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Abstract

The endothelial glycocalyx is an intravascular compartment which consists of carbohy-
drate part of membrane glycoconjugates, free proteoglycans and associated proteins. It is 
thought to play an important role in the vascular tone regulation, vascular permeability 
and thromboresistance. It was suggested that the leading cause of endothelial dysfunc-
tion in various cardiovascular, inflammatory, and kidney diseases is the damage of the 
endothelial glycocalyx. This review presents the changes in the composition and struc-
ture of the endothelial glycocalyx in the settings of damage and under systemic inflam-
matory response, and the impact of these changes on the functions of endothelial cells 
and intercellular contacts, mediating the interaction of endothelium and the immune 
cells. The second issue, discussed in this article is a possible role of endothelial glycoca-
lyx in the pathogenesis of preeclampsia—a complication of pregnancy associated with 
hypertension, proteinuria and edema. The reviewed data contribute a new insight in the 
endothelial dysfunction pathogenesis.

Keywords: glycocalyx, endothelial glycome, endothelial dysfunction, glycobiology of 
inflammation, pregnancy, preeclampsia

1. Introduction

Preeclampsia (PE) is one of the main problems of modern obstetrics. PE develops in 2–9% 

of all pregnancies; it is the second most frequent cause of maternal morbidity and one of 

the leading causes of neonatal morbidity and mortality. PE is now regarded as a syndrome 
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which is caused by disrupted adaptation to pregnancy and manifests with the development 

of complex, multiorganic and polysystemic insufficiency with clinical signs appearing after 
the 20th week of gestation [1, 2]. Despite of vigorous research in this area, pathogenesis of 

PE is still not clear. However, it is well known that the key factors of PE are immune system 
hyperactivation and the following excessive systemic inflammatory response (SIR), which 
initiate endothelium activation and cause endothelial dysfunction in cases of early onset and 

complicated course of the disease [3].

Inflammatory response is accompanied by cell phenotype transformation (formation of activation 
cell status), leading to the generation of “danger” signals (generated from products of trauma, 

ischemia, necrosis or oxidative stress) [4, 5], which are recognizable by the immune system. It was 

found that the composition of endothelial glycocalyx (eGC) changed under excessive inflamma-

tory response. Hypoglycosylated structures which may be perceived by immune system as neo-

antigens, appear оn the membrane of endothelial cells; also, antigens which are normally covert 
become apparent [6]. These events may promote autotolerance disruption and cause production 

of autoreactive antibodies damaging endothelial cells. In this regard, in this chapter a special 

attention is paid to eGC—functional layer of endothelial cells, which mediates all endothelial 
functions. Much evidence that under SIR, the alterations of eGC are associated with changes of 
cardiovascular system hemodynamics, vascular tone regulation, vascular permeability [7]—the 

main vectors of pathophysiological disorders in PE, and that alterations affect endothelial auto-

immune phenotype formation, allow to assume that eGC may be one of the main targets of PE.

2. Endothelium: its role in homeostasis and in pathology

Vascular endothelium is a metabolically active neuroendocrine organ, which is spread in all 

tissues. The main functions of endothelium are: expression of receptor molecules, synthesis 

and secretion of biologically active molecules, vascular tone control, vascular permeability 

and new vessels formation, transportation of blood cells and soluble factors; homeostasis bal-

ance, participation in innate and adaptive immunity [8–10].

Supporting homeostasis, the endothelium is also subject to damage by factors, which cause 
endothelium pathology. Multiorganic dysfunction due to long-lasting activation under the 

effects of damaging factors lead to severe consequences.

Recent studies show that the homeostatic control over the cardiovascular and other systems 
is, among others, exerted by eGC, the outer above-membrane endothelium layer, which is 

formed by the sugar chains of transmembrane glycoconjugates and the associated not-

anchored proteoglycans [7]. However, there is limited data on eGC composition and its alter-

ations under inflammatory and other pathological conditions.

2.1. Endothelial glycocalyx structure and composition

Endothelium surface layer is located on the luminal surface of the endothelium (endothelial 

surface layer—ESL). It is formed by the glycoproteins, proteoglycans and glycosphingolipids 
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that are anchored in the membrane, as well as by secretory proteoglycans and glycosamino-

glycans (GAGs), that are not anchored and are inter-connected by non-covalent interactions 

[11–13]. Their carbohydrate part contains a large amount of sialo and sulpho residues, form-

ing overall negative charge of the endothelial cell surface. The outer segment of this layer 

(spreading out toward the vascular lumen), formed by the carbohydrate part of glycocon-

jugates, is a polysaccharide gel—eGC [14], with thickness ranging 2–4.5 μm [15] in different 
departments of the vascular system.

The base of the eGC is formed by carbohydrate-protein conjugates—transmembrane and secre-

tory proteins; their carbohydrate part is represented by both short (2–15 monosaccharide residues) 

branched oligosaccharides, often decorated with sialic acid and sulfate (in glycoproteins), and 

by high-molecular glycans, often ending with highly sulfated residues (in proteoglycans) [16].  

The glycoproteins can contain N-linked (Asn-linked) and/or O-linked (Ser/Thr-linked) glycans 
of variable length and composition. Complex hybrid and high-mannose glycans are usually 

present in the glycoproteins [17]. The main glycoproteins of endothelial cells are cell adhesion 

molecules (selectins, integrins, immunoglobulin superfamily molecules, endothelial mucins 

and addressins) which provide homing, migration and interaction between cells in different 
processes, and secretory molecules associated with eGC, participating in vascular homeosta-

sis support, fibrinolysis and coagulation (thrombomodulin, von Willebrand factor (vWF)), 
antithrombin III, etc.). These molecules expression depends on factors, altering endothelium 

activation [16]. Under inflammatory response, the glycans modification occurs, leading to alter-

ation of intercellular contacts, hemostasis and blood rheology. Biochemical eGC composition 

(the main structural and associated molecules) is presented in Tables 1 and 2 (parts I and II).

It was found that the carbohydrate part is crucially important for glycoprotein function. N-linked 
glycans, particularly high-mannose chains, determine specific interactions of different mole-

cules from the intercellular adhesion molecule (ICAM) family with the receptors [17]. N-glycans 

of the junctional adhesion molecule-A (JAM-A) regulate leukocyte adhesion and lymphocyte 
function-associated antigen-1 (LFA-1) binding [22]. Platelet/endothelial cell adhesion mole-

cule-1 (PECAM-1 or CD31), a membrane highly glycosylated protein (~30% of molecular mass), 

has N-linked glycans represented by neutral and sialylated glycans [51, 52]. E-selectin is heavily 

glycosylated protein with hybrid/complex type N-linked oligosaccharides [53]. Cadherin of the 

vascular endothelium (VE-cadherin, CD144)—is the main transmembrane protein of adhesion 

contacts; its carbohydrate part is presented mainly by sialylated biantennary N-glycans of a com-

plex type, and sialylated hybride N-chains (~40 and 28% of all identified glycans, respectively).  
Branched tri- and tetraantennary N-glycans, as well as N-glycans of high-mannose type are 

represented in smaller quantity in N-glycans of VE-cadherin [21, 54]. In the presence of anti-

inflammatory factors (such as tumor necrosis factor-α, TNF-α) the quantity of glycans ending 
with α2,6-sialic acid residues and fucose-α1,2-galactose-β1,4-N-acetylglucosamine increases, as 
well as the expression of N-glycans of high-mannose and hybrid type, which mediate intercel-

lular contacts of monocytes with endothelium in the rolling and adhesion, particularly at the 

intercellular connections sites [55].

Hemostasis controlling proteins associated with outer eGC are also highly-glycosylated. VWF 
is a key component for maintenance of normal hemostasis, acting as the carrier protein of 
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the coagulant Factor VIII and mediating platelet adhesion at the sites of vascular injury [31]. 

VWF is heavily glycosylated by N- and O-linked oligosaccharides, and glycosylation affects 
many of its functions [30]. Antithrombin is a major inhibitor of the blood coagulation cascade. 

Group Members Comments References

Adhesion molecules Е-selectin Contains 11 potential N-glycosylation 

site

[13]

Р-selectin Contains 9 potential N-glycosylation 

sites

[13]

Integrins: α1β1, α2β1, α3β1, α5β1, 
α6β1, α8β1, α9β1, αVβ1, αVβ3, α6β4, 
αVβ5

N-linked glycans [14, 15]

VE-cadherin Contains 7 potential N-glycosylation 

sites

[16]

JAM-1 Contains 1 N-glycosylation site [17]

JAM-2 Contains 2 N-glycosylation sites [18]

JAM-3 Contains 2 N-glycosylation sites [19]

ICAM-1 Contains 8 N-glycosylation sites [13]

ICAM-2 Contains 6 N-glycosylation sites [20]

VCAM-1 Contains 6 N-glycosylation sites [13]

PECAM-1 Сontains 9 N-glycosylation sites [13]

ClyCAM-1 Mucin, containing predominantly 

O-linked carbohydrate chains 
(T-antigen and 6′ sulfated 
sialyl-Lewis-X)

[21, 22]

CD34 Mucin, O-glycosylation sites are more 
abundant than N-glycosylation sites

[23]

MadCAM-1 Mucin; contain O-linked glycans 
(SLex)

[24]

Coagulation and 

fibrinolysis regulators
Von Willebrand factor Contains at least 10 potential N- and 

10 O-glycosylation sites
[25, 26]

Thrombomodulin Contains at least 4 N- and 1 

O-glycosylation sites
[27–32]

Antithrombin III Contains 4 potential N-glycosylation 

sites

[33, 34]

Heparin cofactor II Contains 3 potential N-glycosylation 

sites

[35]

MadCAM-1, mucosal addressin cell adhesion molecule-1; JAM-1, junctional adhesion molecule-1; JAM-2, junctional 

adhesion molecule-2; JAM-3, junctional adhesion molecule-3; ICAM-1, inter-cellular adhesion molecule-1; ICAM-2, 

inter-cellular adhesion molecule-2; VCAM-1, vascular cell adhesion molecule-1; PECAM-1, platelet/endothelial cell 
adhesion molecule-1; SLex, sialyl-Lewis-X.

Table 1. Biochemical composition of endothelial glycocalyx—main components (part I: glycoproteins).
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Group Members Number/type 

of GAG-chains 

linked

Comments Ref

Glycosaminoglycans HA — Anionic, nonsulfated glycosaminoglycan; 

structural unit of HA is a repeating 

disaccharide consisting of β-d-glucuronic 

acid and β-N-acetyl-d-glucosamine; 

contains no core protein

[9]

HS — The most common disaccharide unit 

within HS is composed of a mono-
sulfated β-glucuronic acid linked to 
tri-sulfated α-N-acetylglucosamine

[36]

CS — CS is a linear acidic polysaccharide, 
composed of repeating disaccharide units 

of β-glucuronic acid and β-N-acetyl-d-

galactosamine and modified with sulfate 
residues at different positions

[37]

DS — Backbone of DS chains is a linear 
polymer composed of repeating 

disaccharide units of α-iduronic acid and 
β-N-acetyl-d-galactosamine. These sugar 

residues can be modified by ester sulfate 
at various positions

[38]

KS — Basic repeating disaccharide unit within 

keratan sulfate is units of β-d-galactose 

and β-N-acetyl-d-galactosamine

[39]

Proteoglycans (extracellularly 

secreted)

Perlecan 3/HS,CS A large basement membrane heparan 

sulfate proteoglycan; protein core of 

approximately 500 kDa

[40]

Versican 10-30/CS,DS Large aggregating chondroitin sulfate 
proteoglycan, core protein (at >350 kDa)

[41, 42]

Endocan 1/DS Is a DSPG, small proteoglycan molecules 
(20 kDa) with a single DS chain; DS of 
endocan consists of about 32 disaccharide 

units

[43]

Decorin 1/CS,DS A prototype small leucine-rich 

proteoglycan (40 kDa); it has N-terminal 
attachment site for a single GAG chain of 
chondroitin or dermatan sulfate

[44]

Biglycan 2/CS,DS small leucine-rich proteoglycan (42 kDa 
protein core)

[45, 46]

Mimecan 2–3/KS Small leucine-rich proteoglycan; 
(12–34 kDa protein core)

[47, 48]

Proteoglycans (associated with 

the cell surface)

Syndecans 5/HS,CS Transmembrane proteoglycans

Family of HSPGs, the syndecan protein 
family has four members.

Core protein of all glypicans is ranging 

between 198 to 346 kDa

[49]
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Two isoforms exist in the circulation, α-antithrombin and β-antithrombin, which differ in 
the glycosylation of the polypeptide chain; β-antithrombin lacks the carbohydrate present 
at Asn135 in α-antithrombin. Of the two forms, β-antithrombin has the higher affinity for 
heparin due to the conformational change that occurs upon heparin binding being sterically 

hindered by the presence of the additional bulky glycan in α-antithrombin [56]. The carbohy-

drate structures of heparin cofactor II (member of serpin superfamily) circulating in blood are 

complex-type biantennary and triantennary chains in a ratio of 6:1 with the galactose being 

>90% sialylated with α2-6-linked N-acetylneuraminic acid. About 50% of the triantennary 
structures contain one sialyl Lex motif (SLex) [40]. Thrombomodulin (TM) is an endothelial cell 

surface glycoprotein (contains N- and O-linked glycans) that directly inhibits the procoagu-

lant activities of thrombin and the TM-thrombin complex accelerates the thrombin catalyzed 

activation of protein C. Moreover, the GAG O-linked chains of TM contained chondroitin-
4-sulfate and dermatan sulfate, which were repeated approximately 30 times. Soluble TM in 
urine has no GAG chain which could promote its anticoagulant activities. Studies of the rabbit 
recombinant ТМ have shown that addition of a GAG chain may increase its anticoagulant 
function [33, 34].

Endothelial mucins (CD34; glycosylation-dependent cell adhesion molecule-1 (GlyCAM-1); 

mucosal addressin cell adhesion molecule-1 (MadCAM-1)) contact leukocytes by their binding 
to L-selectin. This interaction facilitates leukocytes transportations from blood to lymphoid 
organs and inflamed tissues [28]. Major capping group in GlyCAM-1, CD34 and MadCAM-1 

is the sulfated SLex [27, 28, 57]. For example, CD34 functions as a L-selectin ligand mediating 
lymphocyte extravasation only when properly glycosylated to express a sulfated carbohy-

drate epitope. CD34 can exist in 2 glycoforms: the L-selectin-binding (L-B-CD34) and non-

binding (L-NB-CD34) glycoforms. L-B-CD34 is relatively minor compared with L-NB-CD34 
and represents less than 10% of total CD34. It has been shown, that a minor glycoform of 

CD34 carries relatively abundant 6-sulfo SLex epitopes on O-glycans that are important for its 
recognition by L-selectin [28].

The eGC mostly consists of proteoglycans—highly glycosylated proteins (glycans account 

for 90–95% of the molecular mass); GAGs branches form their carbohydrate part. There are 

Group Members Number/type 

of GAG-chains 

linked

Comments Ref

Glypicans 3/HS,CS GPI-anchored proteoglycans

Family of HSPGs

The glypican protein family has six 

members core protein of all glypicans is 

similar in size, approximately ranging 

between 60 and 70 kDa

[50]

GAG, glycosaminoglycan; HA, hyaluronan; HS, heparan sulfate; CS, chondroitin sulfate; DS, dermatan sulfate; KS, 
keratan sulfate; DSPG, dermatan sulfate proteoglycans; HSPGs, heparan sulfate proteoglycans.

Table 2. Biochemical composition of endothelial glycocalyx—main components (part II: glycosaminoglycans and 

proteoglycans).
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five types of GAG chains: heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate 
(DS), keratan sulfate (KS), and hyaluronan (hyaluronic acid, HA). They are linear polymers 
of disaccharides with variable lengths that are modified by sulfation and/or (de)acetylation 
to a variable extent [15]. In the human body the GAGs are present in a protein bound form 

(i.e., in proteoglycans composition) and do not exist in a free form, except for HA. Besides 

playing structuring and supporting roles, proteoglycans are involved in cell signaling, regu-

lation of cell proliferation, adhesion, migration, differentiation [55]. Key eGC glycans are 

heparan sulfate proteoglycans (HSPGs), which compose about 50–90% of the total amount 
of proteoglycans present in the eGC, and HA—the main supporting glycan [14, 15]. Main 

proteoglycans of the eGC and their characteristics are given in Table 2 (part II).

Glycosphingolipids (GSLs), a class of ceramide-based glycolipids, are also a significant part 
of eGC. Glycosphingolipids are subclassified as neutral (no charged sugars or ionic groups), 
sialylated (gangliosides), or sulfated [58]. GSLs cluster with cholesterol in cell membranes to 
form GSL-enriched lipid raft [59]. Cultured human umbilical vein endothelial cells (HUVEC) 

appeared to contain complex lacto and globo series compounds (lactosylceramide, Gb
3
Cer and 

Gb
4
Cer), but the most abundant neutral GSL is lactosylceramide (LacCer, CDw17) [60]. LacCer 

can bind to various microorganisms, is highly expressed on the plasma membranes of human 

phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched 
lipid rafts mediate immunological and inflammatory reactions, including superoxide genera-

tion, chemotaxis, and non-opsonic phagocytosis [61, 62]. Therefore, LacCer-enriched mem-

brane microdomains are thought to function as pattern recognition receptors (PRRs), which 
recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. 
LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-
integrin as well as being associated with several key cellular processes [63]. Endothelium activa-

tion by pro-inflammatory cytokines, particularly by TNF-α, affect the Gb
3
Cer and Gb

4
Cer [64]  

expression; interferon gamma (IFNγ) has a striking effect on the surface expression of GSLs; 
IL-1 increases the cell content of neutral and acidic GSLs but does not alter their surface expres-

sion [55]. Cytokines TNF-α and IL-1 can potentiate the toxic effect of verocytotoxin (Shiga-like 
toxin-produced by Escherichia coli and the main cause of hemolytic uremic syndrome) to human 

endothelial cells by inducting an increase in the Gb
3
Cer synthesis in these cells [65], because 

Gb
3
Cer (CD77) binds to the verocytotoxin and injures human endothelial cells [66].

Acidic GSLs of human endothelial cells are: monosialoganglioside or GM3—the major gan-

glioside of endothelial cells, and it constitutes about 90% of the whole ganglioside fraction 

[67], and sulfoglucuronyl paragloboside (SGPG), a minor GSL in endothelial cells, is a ligand 
for L-selectin [55]. Although GIyCAM-1 and CD34 constitute the major L-selectin ligand on 
venous endothelium, endothelial SLex gangliosides may also play a role, since L-selectin can 
also bind SLex GSLs under physiologic flow conditions [68].

2.2. Functions of the endothelial glycocalyx

The eGC is considered as an intravascular compartment which has various functions.

First, eGC mediates the endothelial mechanotransduction of shear stress and performs reg-

ulation of shear stress-induced nitric oxide (NO) production [69]. This is provided by the 
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impact of tangential stress of blood flow shift primarily to eGC; the latter accepts and scat-
ters the load, created by fluid shear stress. Local spin moment, created by fluid shear stress, 
affects the proteoglycans chains, and further—the core proteins (syndecans and glypicans), 
causing actin cytoskeleton reorganization and transmission of the signal into the cell and 
the cell nucleus [70, 71]. The study of Fu and Tarbell (2013) aimed to determine the eGC 
role in mechanosensing and transduction, and measured the flow-induced production of NO 
in vitro [7]. It was found that compared to static conditions, the application of steady flow 
shear stress rapidly increased NO production from the baseline in bovine aortic endothelial 
cells. Enzymatic treatment of the key components of eGC (HS, HA) completely blocked flow-
induced NO production without affecting receptor-mediated NO production, suggesting that 
the eGC has a direct effect on the NO production machinery [7]. Therefore, the eGC under 

physiological conditions (intact eGC) transforms hemodynamic effect into cell biochemical 
signals, which regulate the vascular tone.

Second, the negatively charged eGC forms a polyanionic hydrated mesh on the surface of 
endothelial cells, which acts as a selective permeability electrostatic barrier for plasma cells 

and proteins and serves as a selective permeability [72]. According to Salmon and Satchell, 
in both continuous and fenestrated microvessels, this eGC is acting as an integral component 

of the multilayered barrier provided by the walls of these microvessels (i.e., acting in concert 

with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes) 

[73]. Dysfunction of any of these capillary wall components, including the eGC, can disrupt 

normal microvascular permeability. Disruption of eGC manifests with increased systemic 

microvascular permeability and albuminuria in the glomerulus [73]. Evidence from the exper-

iments on Munich-Wistar-Fromter (MWF) rats, used as a model of spontaneous albuminuric 
chronic kidney disease (CKD), confirm that loss of eGC could contribute to both renal and 
systemic vascular dysfunction in proteinuric CKD [74]. Also, in the 5/6-nephrecomized rats 
model with CKD a significant decrease in eGC thickness and stiffness in the blood explants of 
aorta endothelial cell isolated from CKD rats was demonstrated [75]. An increase of the levels 

of the two major components of the eGC, namely syndecan-1 (Syn-1) and HA, in the blood 
of patients with CKD indicated the disease progression and correlated tightly with plasma 

markers of endothelial dysfunction such as soluble fms-like tyrosine kinase-1 (sFlt-1), soluble 
vascular adhesion molecule-1 (sVCAM-1), vWF and angiopoietin-2 [75]. The study of experi-

mental eGC degradation in mice induced by long-term hyaluronidase infusion, including 

evaluation of the eGC thickness and composition by immunohistochemical methods and by 
transmission electron microscopy for complete and integral assessment of glomerular albu-

min passage, showed that glomerular fenestrae were filled with dense negatively charged 
polysaccharide structures that were largely removed in the presence of circulating hyaluroni-

dase, leaving the polysaccharide surfaces of other glomerular cells intact [76]. Thus, HA is a 

key component of the glomerular endothelial protein permeability barrier; reduction of the 
HA facilitates albumin passage across the endothelial layer and the glomerular basement 

membrane toward the epithelial compartment [76].

Regulation of selective permeability by eGC, and the role of its separate components in this, 
is still subject of discussion. According to Lennon and Singleton, the HA plays key role in 
supporting endothelial barrier function [77]. HA maintains vascular integrity through eGC 

Endothelial Dysfunction - Old Concepts and New Challenges120



modulation, caveolin-enriched microdomain regulation and interaction with endothelial HA 

binding proteins. Certain disease states, especially accompanied by SIR, increase hyaluroni-
dase activity and reactive oxygen species (ROS) generation which break down high molecular 
weight HA to low molecular weight fragments causing damage to the eGC. Further, these 
HA fragments can activate specific HA binding proteins upregulated in vascular disease to 
promote actin cytoskeletal reorganization and inhibition of endothelial cell–cell contacts [77]. 

A glycocalyx-junction-break model, described by Curry and Adamson summarizes multiple 
studies and the role of the eGC in vascular permeability regulation [78]. According to this 

model, the layered structure of the endothelial barrier requires continuous activation of sig-

naling pathways regulated by sphingosine-1-phosphate (S1P) and intracellular cAMP. These 
pathways modulate the adherens junction (zonula adherens), continuity of tight junction 

strands, and the balance of synthesis and degradation of eGC components [78].

Third, the eGC forms anti-inflammatory and anti-adhesive barrier at the endothelial cells. 
Vascular protection via inhibition of coagulation and leukocyte adhesion is provided by 
maintenance of the composition permanence and balance of degradation under the impact of 

stress shift and synthesis of eGC components [73, 79]. Total negative charge, formed by carbo-

hydrate residues of the glycoconjugates chains on cell surface, prevents adhesive interactions 

of blood cells with vascular wall, biologically active molecules with anti-thrombotic action, 

while eGC-associated molecules provide hemostasis [80, 81]. Also eGC plays a structural role, 

impeding adhesion by covering adhesion molecules on the surface of the cell and by creat-

ing steric hindrance, making leukocyte binding more challenging [82]. Under the effect of 
damaging factors, the structure and composition of eGC change, its thickness may reduce sig-

nificantly, and carbohydrate residues, normally covert and masked, become apparent. Main 
damaging factors, affecting the eGC in vivo, are: inflammation, hyperglycemia, endotoxemia, 
septic shock, oxidized low-density lipoproteins, cytokines, natriuretic peptides, abnormal 
shift stress and damage due to ischemia-reperfusion [79]. Shedding of eGC components in 
response to cytokines and chemoattractants occurs in all compartments of microvasculature: 
arterioles [83], capillaries [83, 84] and venules [84–86].

According to Lipowsky, the studies of leukocytic-endothelial adhesion in response to che-

moattractants and cytokines, and shedding of constituents of the eGC, suggest that activa-

tion of extracellular proteases (matrix metalloproteases, MMPs) play a role in mediating the 

dynamics of leukocytes adhesion in response to inflammatory and ischemic stimuli [79]. 

Inhibition of MMP activation with sub-antimicrobial doses of doxycycline, or zinc chelators, 

have also inhibited leukocytes adhesion and shedding of glycans from the endothelial cells 
surface in response to the chemoattractant. Experiments by McDonald et al. have confirmed 
that under the enzymatic degradation of eGC with heparinase, endothelial cells developed 

a pro-inflammatory phenotype when exposed to uniform steady shear stress leading to an 
increase in leukocyte adhesion [82]. The results show an up-regulation of ICAM-1 (expression 

increases in 3 times) with degradation compared to non-degraded controls, and attribute this 
effect to a down-regulation in nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) activity in response to flow; this suggests that eGC is not solely a physical barrier to 
adhesion but rather plays an important role in governing the phenotype of endothelial cells, a 

key determinant in leukocyte adhesion [82]. Other mechanisms also contribute to the initiation 
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of lymphocytes adhesion to the endothelial cells after reduction of eGC layer: decrease of NO 
production, which is capable to inhibit leukocyte-endothelial cell adhesion [87]; appearance 

of eGC fragments, (such as low-molecular-weight HA), which show their pro-inflammatory 
properties, affecting the maturity of dendritic cells and stimulating them to produce cytokines 
[14, 88]; and exposure and synthesis under inflammatory response of hypoglycosylated struc-

tures, which interact with cell adhesion molecules of leukocytes [18, 89].

Modulation of eGC structure under effects of damaging factors, including inflammation, 
shows a thromboresistance loss [90, 91]. This occurs due to destabilization of heparin sul-

fate chains, the binding sites for coagulation inhibitor factors (antithrombin-III, the protein 

C system, and tissue factor pathway inhibition); this leads to a reduction of their local con-

centration at the vascular wall. In turn, a concentration gradient of protective and regulative 

molecules, associated with eGC (albumin, fibrinogen, orosomucoid, extracellular superoxide 
dismutase, fibronectin, vitronectin, collagens, thrombospondin-1 and other), and of growth 
factors (fibroblast growth factors, vascular endothelial growth factors, transforming growth 
factor-β, platelet-derived growth factors) is also decreased, facilitating pathological processes 
in blood vessels [80].

Therefore, the eGC is a labile structure; its composition changes under effects of damaging 
factors. This determines development of pathophysiological processes of endothelium acti-

vation/dysfunction with loss of vascular tone regulation, hemostasis and barrier function. 
Endothelium activation/dysfunction is induced by inflammation and accompanies it, thus 
forming a vicious cycle, which can be overcome only under normal immune system function-

ing. Inflammatory response of various degree accompanies not only pathologic processes, it is 
also observed under physiological conditions, for example, a pro-inflammatory background 
is shown at certain periods of normal pregnancy.

Understanding the mechanisms of disruption of maternal immunology tolerance to fetus, 

causes of transition of physiologic inflammatory reaction to systemic and excessive inflam-

matory response (as in PE), accompanied by endothelial activation/dysfunction, and revela-

tion of the contribution of eGC damage to preeclampsia development may be subject of new 

discoveries in the disease pathogenesis.

3. The development of systemic inflammatory response in pregnancy

There is much experimental evidence of a so-called “physiological”, controlled SIR dur-

ing pregnancy. Similarly to the classic inflammatory response, physiological inflammatory 
response during pregnancy is a reaction to local damage (matrix remodeling, associated with 

implantation, placentation and angiogenesis in placenta) [92, 93] and foreign invaders (cells, 

microparticles and soluble factors of placental origin) [94, 95]. Humoral factors, cellular debris 

and subcellular particles of trophoblast are considered to be the triggers of SIR, but they can 
also play a role of adjuvants [95, 96]. Cells-effectors of the maternal innate immunity detect 
fetal products as pathogen/danger images, implementing cell and molecular protection mech-

anisms against allogeneic material [97]. The gene products inherited from the father can be 
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regarded as exogenous factors, while endogenous factors are gene products, resulting from 

trauma, ischemia, necrosis or oxidative stress [97]. Also there are some reports on generation 

of various new antigens due to inflammatory response; they are variations of the “modified 
own”; of the neoantigens formed as a result of the post-translational proteins modification 
[98]; and of antigens, mobilized to membrane from cytoplasm and the inner cell compart-

ments interacting with membrane proteins or phospholipids, and acting as images of danger 

[99]. The enhanced pro-inflammatory background in normal pregnancy is evidenced by an 
increase of the level of the soluble cell adhesion molecules (sCAM) in blood, indicating the 

activation of leukocytes (increase of sE-selectin, sVCAM-1, sICAM-1 levels) and endothelial 
cells [100, 101].

3.1. The glycan-mediated processes in inflammation

Central event of the inflammatory response is the contact between leukocytes and endothe-

lium, with subsequent migration of immune cells to the inflammatory lesion. At early stages 
of inflammatory response endothelial selectins (Е-selectin and Р-selectin) and lymphocytic 
L-selectin form reversible bonds with carbohydrate counter-receptors on the partner cell, thus 
providing tethering and the leukocyte rolling along the vascular wall.

The counter-receptors for selectins are typically heavily glycosylated molecules, many of which 

bear terminal SLex motifs (Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc) [102]. P- and L-selectin, but 
not E-selectin, bind to some forms of heparin/HS. However, each of the selectins binds with 
higher affinity to its specific macromolecular ligands. Many of the known ligands are mucins 
containing sialylated fucosylated O-glycans. The major ligand for P-selectin, named P-selectin 
glycoprotein ligand-1 (PSGL-1), has sulfated tyrosine residues adjacent to a core-2 based 
O-glycan expressing SLex. Also, PSGL-1 is one of the physiological ligands for E-selectin, 
but E-selectin can also interact with several other glycoproteins that express the SLex motif 

on either N- or O-glycans, including the E-selectin ligand-1, CD44, L-selectin (in humans),  
and possibly long-chain GSLs expressing the SLex [68, 103]. Ligands for L-selectin that occur 
within specialized endothelia termed high endothelial venules (HEV; HEV are specialized 

post-capillary venous swellings characterized by plump endothelial cells as opposed to the 

usual thinner endothelial cells found in regular venules. HEVs enable lymphocytes circu-

lating in the blood to directly enter a lymph node by crossing through the HEV) contain 

6-sulfo-SLex motif on mucin-type O-glycans and on N-glycans [104]. The ligands for E- and 

P-selectin are expressed on circulating leukocytes whereas L-selectin binds to ligands on both 
leukocytes and the endothelium [89].

At the firm adhesion stage, following the leukocyte capture stage and rolling, N-linked gly-

cans on ICAM-1 regulate binding to its integrin ligands—macrophage-1 antigen (Mac-1) and 

LFA-1. Moreover, it was found that Mac-1 binds with higher avidity to molecules of ICAM-1 
with smaller N-linked oligosaccharide chains, since the binding with the ligand increased after 
the use of α-mannosidase inhibitor deoxymannojirimicin (DMJ). In contrast, LFA-1 binds with 
higher affinity to glycoforms of ICAM-1, which has a more complex carbohydrate chain [89].  

Also, there is experimental evidence that high-mannose ICAM-1 can function in leukocyte 
firm-adhesion [105]. It is speculated that some N-glycan-binding sites on ICAM-1 may be 
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pro-adhesive, whereas the neighboring sites may be anti-adhesive, underscoring the potential 

breadth of how ICAM-1 function may be regulated by N-glycosylation [106]. On the stage of 
firm adhesion an important aspect of inflammatory response is exposure of the active epit-
ope of integrins, provided by chemokines, which are present on the endothelial cell surface, 
and are bound to HS. Glycosylation of chemokine receptors also contributes to the adequate 
dynamics of the inflammatory reaction, thus increasing the binding affinity of the chemokine 
to the receptor and protecting the latter from proteolytic cleavage (reviewed in [18, 89]).

Key molecules mediating leukocyte transmigration: PECAM-1, JAM-1, ICAM-2 and VE-cadherin, 
are highly-glycosylated. However, carbohydrates part in leukocyte transmigration is still not 
clear. The recent studies show that N-glycosylation of JAM-A is required for the protein’s ability 

to reinforce barrier function [22]; sialic acid-containing glycan of PECAM-1 reinforces dynamic 

endothelial cell-cell interactions by stabilizing the PECAM-1 homophilic binding interface [52]; 

glycosylation status of ICAM-2 (hypo- or non-glycosylated variants) significantly affects the 
function of this protein in cell motility assays [107]; in pro-inflammatory conditions, modifi-

cation of VE-cadherin glycans is observed [55]. This obviously requires further investigations. 

Molecules that mediate intercellular interactions during inflammation are presented in Table 3.

Many studies demonstrate modification of endothelial glycome (glycome is the entire com-

plement of sugars, whether free or present in more complex molecules, of an organism) under 

inflammatory response. Modeling of inflammatory response in vitro on endothelial cell lines 

showed that an enhanced α2,6-sialylation was observed after TNF stimulation [108]. Pro-

inflammatory stimuli increase hypoglycosylated (namely, high-mannose/hybrid) N-glycans 
on the cell surface as determined by lectin histochemistry, and cause an increase in genes 

encoding for fucosylation and sialylation (confirmed at specific staining with relevant lectins 
[18]; this correlates with increased monocyte adhesion [18]. Glycosylation of the endothelium 

has been proposed to act as a “zip code” for directing leukocyte subtype-specific recruitment 
in different vascular beds in response to specific stimuli [89].

3.2. The glycobiology of immunoregulation

The carbohydrate-protein interactions not only mediate the initial stages of inflammation, but 
also promote many cellular contacts, which regulate innate and adaptive immune response. 

The main carbohydrate binding proteins are endogenous lectins [109], widely present on the 

immune system cells and expressed both in membrane-linked and in soluble forms. Three 
main classes of endogenous lectins include:

А. C-type lectins, which, depending of specificity, are:

• Specific to mannose (Man-) and/or fucose (Fuc-) terminated glycans;

• Specific to galactose (Gal-) or N-acetylgalactosamine (GalNAc-)/N-acetylglucosamine 
(GlcNAc-)

Lectins of С-type are present on macrophages, dendritic cells, natural killer cells, leukocytes. 
They act as pattern-recognition receptors and fulfill signaling and adhesion functions [110]. 

Glycoconjugates: bacterial lipooligosaccharides, peptidoglycans, and molecules emerged 
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as a result of tissue damage: HA fragments or glycosaminoglycans of the extracellular cell 

matrix (ECM) and eGC [111], may act as pathogen/danger images for these lectins. The 
best known molecules related to С-type lectins are: selectins and myeloid range receptors 
 (mannose-binding receptors DEC-205 and mannose receptor CD206); dectin-1 and dectin-2, 

DC-SIGN (CD209), and langerin (CD207) [112].

B. Galectins are a family of 15 evolutionary conserved carbohydrate-binding proteins [89, 113],  

belonging to the glycoproteins and glycolipids of cell surface and ECM [114] and specifically 

Cell adhesion 

molecules 

(proteins)

Counter-receptors (carbohydrates) Comments

L-selectin 1. MadCAM-1

2. CD34

3. Sgp200

4. GlyCAM-1

5. Endoglycan

6. Endomucin

7. PCLP

8. PSGL-1

9. 6-sulfo-SLex determinant is associated with 

the MECA-79 epitope

Binding L-selectin with:

• peripheral node addressins (no. 1, 2, 3, 4, 5, 6, 7) 

mediates lymphocyte recirculation (homing);

• SLex-containing (no. 8) and sulfated glycans (no. 

9) mediates leukocyte capture and rolling

P-selectin 1. PSGL-1 (major counter-receptor)

2. heparin/heparin sulfate (binds weakly)

3. some glycoproteins (mucins containing 

highly clustered glycans) that bear the SLex 

determinant

Mediates:

• leukocyte recruitment in both acute and chronic 
inflammation;

• leukocyte capture and rolling

E-selectin 1. PSGL-1

2. ESL-1

3. CD44

4. L-selectin (in humans)

glycoproteins that express the SLex antigen on 

either N- or O-glycans and possibly long-chain 
glycosphingolipids expressing the SLex antigen;

Mediate:

• recruit leukocytes recruitment to sites of 
inflammation;

• leukocyte capture and rolling

ICAM-1 1. LFA-1 (αLβ2-integrin)

2. Mac-1 (αMβ2-integrin)

Mediates the stage of firm adhesion of leukocytes to 
endothelium

VCAM-1 • VLA-4 (α4β1-integrin) Mediates the stage of firm leucocytes adhesion of 
leukocytes to endothelium

MadCAM-1, mucosal addressin cell adhesion molecule-1; GlyCAM-1, glycosylation-dependent cell adhesion molecule-1; 

PCLP, podocalyxin-like protein; SLex, sialyl-Lewis X; PSGL-1, P-selectin glycoprotein ligand 1; ESL-1, E-selectin ligand-1; 
LFA-1, lymphocyte function-associated antigen-1; Mac-1, macrophage-1 antigen; VLA-4, very late antigen-4.

Table 3. Molecules, mediating carbohydrate-protein interactions in inflammation site [80, 91, 92].
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binding mainly to N-acetyllactosamine. The main ligands are Galβ1-3GlcNAc- or Galβ1-
4GlcNAc- [115]. Galectins are involved in many cell activities: cell cycle regulation, migration, 

cell signals transmission, effectory functions, apoptosis, immunoregulation [116]. Galectins 

may regulate inflammatory reaction both positively (Gal-3, Gal-8, Gal-9) and negatively  (Gal-1). 
The endothelium may be a source of Gal-1, which then targets the neutrophils to inhibit cell 

recruitment, аnd Gal-3, Gal-8, Gal-9 promote neutrophil and eosinophil adhesion [89].

C. Siglecs are a family of 17 known lectins, which specifically bind the glycans structures 
with terminal sialic acid [117]. Sialyl Tn (Neu5Acα2,6GalNAcα-) is a common ligand for all 
members of this family. Glycan 6′ sulfated SLex is a ligand for Siglec-8, and is important for 
selectin-dependent cell adhesion [118]. The majority of this family members are inhibitory 

receptors as they bear an immunoreceptor tyrosine-based inhibition motif (ITIM) in their 

structure, and they are mainly expressed on immune cells [119]. Siglecs participate in regu-

lation/restriction of an excessive activation response to inflammatory reaction, initiated via 
recognition of pathogen associated molecular patterns, and damage-associated molecular 
patterns, with following phagocytosis of cells, bearing these patterns [120, 121]. Siglecs regu-

late cell proliferation, differentiation, apoptosis, adhesion, cytokines synthesis and negative 
regulation of В-lymphocyte signaling [122].

Some endogenous lectins are capable, like autoantibodies, to interact with the body’s 
unchanged antigens (glycans), so-called own self-images (SAMPs-self-associated molecular 
patterns) [111]. Molecular patterns, containing sialic acid and heparin/HS are supposed to act 
as self-images [111]. Also it is thought that interaction of lectins, recognizing SAMPs, (mainly 
siglecs), with ligands, inhibits the immune response to foreign/damaging effects [111, 120].

It is known that presence of terminal sialic acid is very important: this substance provides the 
overall negative charge of cell surface, glycoconjugates conformation stabilization, produc-

tion of glycoconjugates, and cells protection from recognition and degradation. Sialylation 
protective properties manifest not only with sialylated structures interaction with inhib-

ited receptors, but also with masking of sugar residues which are the antigen determi-
nants [123, 124]. For example, at desialylation, the unmasked residues of Galβ-, GalNAc-, 
and mannose, interacting with lectins from galectins family and С-type lectins [120];  

these interactions are important for metastasis and SIR development.

Therefore, inflammatory response regulation is implemented under direct involvement of the 
glycan binding proteins (endogenous lectins) and glycans; composition and structure of these 

vary significantly under physiological and pathophysiological conditions, providing evidence 
of the eGC modification at inflammation, and of formation of the carbohydrate “zip code”,  
which acts as navigator for immune cells. Inflammatory reactions in pregnancy are initiated 
by pathogenic and danger images, which are formed at the fetal-mother cell contact; this acti-

vates innate and adaptive immunity. SIR may be enhanced or restricted through mechanisms 
based on carbohydrate-protein interaction [125–127]. Excessive SIR developing in pathologic 
pregnancy is characterized by compensatory reactions and development of various dysfunc-

tions, resulting in organic or multi-organic failure [128].
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4. Endothelial activation and endothelial dysfunction

As a rule, in the studies dedicated to determination of endothelium role in different pathol-
ogies, the authors use terms “endothelial activation” and “endothelial dysfunction” [129]. 

Activation should be distinguished from activity because in its resting state, endothelium is 

a metabolically active organ, which produces vasodilatory substances and bears anticoagula-

tive and antiadhesive phenotype. Activation of endothelium under various pathophysiologic 

processes leads to alterations of its phenotype and function. These events may be reversible, 

but also may cause multiorgan failure.

There are two stages in endothelial activation: endothelial stimulation (early events) and endo-

thelial activation (later events). The latter can be subdivided in endothelial activation of types 
I and II, respectively [130, 131]. Endothelial activation of type I follows the stimulation stage 

and manifests with shedding of the adhesion molecules and molecules with antithrombotic 

properties, such as Р-selectin, thrombin, heparin, antithrombin ІII and thrombomodulin, from 
the surface of the endothelial cells. In the same time, the endothelial cells of the venules and 

small veins decrease in volume, and the contacts between the cells become distorted, resulting 

in hemorrhages, edema, and increase of vessels permeability [131]. Endothelial activation of 

type II is a slightly delayed process, which depends on gene transcription activation and pro-

tein synthesis de novo. As a result, the genes coding for the adhesion molecules, chemokines 
and procoagulative factors: Е-selectin, vWF, IL-8, thrombocytes activating factor [132], are 

activated. Also, the secretion of NO and prostacyclin increases. Morphologic changes show 
protrusion of the endothelial cells into the vessel lumen, cell hypertrophy and an increase 

of cell permeability. The result of this stage is leukocyte contact with activated endothelium 
through lectin-carbohydrate interactions, extravasation, transendothelial migration, and, pos-

sibly, leucocyte binding with Fc-receptors (FcR) of endothelial cells with immune complexes 
disposition [131]. Alterations of phenotype, accompanying endothelial cells activation, mani-

fest also with the change of the carbohydrate composition of the molecules forming the eGC.

Therefore, endothelial activation implies an alteration of the endothelial cells phenotype under the 

activation factors (cytokines, endotoxins, etc.) impact, inducing shedding and modification of the 
vasculoprotective surface layer associated with the membrane, and expression of the activation 

antigens. This correlates with pro-adhesive, antigen-presenting and procoagulative properties 

of the endothelial cells. Activation reflects an ability of endothelial cells to perform new func-

tions, but this status does not presume a cell damage or their uncontrolled division. Endothelium 

activation is a reverse process with a possibility to return to a state of active reposing cells [131].

Endothelium dysfunction, on the other hand, is a stage following the endothelium activation 

and manifesting with cell functional activity change; it leads to loss of the ability of endothelium  

to perform its function, and to a disbalance of factors, which provide homeostasis and a nor-

mal course of all processes, mediated by endothelium [8, 129, 131]. Endothelial dysfunction 

is a consequence of chronic, permanent endothelial activation and may lead to non-reversible 

damage of the endothelial cells, their apoptosis and necrosis.
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5. Preeclampsia as a manifestation of excessive systemic 

inflammatory response, accompanied by endothelial activation/
dysfunction

PE is a multisystemic pathologic condition, manifesting after the 20th week of pregnancy. 
PE clinical signs are: an increase of systolic blood pressure (SBP) above 140 mm Hg, diastolic 
blood pressure (DBP) above 90 mm Hg for the first time noted during pregnancy; proteinuria 
(≥0.3 g/L) in daily urine, edema, manifestation of multiorganic/polysystemic dysfunction/
insufficiency [133]. Severe PE is accompanied by acute renal failure, eclampsia, pulmonary 
edema, HELLP (hemolysis, elеvated liver enzymes, and lоw plаtelet соunt)-syndrome [3].

Etiology of PE is not clear; genetic, immunological and microenvironment may play a role 

[134–138]. Currently two phenotypic variations of PE are distinguished: early manifestation 

of the symptoms (before the 34th week of gestation) and later manifestation (after the 34th 
week of gestation) [139]. Pathophysiological mechanisms of PE development are distin-

guished accordingly [140]. The first—“fetal” pathway—is characterized by inadequate or 
microcellular invasion of trophoblast cells into the uterine spiral arteries and lack or incom-

pleteness of the phase of substitution of placental smooth muscle elastic fibers with fibri-
noid [140, 141]. In this mechanism, physiological remodeling and transformation of spiral 

arteries is lacking, and this affects the uterine-placentary blood flow quality [142–144]. Fetal 
mechanism of PE development presents with severe disease course and frequent complica-

tions in the neonate. The second pathway is “maternal”, where the deficiency of uterine-
placental blood flow appears as a result of spiral arteries damage due to certain maternal 
diseases, especially thrombophilias (genetic or acquired). In this case, the study of placental 

morphology testifies adequate gestational reorganization of spiral arteries. Maternal path-

way usually implies later manifestation and a milder course. Some also distinguish the 
third (or “mixed”) pathway, where the arteries are both affected and poorly reorganized 
[145, 146].

Disrupted trophoblast invasion initiates ischemic and hypoxic damage of placental cells and 

tissues, leading to increase of cell debris and microparticles of fetal origin contents in the moth-

er’s blood. These processes result in the mother’s immune cells activation and inflammatory 
cytokines synthesis induction [147], leading to the development of generalized endothelial 

activation/dysfunction with development of multiorganic insufficiency [148] (Figure 1).  

Trophoblast debris was also found in the mother’s is blood in a normal pregnancy and 

it was primarily apoptotic. Particles of trophoblast debris range from polynuclear aggre-

gates of the syncytium cells to subcellular micro and nanoparticles. In vitro co-culturing of 

trophoblast debris, obtained from women with normal pregnancy, with macrophages and 

endothelial cells leads to tolerogenic М2-phenotype of macrophages [149, 150]. Trophoblast 

debris becomes more necrotic when in vitro system is supplemented with antiphospholipid 

antibodies or IL-6. Phagocytosis of the necrotic debris by the endothelial cells is accompa-

nied by their activation [151]. Activation of endothelial cells is also caused by the addition 

of the trophoblast debris isolated from patients with preeclampsia to the culture of the 

endothelial cells [152].
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5.1. Endothelium activation markers in preeclampsia

Numerous studies have shown that in PE, manifestations of excessive SIR are observed due 
to the loss of control over the balance of production of pro/anti-inflammatory cytokines. This 
leads to an increase in the synthesis and expression of key molecules that mediate intercel-
lular contacts between leukocytes and endothelium [147, 153, 154]. In this context, it has been 

shown that in PE, the plasma levels of sE-selectin, sVCAM-1 and sICAM-1 were significantly 
elevated [100, 155–157], and that cultivation of endothelial cells with the blood serum of PE 

women significantly increased the expression of ICAM-1 by the endothelial cells [158].

It was found that the expression of E-selectin and P-selectin in the endothelial cell culture was 

significantly higher after administration of trophoblast cells from the PE patients, than after 
cultivation of endothelial cells with trophoblast cells isolated from placental tissue of healthy 

women [159]. We have shown in a prospective longitudinal study that in patients with severe 
PE, the levels of sE-selectin, sVCAM-1 and sICAM-1 were increased from the 8th week of 
pregnancy until the appearance of clinical symptoms of the disease [160]. In a similar design 

study, it was shown that joint determination of sICAM-1 and sVCAM-1 levels measured in 

peripheral blood within 22–29 weeks of gestation, was of high predictive value and capable 
to detect up to 55% of women with a pathologic pregnancy [161]. The increased levels of 

sICAM-1 and sVCAM-1 in blood during PE significantly correlated with the signs of the acute 
phase of inflammation and PE: hypertension, proteinuria, increase of hepatic enzymes levels 

Figure 1. Modern concept of the pathogenesis of preeclampsia (PE). Two phenotypic PE variations (early onset-PE and 

late onset-PE) exhibit different pathophysiology and clinical outcome. Clinical manifestations of endothelial activation/
dysfunction are expressed in various degree and in both forms. SIR, systemic inflammatory response; BP, blood pressure; 
HELLP, hemolysis, elеvated liver enzymes, and lоw plаtelet соunt.
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[162]. Also it was noted that high levels of sVCAM-1 and sE-selectin in women with PE could 

result in adverse perinatal outcome and endothelial dysfunction in fetus, as confirmed by 
negative correlation between sVCAM-1 and endogenous NO synthesis by HUVECs, isolated 
from the umbilical cord after birth [163].

5.2. Alteration of endothelial glycocalyx in preeclampsia

The signs of endothelial activation are the expression of activation markers by endothelial 
cells and increased plasma concentrations of the soluble forms of CAMs and of the fac-

tors, regulating angiogenesis and blood clotting. However, the main feature of the evolving 
endothelial activation is alteration, damage and shedding of the eGC and an increase of its 

components concentration in blood. Currently, there are limited studies of this phenomena 

in PE, but available reports show significant alteration of eGC composition in the placental 
structures in PE [164]. The most prominent alteration of the eGC composition was found in 

the placentas of women with severe PE. Alterations take place also in the eGC capillaries of 
terminal placental villi: the content of glycans with terminal β-galactosyl and α-mannosyl 
residues increase, while the content of α2,3-linked sialic acids decrease in the glycome in 
severe PE [165]. These alterations are supposed to point to the exposure of glycans bear-

ing the “danger signals” and being the counter-receptors for endogenous lectins; interaction 

with these activate maternal immune system [166, 167] (REF). Such studies, performed by 
immunohistochemistry of placenta after childbirth and using the lectins panel or monoclonal 

antibodies to carbohydrates antigens, give an idea of alterations of the placental glycome and 

its separate structures, including capillary endothelium, and provide evidence obtained by 

direct eGC visualization [165, 168]. Since direct visualization of the eGC is impossible in clini-
cal trials where no surgical tissue sampling is implied, in these cases, an indirect assessment 

of the content of the degradation products of eGC is used.

Indirect methods have significant limitations, but they are the only possibility to evaluate the 
eGC in vivo. Indirect assessment of the eGC by ELISA show that in PE, the plasma content of 
the structural proteoglycans (endocan-1, syndecan-1, decorin and HA) and the GAGs of eGC 

increase [169–171]. Serum endocan concentrations were significantly elevated in women with 
PE versus normotensive controls, and concentrations seem to be associated with the sever-

ity of the disease [172]. Median maternal plasma endocan concentrations were higher in PE 

patients and lower in acute pyelonephritis with bacteremia than in uncomplicated pregnancy. 

No significant difference was observed in the median plasma endocan concentration between 
other obstetrical syndromes and uncomplicated pregnancies [173]. It is suggested that in PE, 

the maternal endothelium is a source of GAGs in blood, and intensive eGC shedding thus 

indicates a manifestation of endothelial dysfunction [169–174]. Also, patients with PE show 

GAGs excretion in urine; this is thought to be linked with the eGC proteoglycans alterations 
and with the glomerular basement membrane changes, and associated with proteinuria [175]. 

In vitro and in vivo experimental studies, using cell and animal models is another opportunity 

of indirect eGC evaluation. This approach was used to study CKD [74, 75], cardio-vascular 

and inflammatory diseases [13, 176], cancer [13, 176, 177]—the conditions manifestating with 

hypertension, proteinuria, edema, SIR, thrombosis. The results of such studies provide some 
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keys to PE, which is less studied, but exhibits similar clinical signs. Experimental models 
allow to evaluate not only the degree of the eGC damage by various factors (SIR being the 
most significant), but also the molecular changes of the eGC composition. This moment is a 
crucial point because SIR is not a specific process; it accompanies almost any pathology and 
promotes the generation of neoantigens, acting as an adaptive response trigger and provok-

ing autoimmune reactions.

6. Conclusion

Endothelial dysfunction represents the central link in the pathogenesis of various diseases 
and complications, and is a subject of intensive research. On the background of the progress 
in understanding the mechanisms of development, diagnosis and treatment of endothelial 

dysfunction, many studies in the recent years have been focused on the eGC as an early indi-

cator of endothelial injury and a potential marker of vascular injury.

Alterations of the phenotype of endothelial cells, secretion and release of various activation 

markers into the bloodstream and dysfunction of the endothelium are directly related to the 
damage of eGC. This damage is the initiating factor and the initial stage in the development 

of endothelial activation/dysfunction, but this stage has for a long time been obscure due to 
the difficulties of eGC visualization and diagnosis.

By now, the main criteria for eGC damage assessment have been defined. In addition to the 
appearance of eGC components in the blood, the degree of manifestation of the SIR is also 
an important criterium of the damage, since endothelial inflammation and dysfunction are 
inseparably related processes. In this regard, the molecular mechanism of the inflammatory 
reaction is based on the ligand-receptor, carbohydrate-protein interaction of the immune cells 

and endothelium, and alteration of glycome/glycocalyx is a crucial factor in the development 
of inflammation and endothelial dysfunction. Therefore, the pathogenesis of endothelial acti-
vation/dysfunction should be envisioned from the point of damage of the intravascular com-

partment—the eGC, which regulates the functions of the endothelium.

Expanding research of the eGC role in the development of endothelial dysfunction may be a 

subject of new discoveries in the pathogenesis of a large group of diseases, including preg-

nancy pathology and PE, especially since PE is a classic example of the immune system hyper-

activation, manifestation of SIR and development of endothelial dysfunction. Undoubtedly, 
future studies of the eGC will evoke an absolutely new insight in the development and pro-

gression of endothelial dysfunction.
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