10−5 M to achieve 

optimal growth [1].

Iron limitation is a challenge of particular importance in cyanobacteria, being one of the main 

limiting factors of ocean primary productivity [2]. Cyanobacteria have an absolute dependence 

of iron for growth and optimal development of their major physiological processes, particularly 

photosynthesis and nitrogen fixation. Iron serves as a cofactor for every membrane-bound pro-

tein complex and other mobile electron carriers within the photosynthetic apparatus [3], which 

determines an iron quota about 10 times higher than that exhibited by a similarly sized non-

photosynthetic bacterium [4]. Additionally, diazotrophic cyanobacteria have significant further 
iron requirements compared with other phototrophs due to the abundance of iron-containing 

enzymes in the nitrogen-fixation machinery [5]. Although iron plays a key role in cyanobacterial 
physiology, an excess of free intracellular iron is extremely deleterious because it catalyzes the 

formation of reactive oxygen species (ROS) through Fenton reactions, leading to oxidative stress 

[6]. Likewise, iron starvation leads to significant increase in ROS and induces oxidative stress 
in cyanobacteria [7]. Hence, iron uptake and metabolism must be tightly regulated in order to 
ensure suitable supply maintaining the intracellular concentration within nontoxic levels [8, 9].

To cope with the usually frequent periods of iron starvation in nature, cyanobacteria have 

evolve efficient strategies which imply changes in the transcription of a plethora of genes, 
resulting among other changes in a deep rearrangement of the photosynthetic machinery [10] 

and the induction of the mechanisms involved in iron uptake. Thus, the transcription of genes 
coding for several TonB-dependent outer membrane transporters, periplasmic ferric-binding 

proteins, ATP-binding permeases as well as enzymes involved in siderophore biosynthesis 

will depend on iron availability [9, 11, 12].

Since an effective balance between iron acquisition and protection against oxidative stress is 
crucial for cell survival, as occurs in most Gram-negative and several Gram-positive bacteria, 

in cyanobacteria iron homeostasis is controlled by a global transcriptional regulator known as 
Fur, which stands for ferric uptake regulator [9, 13, 14]. Fur typically acts as a transcriptional 

repressor, which senses intracellular free iron and modulates transcription in response to iron 

availability [1]. Fur not only controls the expression of iron acquisition and storage systems, 

but also a wide set of genes and operons belonging to a broad range of functional categories, 

thereby contributing to couple iron availability to major physiological processes in cyanobac-

teria [14–17]. In this chapter, we revise the strategies of these photosynthetic bacteria to face 

the challenge of iron starvation. We put special emphasis in the transcriptional and physi-

ological changes triggered by iron starvation in this group of microorganisms. Details on 

cyanobacterial iron metabolism and control of iron homeostasis as well as their connections 

with other cellular processes are discussed.

2. Classical strategies to overcome iron starvation situations

Cyanobacteria evolved very efficient mechanisms to cope with iron deficiency. Iron deprivation 
triggers a variety of responses that range from upregulation of the iron acquisition systems to 
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reduction or substitution of structures or molecules. At the physiological level, Strauss [18] cate-

gorized the responses as retrenchment (reduction of cell size, loss of phycobilisomes, ultrastruc-

tural changes and pigment changes), compensation (as the synthesis of flavodoxin, playing 
ferredoxin role, expression of isiA gene) and acquisition (induction of iron acquisition systems). 

Accommodation to iron deficiency requires changes in the expression of a large number of 
genes of many metabolic pathways, some of them not obviously related with iron metabolism, 

such as respiration, photosynthesis, nitrogen metabolism, glycolysis, tricarboxylic acids cycle, 

amino acid synthesis, synthesis of toxins and antioxidant defenses. Those changes highlight the 

responses associated to iron deficiency [9, 19]. It is important to consider that the responses are 

going to be different depending on the stress threshold: moderate, severe or extreme.

2.1. Rearrangement of photosynthetic electron transport chain under iron starvation 

conditions

Many photosynthetic components are iron-containing proteins, and also iron is involved in 

chlorophyll synthesis. Chlorophyll level is affected by iron availability, so the photosynthetic 
machinery may be diminished or even dismantled if the deficiency occurs suddenly, as in lab-

oratory experiments. In general, populations living in limiting environments adapt its chlo-

rophyll synthesis to the bioavailability, and the chlorophyll per cell is lower. Iron deficiency 
adaptation implies a reduction of the linear photosynthetic electron transport and enhances 

respiratory electron transport [20, 21] as well as a concomitant increase of the cyclic photo-

phosphorylation [22]. Moreover, under iron deficiency, several responses to oxidative stress 
have been described, evidencing the link between iron starvation and oxidative stress, with 
photosystems specially affected [7, 23]. Consistently, several photosynthetic and oxidative 

defense genes have been identified as regulated by iron availability [9, 14, 24]. Among the 

iron-induced genes, isiAB [13] and idiAB products are playing key roles in the adaptability of 
the photosynthetic machinery to optimize its function at low iron availability.

2.1.1. IsiA and IsiB proteins

In Synechococcus sp., the isiAB operon is transcriptionally regulated to be expressed under 

iron deficiency, and the monocistronic transcript of isiA is more abundant than the dicis-

tronic one [25]. IsiA gene product was found to confer fitness of photosynthetic machinery 
under iron-limited environments. The product of isiA was described in iron-starved Anacystis 

nidulans as an induced chlorophyll-binding protein [26]. This protein was initially named 

CP43’due to its similarity to CP43, located at the photosystem (PS)II [25]. Initially, IsiA was 

proposed to play a role as an additional light-harvesting complex [27], and over the years, 

several functions have been suggested, summarized by Sun and Golbeck [28]: (i) IsiA is a 
chlorophyll storage protein for the rapid recovery of the cyanobacteria after stress [29]; (ii) it 

acts as an excitation energy dissipator, protecting PSs from photoinhibition [30]; (iii) it serves 

as a light-harvesting complex potentially for both PSs [27, 31] and (iv) IsiA replaces CP43 in 

PSII and permits a cyclic electron transfer pathway involving PSII and the cytochrome b
6
f 

complex [32, 33].

It is interesting to note that isiA is not present in all cyanobacteria, and no homologs of isiA have 

been found in plants. In fact, the presence of isiA in cyanobacteria found in the iron-limited, 
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high-nutrient low-chlorophyll regions of the equatorial Pacific lead to the suggestion that the 
presence of this gene can be a natural biomarker for iron limitation in oceanic environments [34].

In most unicellular cyanobacteria downstream, isiA lies the isiB gene that encodes a small 

FMN-flavoprotein called flavodoxin. It is noticeable that, usually, in filamentous cyanobac-

teria, the flavodoxin gene is transcribed independently of isiA and lies in a different locus. 
Flavodoxin allows that the distribution of light energy as reducing power remains unaltered 

in iron deficient environments. When iron is not available, the synthesis of the iron-sulfur 
protein ferredoxin is repressed while flavodoxin is induced. Flavodoxin replaces ferredoxin 
as an electronic transporter in many of the reactions in which ferredoxin participates [35–39]; 

surprisingly, flavodoxin is not able to functionally replace heterocyst ferredoxin, even though 
electron transfer chain to nitrogenase is also an iron-dependent process [35]. Flavodoxin is not 

exclusive of cyanobacteria, and it may also be present in heterotrophic bacteria as well as in a 

few cases of algae [40]. Cyanobacteria which lack flavodoxin synthesis capability are particu-

larly affected when iron is scarce, and ferredoxin downregulation under adverse conditions 
severely compromises survival [41]. Ferredoxin and flavodoxin are isofunctional proteins, but 
they do not share any significant similarity in primary, secondary or tertiary structures. These 
proteins can interact productively with the same redox partners [37, 38] and exhibit kinetics 
constants in the same range even though flavodoxin is slightly less efficient [37].

Flavodoxin expression is induced not only under iron deficiency but also under a wide range 
of several environmental stresses that result in ferredoxin downregulation [38, 42, 43], espe-

cially oxidative stress. Concerning the photosynthesis, flavodoxin behaved as an alternative 

intermediate for the photosynthetic electron transfer chain in vivo, acting, as ferredoxin does, as 

the main distributor of the reducing power [38, 44]. Under iron limitation, reduced flavodoxin 
also signals for the whole cell the presence of an active photosynthetic electron transfer chain 

through the thioredoxin electron transfer pathway. Reduced thioredoxins via thioredoxin reduc-

tase, regenerates, through reduction of their cysteine residues, the active forms of many target 

enzymes as peroxiredoxins, Calvin cycle enzymes and NADP+-malate dehydrogenase, among 

others. Flavodoxin allows that this key process is still working under iron deficient conditions.

Since flavodoxin synthesis is one of the first responses to iron deficiency [45], flavodoxin was 
first proposed as an iron-deficiency biomarker in the marine diatom Thalassiosira weissflogii 
[46]. Similarly, in the green algae Scenedesmus vacuolatus, the ferredoxin/flavodoxin ratio [47, 

48] was used as iron-stress molecular marker.

2.1.2. IdiA, IdiB and IdiC proteins

In cyanobacteria under iron and manganese limitation, the idiA gene expresses the iron defi-

ciency-induced protein, IdiA [49]; No counterpart seems to exist in green algae and higher 

plants [22]. The transcriptional regulator IdiB regulates the expression of idiA, in a response 

controlled by iron availability [50]. IdiA plays an important role in protecting the acceptor 

side of PSII against oxidative damage, especially under iron-limiting growth conditions [51].

IdiA shows considerable sequence similarity to a family of bacterial periplasmic ABC trans-

porter complexes involved in iron import known as FutA, SfuA, FbpA or HitA (http://genome.
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microbedb.jp/cyanobase/). Although some IdiA-similar proteins have been found in the peri-

plasm [52], IdiA is predominantly found associated to thylakoids [53], suggesting different func-

tions for the distinct IdiA-similar proteins [52]. IdiA undergoes prominent structural changes 

upon iron deficiency and forms a tight and specific complex with dimeric PSII by interaction 
with CP43 and D1 [54], suggesting that IdiA protects the acceptor side of PSII, which is more 

exposed under iron limitation due to ongoing phycobilisome degradation [54].

In the idi operon, IdiB positively regulates transcription of idiA under iron starvation. IdiB 

encoding a member of the Crp/Fnr transcriptional regulators family [55] is transcribed under 

iron limitation and oxidative stress and controlled itself by iron-responsive Fur family mem-

bers [56]. A third iron-regulated gene is idiC, belonging to the thioredoxin-like (2Fe–2S) fer-

redoxin family. Even though IdiC synthesis is constitutive, iron limitation induces a strongly 

enhanced expression of idiC. IdiC is loosely attached to the thylakoid and to other membranes, 
and its expression is enhanced during conditions of iron starvation or during the late growth 

phase [57]. Even though its role is still unclear, based on the similarity of IdiC to NuoE of the 

respiratory Escherichia coli NDH-1 complex, it has been suggested that IdiC is a component of 

the NADH-1 complex in Synechococcus elongatus and, thus, has a function in the electron dona-

tion from NAD(P)H to plastoquinone. Under stress conditions, when PSII resulted damaged, 

IdiC would prevent or reduce the oxidative stress deviating electron transport via alternative 

dehydrogenases, increasing PSI cyclic flow interconnected with respiratory routes [57].

2.2. Siderophore synthesis and induction of high affinity transporters

Derepression or induction of high affinity transporters to enhance iron acquisition as well 
as siderophore synthesis and cell surface enzymes production is a generalized response to 

iron starvation [1]. In cyanobacteria, siderophore-mediated iron uptake is thought to be an 
evolutionary advance that contributes to dominate iron-limited environments. Siderophores 

are strong Fe3+ chelators, and some of them synthetized by nonribosomal peptide synthetase 

systems. Siderophore production and secretion occurs, especially under iron starvation, when 

the intracellular iron concentration drops below a certain threshold required for functionality 

[58]. Siderophore-iron complexes are bound by outer membrane receptor proteins, the TonB-

dependent transporters (TBDTs). These outer membrane receptors are generally induced by 

iron starvation and usually are not present or poorly expressed under iron-sufficient condi-
tions [1]. The iron uptake, transport and storage mechanisms in cyanobacteria are reviewed 
in detail in Section 3.

2.3. Retrenchment

Retrenchment or downregulation of physiological rates is a progressive and reversible 

response, resulting in a modulation of the overall growth rate and changes in biochemical 

parameters. This mechanism is widely used in the adaptation of many organisms to adverse 

conditions. The most frequent response implies remodeling of bioenergetic pathways in 

response to iron availability (see Sections 2.1 and 5). As mentioned previously, low iron con-

centrations trigger a reduction in the level of iron-rich photosynthetic proteins in cyanobacte-

ria while iron-rich mitochondrial proteins are preserved [22].
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Cell size reduction and/or morphological changes as response to iron starvation have also been 

described. For example, thylakoidal membranes and carboxysomes decrease as well as gly-

cogen storage granules increase were observed in A. nidulans R2 by electron microscopy [26]. 

Iron limitation causes morphological changes in the thylakoid packing, promoting unpacking 
[59]. This phenomenon may be related with phosphorylation of light-harvesting chlorophyll-

binding protein of PSII (LCHII) in barley induced by iron deficiency [60]. Iron deficiency causes 
in cyanobacteria a reduction of cell size [61, 26], sometimes related with growth rate [26, 62].

3. Iron uptake, transport and storage

Siderophores are low-molecular-weight (generally <1000 Da) extracellular iron chelators pro-

duced by many prokaryotes and some eukaryotes including fungi, yeasts and plants. These 

secreted molecules often have a peptidic backbone, with modified amino acid side chains 
creating three main types of iron-coordinating ligands, that is hydroxamates, catecholates 

and carboxylates, which commonly form hexadentate octahedral complexes with one ferric 

ion [63, 64].

Most of the cyanobacterial siderophores appear to contain hydroxamate groups [65, 66], includ-

ing the dihydroxamate siderophores schizokinen [65, 67] and synechobactin [68], though some 

species produce catecholate-type chelators such as anachelins [69, 70]. Hydroxamate-based 

siderophores are strong organic chelators showing a 1:1 stability constant with ferric iron of 
~1030, something greater than that of the Fe3+-EDTA complex (~1025); however, ferric-catecholate 

siderophore complexes almost duplicate this affinity (~1049) [71]. Siderophores may coordinate 

other metals such as Zn2+, Cu2+, Ni2+, Pb2+, Cd2+, Mn3+, Co3+, Al3+, and Cr3+, playing significant 
roles in the biogeochemical cycling, biological uptake, and protection against deleterious expo-

sure to high concentrations of these elements [72, 73]. In fact, the cyanobacterial siderophore 

schizokinen binds Cu2+ and contributes to alleviate copper toxicity under high environmental 

copper concentration. Secreted schizokinen sequesters extracellular Cu2+, but cupric-schizo-

kinen is not recognized and internalized by cyanobacterial outer membrane transporters, 
thereby lowering the amount of copper taken up by the cells [74]. A similar detoxifying effect 
of cyanobacterial dihydroxamate siderophores has been observed with cadmium [75].

Among freshwater cyanobacteria, the model filamentous nitrogen-fixing heterocyst-forming 
cyanobacterium Anabaena sp. PCC 7120 as well as the bloom-forming, toxin-producing A. flos-
aquae synthesize schizokinen as their major siderophores [76]. Hydroxamate-based sidero-

phore production has also been described in the paddy field cyanobacterium A. oryzae [75], and 

in nontoxic strains of the bloom-forming cyanobacterium Microcystis aeruginosa [77]. A novel 

group of cyanobacterial catecholate-type siderophores known as anachelins has been described 
in A. cylindrica [69]. In marine environments, only the coastal cyanobacterium Synechococcus sp. 

has been reported to produce siderophores. Notably, a distinct suite of dihydroxamate sidero-

phores termed synechobactins is produced by Synechococcus sp. PCC 7002 [68]. In addition, 

xenosiderophore uptake (i.e., aerobactin and desferrioxamine B) has been documented in cya-

nobacteria [65], though the uptake of self-secreted siderophores is more efficient [78].
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The routes of siderophore biosynthesis have not been extensively studied in cyanobac-

teria. Siderophore biosynthesis occurs in heterotrophic bacteria by two main pathways: 
one is directed by a large family of modular multienzymes called non-ribosomal peptide 

synthetases (NRPSs) and polyketide synthetases (PKS), while the other is known as the 
NRPS-independent siderophore (NIS) pathway [79]. Biosynthesis of hydroxamate-based sid-

erophores with similar structures to schizokinen and synechobactins (e.g., aerobactin) takes 
place by the second route, involving four enzymes encoded by the gene cluster iucABCD, 

usually organized as an operon [80]. In Anabaena sp. PCC 7120, the outer membrane trans-

ports for ferric-schizokinen SchT (Alr0397) has been characterized [11], which showed a high 

amino acid sequence similarity with the ferric-aerobactin IutA transporter from E. coli. Near 

to the gene alr0397, a cluster of four open reading frames (all0394, all0393, all0392, all0390) 

show similarity with iuc genes, suggesting a role in the biosynthesis of schizokinen [11]. Since 

the defining characteristic of the NIS biosynthetic pathways is the presence of one or more 
nucleotide triphosphate-dependent synthetases responsible for condensation reactions dur-

ing siderophore biosynthesis, this route has also been proposed for hydroxamate-based sid-

erophore biosynthesis in A. variabilis and Synechococcus sp. PCC 7002 [81, 82].

Another putative route of siderophore biosynthesis in Anabaena sp. PCC 7120 occurs pre-

sumably via a template-directed, nucleic acid-independent non-ribosomal mechanism 

which is mediated by the gene products of a cluster of nine open reading frames, from 

all2641 to all2649, encoding seven NRPSs and two PKSs [83]. The expression of this NRPS-

PKS gene cluster is transcriptionally repressed by the master regulator of iron homeostasis 
FurA [9], being induced under iron limitation or oxidative stress condition [83]. Since iron 

starvation induces oxidative stress in Anabaena sp. [7], maybe by dysfunction of the pho-

tosynthetic electron transport and some iron-containing antioxidant enzymes (e.g., SodB 

and DpsA), it has been postulated that release of siderophore biosynthesis to increase iron 

uptake during oxidative stress could restore both photosynthesis and ROS scavenging [83]. 

The protective effect of siderophores against oxidative stress has also been documented in 
heterotrophic bacteria [73].

De novo synthetized and re-used siderophores are secreted to the outside environment of 

bacterial cells by export systems which are not very well known in cyanobacteria. In E. coli, 

the export of enterobacterin siderophore involved different mechanisms comprising at least 
two components, the outer membrane channel tunnel protein TolC [84] which transports the 

siderophore from the periplasm to the outside, and several inner membrane transporters 

including the major facilitator superfamily (MFS) protein EntS [85] and the resistance nodula-

tion cell division (RND) transport proteins AcrB, AcrD, AcrEF, MdtABC, and MdtEF [86]. In 

Anabaena sp. PCC 7120, the deletion mutant of the MFS-type inner membrane protein SchE 
(All4025) failed to secrete schizokinen siderophore to the external milieu [59]. Similar results 

were observed upon deletion of gene hgdD (alr2887) [59], encoding the only TolC-like protein 
in Anabaena sp. PCC 7120, termed HgdD, which is also required for protein and glycolipid 
secretion during heterocyst development [87] and secondary metabolite/antibiotic export 

[88]. Hence, hydroxamate siderophores appear to be exported in this model cyanobacterium 

through the mechanism SchE-HgdD.
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Once bound to iron, ferric-siderophore complexes are efficiently taken up in Gram-negative 
bacteria through transport machinery which involves different outer and inner membrane-
associated proteins as well as soluble periplasmic binding proteins [1, 12]. First, iron-loaded 

siderophores are recognized and translocated into the bacterial periplasm by TonB-dependent 

transporters (TBDTs) located in the outer membrane, in a process that is driven by the cyto-

solic membrane potential and mediated by the energy-transducing TonB-ExbB-ExbD system. 

Next, periplasmic binding proteins shuttle ferric-siderophores from the outer membrane 
transporter to ATP-binding cassette (ABC) permeases associated to the cytoplasmic mem-

brane which delivers the iron-loaded siderophores to the citosol [1].

TBDTs are composed of a transmembrane β-barrel domain that encloses a globular plug 
domain, and a periplasmic exposed TonB box [89]. Bacteria often possess multiple TBDT 

receptors, each providing the bacterium with specificity for different siderophores [90], but 

also allowing uptake of other nutrients [89, 91, 92]. TBDTs involved in iron uptake are gener-

ally induced by iron starvation and usually are not present or poorly expressed under iron-

sufficient conditions [1]. Twenty-two TBDTs have been identified in the genome sequence 
of Anabaena sp. PCC 7120, most of them integrated into gene clusters or even putative oper-

ons containing genes coding for proteins involved in iron transport [93]. A TBDT receptor 

involved in schizokinen uptake, SchT (Alr0397), has been described in Anabaena sp. PCC 

7120 [11]. The expression of this outer membrane ferric-siderophore transporter is induced 

under iron-limitation [11], and it is transcriptionally regulated by FurA [94]. SchT appeared 

not essential for cyanobacterial growth under iron-limited conditions, suggesting the occur-

rence of other iron transporters in Anabaena sp. [11]. A second TBDT termed IacT (All4026), 

involved in iron and copper uptake, has been characterized in Anabaena sp. PCC 7120. IacT 
is not a schizokinen transporter; it appears to function under conditions in which the copper 
concentration exceeds the concentration of iron and seems to transport iron as ferric-citrate 

[59]. Finally, a third TBDT also involved in ferric-schizokinen uptake, IutA2 (Alr2581), has 
been recently described [78]. The iutA2 mutant showed significant growth impairment under 
iron deprivation as well as alterations in ferric-schizokinen uptake.

Beyond the TBDTs SchT and IutA2, the iron-loaded schizokinen uptake machinery in Anabaena 

sp. PCC 7120 appears to comprise, at least, the gene products of tonB3 (all5036), exbB3/exbD3 

(all5047, all5046), and fhuCDB (all0389-all0387). Whereas several tonB-like genes, exb clusters, 

and permease systems (i.e., fhu, fut, fec) have been annotated in the Anabaena genome, only 

the expression of the abovementioned ORFs were induced under iron-limiting conditions 

and reduced at high iron concentrations [12]. Additionally, mutants of the periplasmic ferric-

siderophore binding protein FecB1 (All2583), but not of its homolog FutA, showed a slightly 
reduced uptake rate of ferric-schizokinen [78]. The Anabaena sp. PCC 7120 siderophore uptake 
system SchT/FhuBCD appears to be also involved in ferric-aerobactin uptake; however, the 
uptake of this hydroxamate siderophore produced by E. coli was ~10 fold slower than the 

uptake of ferric-schizokinen in the filamentous cyanobacterium [78].

Whereas some cyanobacterial species produce siderophores to scavenge iron under iron-limit-

ing conditions, many cyanobacteria do not possess this ability, including some environmentally 

relevant lineages such as the planktonic freshwater cyanobacterium Synechocystis sp. [95], the 
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dominant picocyanobacterium Prochlorococcus marinus [82], and the open-ocean nitrogen fixers 
Trichodesmium erythraeum and Crocosphaera watsonii [82, 96]. However, some non-siderophore-

producing cyanobacteria express all the components of iron-siderophore uptake machinery, 
being capable of incorporate xenosiderophores [97]. Reductive iron uptake appears extended 
in many non-siderophore-producing cyanobacteria. In this strategy, reduction of free or com-

plexed ferric iron (e.g., ferric-citrate) into its ferrous form takes place prior to the transport across 
the plasma membrane either by iron-reducing superoxide radicals secreted to the extracellular 

milieu as has been described in Trichodesmium and Lyngbya [96, 98], or through the action of 

plasma membrane-associated respiratory terminal oxidases as occurs in Synechocystis sp. PCC 

6803 [95]. Given their small sizes, hydrophilic ferrous and unchelated ferric ions may passively 

diffuse to the periplasmic space through nonspecific outer membrane porins [95]. However, 

due to its frequent environmental low concentration, ferric iron uptake usually requires TonB-

ExbB-ExbD-dependent active transport systems [99]. Once into the periplasm, high affinity 
ferric-binding soluble proteins bind ferric ions such as FutA1 and FutA2 and shuttle them to 
inner membrane ferric permeases such as FutB and FutC [100, 101]. Alternatively, ferric ions 

are reduced by any of the abovementioned mechanisms and cross the inner membrane through 

ferrous iron transporters like FeoB [95].

Once inside the cell, ferric iron is reduced to ferrous iron, which has a much lower affinity for 
the siderophore and spontaneously dissociates [1]. Due to poor bioavailability or iron and its 

frequent intermittent supply in nature, bacteria have evolved efficient iron storage mechanisms 
involved ubiquitously multi-subunit proteins termed ferritins and bacterioferritins [102]. These 

proteins can accommodate up to 4500 iron atoms into a central cavity in a form that is unlike 
to participate in ROS generation reactions [102, 103]. In Synechocystis sp. PCC 6803, bacteriofer-

ritins BfrA and BfrB are responsible for the storage up to 50% of intracellular iron content [104], 

while the DPS family ferritin MrgA plays a pivotal role in both the mobilization of the stored 

iron within the cell [105], and the coordination between iron homeostasis and oxidative stress 

response [4]. By contrast, little is known about the mechanisms of iron storage in Anabaena spe-

cies. Only four nonheme-binding ferritin family genes have been identified in Anabaena sp. PCC 

7120 [104], including alr3808 [106] and all1173 [107], encoding two DNA-binding protein homo-

logs to DpsA from Synechococcus sp. PCC 7942 [108]. DpsA from Synechococcus displays a weak 
catalase activity in vitro and is presumably involved in peroxide-consuming mechanism located 

on the chromosomal DNA, conferring resistance to peroxide damage during oxidative stress 

conditions or long-term nutrient limitation [108]. According to the CyanoBase [109], the genomes 

of other environmentally relevant cyanobacteria such as P. marinus, C. watsonii, T. erythraeum, 

and M. aeruginosa encode members of the ferritin/bacterioferritin superfamily.

4. Regulation of iron homeostasis

Regulators of the Fur (Ferric uptake regulator) family constitute the primary mechanism 
in the maintenance of iron homeostasis in cyanobacteria. The first evidence of the existence 
of a Fur protein in cyanobacteria was the isolation of a fur gene in Synechococcus PCC 7942 
through an E. coli-based in vivo repression assay [13]. Apart from Synechococcus, Fur homologs  
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have been mainly identified and studied in Synechocystis, Anabaena and Microcystis [17, 

110–112]. Cyanobacterial Fur proteins contain histidine rich motifs (HHXHXXCXXC) as 

potential metal binding sites, which share properties with Fur from other prokaryotes [113, 

114]. In the classic model of operation for this transcriptional regulator, Fur functions as a 

repressor, using ferrous iron as a co-repressor. Under sufficient iron availability, a dimer of 

active Fe2+-Fur complex binds to cis regulatory elements in the promoter of target genes and 

thereby prevents transcription [115]. However, other regulatory mechanisms have been 

described indicating that Fur can also bind to specific promoters in its apo form repressing 
transcription. Even apo- and holo-Fur activations have been reported [113, 116]. In the cya-

nobacterial genomes, it is common to find diverse ORFs that encode different Fur homologs 
which perform several functions. In this sense, in Synechococcus 7002 or Anabaena sp. PCC 

7120, three fur-type genes exist, but only one of them, denoted as furA, appears directly 

involved in upregulation of iron uptake genes under iron limitation [9, 117, 118]. Recent 

studies confirmed that FurA is an essential, well-conserved protein among cyanobacteria. 
A significant depletion of furA expression levels impaired the photoautotrophic growth of 

Anabaena sp. under standard culture conditions in both, solid and liquid media [14]. FurA 

is the master regulator of iron homeostasis in Anabaena sp. PCC 7120 [9] and presumably 

in many other cyanobacterial species [14]. FurA modulates not only the expression of the 

iron metabolism machinery, but also regulates directly or indirectly the transcription of 

a plethora of genes and operons involved in a variety of physiological processes includ-

ing photosynthesis, respiration, response to oxidative stress, nitrogen fixation, heterocyst 
differentiation, cellular morphology, tetrapyrrole biosynthesis pathway, phycobilisome 
degradation, chlorophyll catabolism, programmed cell death, light sensing and response, 

signal transduction systems, exopolysaccharide biosynthesis, and cyanotoxin production, 

among others [15, 16, 94, 119].

Cyanobacterial Fur regulators can function both as activator and repressor as observed in the 

transcriptional regulation by FurA of genes involved in the tetrapyrrole biosynthesis path-

way in Anabaena sp. PCC 7120 [9]. In all these cases, regulation by Fur adapts the answer to 

provide iron in case of deficiency of this metal or to allow its storage or the use of proteins 
that depend on iron when this metal is sufficient [1]. Fur recognizes AT rich regions called Fur 

boxes located in the promoter region of iron responsive genes [120]. Although it is assumed 

that this regulator binds as a dimer to the promoter, a computational study of Fur proteins 

from Synechocystis sp. PCC 6803 proposed the binding of multimers of the Fur-like regula-

tor onto its target DNA, which possesses internal repeats [121]. Lately, atomic force micros-

copy revealed the sequential binding of FurA to its own promoter boosted by DNA bending 

in Anabaena sp. PCC 7120 [122]. Cyanobacterial Fur-DNA recognition depends not only on 

metal levels. Apart from iron, a reduced form of FurA from Anabaena sp. PCC 7120 is required 
for in vitro optimal DNA-binding [112, 123]. Also, reduction of Fur from M. aeruginosa PCC 

7806 increases the binding affinity to its target genes [124]. Cyanobacterial Fur homologs 

contain a variable number of cysteine residues in their primary sequence and the need for 

reducing power for this regulator to develop its function is based on the importance of the 

redox state of these residues. A cysteine mutational study of the five cysteines present in 
Anabaena sp. PCC 7120 Fur sequence revealed that C101, a residue conserved in most bacterial 
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Fur homologs, is part of a thiol/disulfide redox switch that determines FurA ability to bind 
the metal co-repressor [125]. Moreover, this residue belongs to a CXXC motif responsible of 

the disulfide reductase activity exhibited by Anabaena FurA, suggesting that Fur is involved 

in the cyanobacterial redox-signaling pathway. Apparently, Fur connects the response to 

changes in the intracellular redox state and iron management in cyanobacteria [126].

The amount of Fur is controlled in cyanobacteria by mechanisms present in the three levels 

of the flow of genetic information [123]. At the transcriptional level, the TetR family transcrip-

tional regulator PfsR regulates fur transcription in Synechocystis PCC 6803. A pfsR deletion 

mutant displayed stronger tolerance to iron-limiting conditions as compared with the wild 

type. Moreover, the transcripts of pfsR were enhanced by iron limitation and inactivation of 

the gene affected pronouncedly expression of furA gene and genes involved in iron transport 

and storage among others [127].

At the post-transcriptional level, cis-encoded antisense RNAs regulate Fur expression in cya-

nobacteria [128]. In Anabaena sp. PCC 7120, a large dicistronic transcript encoding the putative 
membrane protein Alr1690 and a α-furA RNA transcript complementary to furA is involved 

in the control of the cellular levels of the protein [129]. Also, cis α-furA RNAs are present in M. 

aeruginosa PCC 7806 and Synechocystis sp. PCC 6803 [130].

Regulation of the Fur level and its activity also take place post-translationally by different 
mechanisms in cyanobacteria. It has been reported that the membrane cytoplasmic FtsH1/

FtsH3 protease heterocomplex, involved in the acclimation of cells to iron deficiency, con-

trols the availability of Synechocystis sp. PCC 6803 Fur by degradation of apo-Fur in order to 
regulate transcription of iron responsive genes [131]. Moreover, cyanobacterial Fur can form a 

complex with heme that alters its ability to join to DNA. In particular, Anabaena sp. PCC 7120 
FurA interacts strongly with heme in the micromolar range of concentration and inhibits the 

in vitro ability of this protein to bind to DNA [117]. The axial ligand of heme in the FurA-heme 

complex is a cysteine residue that belongs to a Cys-Pro motif (Heme regulatory motif) present 

in its primary sequence and the sequences of all cyanobacterial homologs but absent in most 

non cyanobacterial ones. The regulator undergoes a redox-dependent ligand switch so that 

heme could be involved in sensing redox variations within the cyanobacterial filament and 
alter the regulatory function of FurA [132].

A novel layer of complexity of iron homeostasis regulation in cyanobacteria involves RNA 

molecules as IsaR1. When iron is scarce, IsaR1 affects the photosynthetic apparatus in three 
different ways: (1) directly, inhibiting the expression of proteins important in photosynthesis; 
(2) indirectly, by suppression of pigment production; (3) preventing the expression of proteins 

that contain iron-sulfur clusters. Homologs of IsaR1 are conserved throughout the cyanobac-

terial phylum [133]. Also, the SufA and IscA proteins, proposed to function as scaffolds in 
the assembly of Fe/S clusters in bacteria, seem to play regulatory roles in iron homeostasis in 

cyanobacteria, according to experiments performed on single and double null-mutant strains 

of Synechococcus sp. [134]. Even the three PchR regulators (PchR1, PchR2, PchR3) present in 

Synechocystis PCC 6803 seem to play a prominent role in the protection against iron stress, 
among other stresses, in this cyanobacterium [135].
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5. The regulation of iron homeostasis is tightly connected to central 

metabolic pathways

As mentioned previously, iron deficiency is one of the major causes of stress in cyanobacterial 
communities. Due to the occurrence of iron in most electron transport proteins conforming 

photosynthetic, respiratory and nitrogenase pathways, the adaptive strategies developed by 

the cyanobacteria are tightly related to the rearrangement and modulation of these processes. 

Furthermore, many of the different responses triggered by iron deprivation are aimed to pre-

vent and alleviate oxidative stress and to the modulation of central metabolism.

5.1. Iron availability and the oxidative stress response

Oxidative stress is one of the many consequences of iron imbalance in cyanobacteria. Thus, 

the control of iron homeostasis is intimately linked to the regulation of many genes involved 
in the response to oxidative stress [4, 14, 24, 94]. Moreover, the master regulators involved in 

such processes in cyanobacteria, namely FurA and PerR/FurC, display a set of common tar-

gets [14, 136]. Furthermore, PerR/FurC is able to modulate in vitro FurA-DNA binding activity 

[117]. Transcriptomic analyses and differential proteomics focused on the definition of the 
FurA regulon in Anabaena PCC 7120 unveiled that around 13% of FurA targets with a known 
function were involved in detoxification of ROS [14]. Those FurA-regulated genes belong 

to different subcategories, such as electron transport proteins dedicated to restore oxidized 
thiols (trxA, trxB, the glutaredoxin-related protein alr0799 and the glutathione S-transferases 

alr3195 and alr7354, among others); detoxification of hydrogen peroxide (the Mn-catalase katB 

and the peroxiredoxins all1541 and alr4641) or the protection of DNA (dpsA) [14, 106, 119, 137]. 

FurA also controls the expression of flavodoxin that is strongly induced under iron deficiency 
[13, 138]. Initially described as a substitute for ferredoxin I (Fd) in the photosynthetic electron 

transport to NADP+ [45, 138] (reviewed in Sections 2.1.1 and 5.2), flavodoxin is also a power-

ful scavenger of ROS. Interestingly, the expression of flavodoxin in chloroplasts of tobacco 
unveiled that this flavoprotein is able to effectively interact with several Fd-dependent oxido-

reductive pathways, including thioredoxin reduction [139]. The expression of flavodoxin in 
plastids protected target enzymes of central metabolic pathways from oxidative inactivation, 

such as the Calvin cycle components fructose-1,6-bisphosphatase (FBPase) and phosphoribu-

lokinase (PRK). Therefore, the expression of flavodoxin triggered by iron deficiency relieves 
the oxidative stress in the cyanobacteria and contributes to the reconstitution of the electron 

transport chains rich in iron-containing proteins whose iron-sulfur clusters are immediate 

targets of free radicals, minimizing the effect of the oxidative damage on the photosynthetic 
rates and the nitrogen metabolism, among other metabolic pathways [139].

5.2. Influence of iron availability in the control of photosynthetic genes

As it has been shown previously, iron limitation has important consequences in the composi-

tion and performance of cyanobacterial photosystems. Several photosynthetic cyanobacte-

rial specific genes induced under iron deficiency contribute to modify their photosynthetic 
machineries such as isiA, isiB (flavodoxin), idiA, idiB and idiC proteins (reviewed in Section 

2.1.1). Fur controls the expression of isiA and isiB [13], whose transcription is induced by mul-

tiple stresses such as treatment with hydrogen peroxide or high salt [56, 136, 140].
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Further transcriptomic studies evaluating the cyanobacterial response to iron deficiency 
unveiled that as a general trend, photosynthesis genes were repressed under low-iron condi-

tions and induced upon the re-addition of iron. Many of those genes belonged to the psa and 

psb families, components of the phycobilisomes and genes involved in the synthesis of chloro-

phyll are also direct targets of FurA [14, 24, 141]. Furthermore, Fur is involved in the control 

of genes involved in carboxysome formation and Calvin cycle. Notably, a close relationship 

between light availability and iron requirements can be inferred from different studies, such 
as the differentially expressed genes in [142], the regulation of furA and the alpha-furA anti-

sense RNA by light [143], or the need of an active photosynthetic electron transport chain 

for the expression of the mcy operon in M. aeruginosa, that in turn is controlled by FurA [124, 

143, 144]. As furA from M. aeruginosa, the expression of the Anabaena sp. PCC7120 ortholog is 
controlled by an antisense RNA whose inactivation produces iron-deficient cells and severe 
structural disorders in the photosynthetic apparatus of Anabaena. Furthermore, disruption of 

the dicistronic message encoding the alr1690-alpha-furA tandem leads to lower photosynthetic 

performance indexes, unveiling that its expression is required for maintenance of a proper 

thylakoid arrangement, efficient regulation of iron uptake and optimal yield of the photo-

synthetic machinery [123, 145]. In addition, FurA modulates the transcription of the LexA 

regulator in Anabaena PCC7120. This regulator is critical to the survival of cyanobacterial cells 
facing inorganic carbon starvation, since most of the LexA-responsive genes were known to 
be involved in carbon assimilation or controlled by carbon availability [146].

5.3. Iron-responsive genes involved in cyanobacterial respiratory pathways

In addition to the photosynthetic electron transport chains, cyanobacterial thylakoids contain 
multiple respiratory electron transport complexes [147]. Thus, photosynthesis and respiration 

are tightly related in cyanobacteria since both pathways share several components, such as a 

quinone/quinol pool [148], plastoquinone, cytochrome b6f and plastocyanin/cytochrome [148, 

149]. Furthermore, the cyanobacteria contain a second complete respiratory chain present in 

the cell membrane that also uses the same mobile quinone pool mediating electrons in the 

photosynthetic and thylakoidal respiratory processes. Several studies evidence the relation-

ship between the iron pool and the respiratory activity. The major oxidase in cyanobacteria, 

COX, is encoded by the cox operon (coxBAC) and FurA regulated though the modulation of 

coxB [15]. Similarly, the transcription of alr0869 (ndhF) and the subunit 5 of NADH dehy-

drogenase encoded by all1127 are regulated by FurA as response to iron availability [15]. 

Furthermore, iron starvation in S. elongatus causes upregulation of several cytochrome oxi-

dases and the increase of respiratory electron transport [22, 150], while an Anabaena mutant 

lacking of the alr1690-alpha-furA message that exhibits a reduced iron pool with respect to the 

wild-type strain has affected its respiratory activity [145].

5.4. Cross-talk between iron and nitrogen metabolism

The electron carriers involved in nitrogen metabolism are also rich in iron, especially the 

proteins involved in nitrogen fixation. Nitrogenase and nitrogenase reductase complex har-

bor around 40 atoms of Fe2+ distributed between the iron-molybdenum cofactor (FeMo-co) 

and the [8Fe-7S] P-cluster present in NifDK nitrogenase, and the [4Fe-4S] cubane in the 
NifH dinitrogenase reductase. In addition, most of the proteins involved in the assembly 
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of the metalloclusters embedded within the NifDK protein also contain diverse [Fe-S] cen-

ters [151, 152]. Thus, growing under nitrogen fixation conditions adds an additional iron 
stress to the cell. Therefore, optimal cyanobacterial performance requires a tight and coor-

dinated regulation of iron and nitrogen metabolisms [137]. Nitrogen metabolism in cya-

nobacteria is controlled by the master regulator NtcA [153] that usually senses the C/N 

balance through the intracellular 2-oxoglutarate levels [154]. NtcA controls a wide regulon 

of genes involved in different functional categories [155, 156]. Among them, NtcA controls 

most steps required for nitrogen fixation in cyanobacteria, starting from heterocyst dif-
ferentiation and development until nif genes expression. NtcA also controls key genes in 
nitrogen assimilation pathways in cyanobacteria [157]. Different studies evidence a tight 
relationship between iron and nitrogen metabolism. Interestingly, transcription of the nif-
HDK operon and excision of the 11 kb DNA fragment required for heterocyst differentiation 
was observed in iron-starved Anabaena, even though cells grew in the presence of combined 

nitrogen [138]. Further studies showed that the expression of FurA is highly induced in the 

heterocyst [137]. FurA participates in the regulation of nif genes, and the levels of this regu-

lator are critical for the modulation of heterocyst differentiation by controlling the expres-

sion of NtcA and vice versa [14, 16]. Thus, several iron-responsive genes in cyanobacteria, 

such as nblA, petH, pkn41, pkn42, among others, are also modulated by NtcA [137, 158–161]. 

Conversely, in Synechocystis sp. PCC 6803, the NtcA-regulated genes bgtB, glnA and urtB are 

highly upregulated under iron limitation [162]. Different studies focused on the identifica-

tion of the FurA and NtcA regulons in different cyanobacterial strains support that FurA 

and NtcA are interactive regulators and corroborate that both transcription factors share an 

important number of targets mainly related to photosynthesis and respiration, iron uptake 
and incorporation, oxidative stress response and nitrogen metabolism [137]. However, 

given that both FurA and NtcA are global regulators, it is not surprising that the nitrogen 

starvation response involves a large number of genes not only related to iron metabolism 

but also to heavy metal and oxidative stress adaptation, reinforcing the interrelationship of 

those processes [162].

6. Iron involvement in cyanotoxin production

Metabolic plasticity of cyanobacteria includes the synthesis of a broad variety of second-

ary metabolites, some of them potentially toxic for eukaryotic organisms, the so-called 
cyanotoxins [163]. When toxins are synthetized, the cyanobacteria divert large amounts 

of carbon and nitrogen to this process so that it might be obvious to think that cyanotoxin 
synthesis gives them some adaptive advantage. Cyanotoxin production is not universal or 

constant even among those species and strains holding the necessary genes. The conditions 

that induce cyanotoxin production in capable species have not been elucidated. Under 

certain environmental conditions, cyanobacteria can proliferate to form blooms consisting 

of significant biomass and covering large areas in fresh or marine water. It is necessary to 
separate the phenomenon of blooms occurrence from the fact of toxicity, although obvi-

ously the problem is detected when the population of toxic cyanobacteria synthetizing 

toxins is high.
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6.1. Iron and blooms occurrence

Iron availability and biolimitation by iron of the phytoplankton are important subjects dis-

cussed for many years. After IronExII [2], it was definitively established that iron availability 
limits rates of cell division, as well as abundance and production of phytoplankton of the 
equatorial Pacific and likely in other “high nutrient, low chlorophyll regions” [55]. There is 

broad agreement that nutrient over-enrichment of freshwater and marine ecosystems pro-

mote cyanobacterial blooms. Phosphorus and nitrogen have traditionally been considered the 

key nutrients limiting primary productivity and algal biomass. But based on such accessibil-

ity (and light and temperature suitable for cyanobacterial growth), iron availability could be 

suggested to be the switch that triggers a bloom. Cyanobacteria compete very efficiently with 
other phytoplankton species for iron resources and often end up dominating the population. 
In addition to all, the adaptive strategies previously mentioned, in some cases, their competi-

tive advantage is based on its ability to vertical migration [164].

6.2. Iron and cyanotoxin production

Cyanotoxins are a heterogenous group of molecules that include hepatotoxins, neurotoxins, 

dermatotoxins and cytotoxins, with diverse chemical nature such as cyclic peptides: cyclic 
peptides, alkaloids, non-proteic amino acids. The synthesis of most toxins is inducible, and the 
genes involved in its biosynthesis have been identified during these last years [165]. The genes 

conforming biosynthetic pathways, its regulation and the molecular mechanisms involved in 

toxicity are in each case different. However, NRPS are present in all the described toxic oper-

ons, involved in cyanotoxin synthesis. Many NRPS present in many bacteria are iron regulated 

[166, 167]. A substantial variety of siderophore structures, toxins and antimicrobial molecules 

with toxic effects are produced from similar NRPS assembly lines [167], and a large number of 

secondary metabolites are also synthesized as response to iron starvation.

Among cyanotoxins, microcystins are the most ubiquitous toxins causing several environmen-

tal and health problems. They are a family of cyclic heptapeptides, synthesized by a mixed 

PKS-NRPS system called microcystin synthetase encoded in mcy operon [168]. The role of 

microcystins in cyanobacteria is still unclear, but there are evidences that could confer to the 

toxic strains advantages for survival in iron-limited conditions. The microcystin synthesis has 

been linked to iron metabolism for many years. Lyck and colleagues [169] showed that during 

iron depletion, toxic strains of Microcystis maintained cell vitality much longer than the nontoxic 

strains. Moreover, Utkilen and Gjolme [170] found that toxic strains exhibited higher rates of 

iron uptake than nontoxic strains. They proposed that microcystin could be an intracellular 
chelator of Fe+2, as well as predicted that the synthesis of the toxin would be controlled by the 

amount of free iron present in the cells. Structural similarities between microcystin and bacte-

rial siderophores [167] led also to propose a putative role as an extracellular iron-scavenging 

molecule. Recently, it was shown that while the microcystin producing strain M. aeruginosa PCC 

7806 and its close strain, the non-producing M. aeruginosa PCC 7005 grew similarly in BG11 in 
the presence of 17 μM iron, under severe iron deficient conditions (0.05 μM), the toxigenic strain 
grew slightly less than in iron-replete conditions, while the non-producing microcystin strain 

was not able to grow [171]. Taking together all these data suggest that microcystin production 
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could be another mechanism evolved by cyanobacteria related to iron homeostasis, on track 
to survive in iron-limited conditions. In agreement with this statement, it was shown that in 

M. aeruginosa PCC 7806, the mcy operon was regulated by Fur [124], and that the mcy operon 

transcription as well as microcystin content were enhanced under iron-limited conditions [172].

Recently, microcystin ability to bind iron and other metals has been demonstrated using 

various experimental approaches [171], corroborating a possible role of this molecule in iron 

metabolism. A putative role of microcystin acting as iron chelator involved in iron acquisition 

has been recurrently suggested. The main problem associated to this theory is the fact that 

microcystin seems to be an endotoxin although the results showed in bibliography are contra-

dictory. When radioactive inorganic carbon is supplied to M. aeruginosa and the fate of intra-

cellular microcystin pool is followed, no export of microcystin was observed [173]. However, 

the mcyH gene included in the mcy operon encoded an ABC transporter reported to be essen-

tial for microcystin synthesis, suggesting a possible export of microcystin outside of the cell 

[174]. On the other hand, electron microscopy of immuno-gold labeled microcystin showed 

that the vast majority of intracellular microcystin is located around the thylakoids [175–177]; 

hence, a possible role in protecting the photosynthetic machinery to photo-oxidation has 

been proposed. Recently, it has been described that microcystin can perform metal-driven 

oligomerization. Some environmental stresses such as low iron or high light conditions cause 

oxidative stress in the cell which triggers photo-oxidation phenomena. In this scenario, the 

PSs can be disassembly and then, microcystin could perform oligomerization and capture of 

iron avoiding metal-dependent Fenton reactions [171]. Another proposed role is related with 

colony formation performed by Microcystis cells. Solid evidences linking microcystin pres-

ence and enhanced colony formation and size have been reported [178].

7. Conclusion

Iron is at the core of cyanobacterial metabolic and regulatory networks, playing a central 
role in the control of electron delivery and distribution in the photosynthetic and respiratory 

electron transport chains, the reduction of nitrogenase and central metabolic pathways. The 

adaptive responses of cyanobacteria to iron limitation affect all those processes, though the 
iron demand of the cell is subject to a hierarchy in favor of photosynthesis. The high quota 

of iron in cyanobacteria, its ability to promote oxidative stress and its ubiquity in electron 

transport pathways require a tight control of iron homeostasis mainly performed by FurA. In 

order to optimize iron resources, the regulation of FurA activity and expression, as well as the 

genes composing the FurA regulon are strongly interconnected with other master regulators 

such as PerR and NtcA.
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