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Abstract

Technology computer-aided Design (TCAD) is essential for devices technology develop-
ment, including wide bandgap power semiconductors. However, most TCAD tools were
originally developed for silicon and their performance and accuracy for wide bandgap
semiconductors is contentious. This chapter will deal with TCAD device modelling of
wide bandgap power semiconductors. In particular, modelling and simulating 3C- and
4H-Silicon Carbide (SiC), Gallium Nitride (GaN) and Diamond devices are examined. The
challenges associated with modelling the material and device physics are analyzed in
detail. It also includes convergence issues and accuracy of predicted performance. Model-
ling and simulating defects, traps and the effect of these traps on the characteristics are
also discussed.

Keywords: TCAD, modelling and simulation, silicon carbide, gallium nitride, diamond,
physics modelling, material parameters

1. Introduction

1.1. Materials and devices

Power devices made from wide bandgap materials have superior performance compared to

those made from silicon. They can sustain higher voltages or endure smaller losses, they can

operate at much higher junction temperatures and can switch faster. This is because, as seen in

Figure 1, of their superior electrical properties. This in turn can revolutionize how applications

work and possibly make new applications possible. The most mature materials in terms of

process and device technology are the 4H-SiC and GaN-based devices. There is however, an
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increased interest and effort in advancing 3C-SiC and overcoming the technical challenges

associated with the development of good-quality 3C-SiC wafers because of lower processing

costs and the possibility for high channel mobility MOSFETs. Ultra-wide bandgap materials

such as diamond are also being explored.

Silicon carbide is similar to silicon in terms of device design and optimization strategies. Most

devices made in silicon can also be made in SiC. This includes Schottky Barrier Diodes,

MOSFETs, IGBTs, and Thyristors. However, devices made in GaN are hetero devices and base

their operation on the two-dimensional electron gas (2DEG) that is formed in the quantum

well between the heterojunction interfaces. This quantum well provides electrons with a highly

conductive channel, allowing high electron mobility. It is reported in literature that the electron

mobility in GaN HEMT devices can be upwards of 1500 cm2/Vs [3].

1.2. Technology computer-aided design

TCAD is an engineering computer-aided tool which enables the physics-based modelling of

semiconductor devices and their fabrication process. Due to the excellent predicting capability,

semiconductor process and device engineers use TCAD for virtual prototyping and optimiza-

tion of devices, to reduce the number of experimental cycles and, therefore, to reduce the

production cost. TCAD can also be used to study the performance of devices when used in

new applications or environments, to find performance limits and to analyze failures [4, 5].

Modern TCAD suites are compiled by several tools. A typical example of a TCAD suite is

diagrammatically described in Figure 2 and it consists of the following elements:

• Device design tool

The device design tool allows the rapid creation of device structures via the use of scripting

language or a graphical user interface without the need to know the process recipe. At this

Figure 1. Material properties of significant power semiconductors normalized against Si, data taken form [1, 2].
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stage, the device geometry, the material and doping profile, and concentration of regions is

defined. Commercial tools include Synopsys Sentaurus Structure Editor [6] and SilvacoDev-

Edit™ [7]. These tools allow device designers to parameterize device aspects and features to

optimize their design or to assess the performance dependence on the parameters of question.

• Process simulation tool

The process simulation tools allow for the virtual fabrication of devices and the emulation of

fabrication steps and conditions. They typically make use of a scripting language and require

knowledge of a process recipe. These tools allow process engineers to fine tune their recipe and

to analyze the effect of each process step and condition on the resulting device structure.

Commercial tools include Synopsys Sentaurus Sentaurus Process [8] and Silvaco Athena [9].

• Device (and circuit) simulation tool

Device simulation tools have the capability to simulate the electrical, thermal, and optical

properties and performance of devices. They can also account for the circuitry that surrounds

a device when used in real applications. Therefore, they typically have SPICE capabilities too.

They predict the device performance by executing finite element analysis and the solution of

fundamental semiconductor physics equations. They make use of numerical devices created

either through a device design tool or a process simulation tool. They take into consideration

the materials incorporated in the device and they have a database with physics equations and

the equivalent material parameters. Commercial tools include Synopsys Sentaurus Device [10]

and Silvaco Atlas [11].

1.3. Summary

This chapter aims to highlight issues and present solutions and methods for achieving accurate

models of WBG power devices. This includes proper modelling the material physics equations

Figure 2. Exemplary combination of tools making up a typical TCAD suite framework.
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and their parameters, creating the finite elements and geometry and simulation of device

characteristics including numerical issues and the effect of traps.

2. Material physics modelling

TCAD tools solve fundamental semiconductor physics equations to predict the performance of

semiconductor devices. Accurately modelling the material properties through appropriate

physics equations and parameters is essential for reliable simulations. These can depend on

how advanced and mature the process, growth and technology is. For silicon, the material

properties have been studied extensively and the technology is mature. Therefore, the material

models and their parameters are typically considered accurate and able to predict the silicon-

based devices performance with high level of accuracy. However, for WBG semiconductor-

based devices, a lower confidence level exists. In the following subsections, we discuss the

physics equations and the parameter sets required for accurate physical modelling of 3C-SiC,

4H-SiC, GaN and diamond power semiconductors. The equations used and parameters are

compatible with most TCAD products.

2.1. Silicon carbide

There are hundreds of Silicon Carbide polytypes. From those, 4H-SiC is the most mature and

studied polytype. The cubic polytype, 3C-SiC is also of particular interest because of its special

properties, such as the ability to grow this compound semiconductor on large area silicon

wafers, the lower temperatures required when processing the material and the ability to make

MOSFETs with much higher channel mobility. The former two results in a much cheaper

starting wafer whereas the latter one can enable the development of devices with higher

efficiency. The corresponding values required in a physics parameter file for 4H-SiC were

developed and improved alongside the improvement of the technology. Recently there have

been efforts to compile an equivalent set of parameters for 3C and to validate them [12, 13].

This section presents the required models and the parameters of both materials. Wherever

necessary, a range of values is used. Further, each physical mechanism presented is accompa-

nied with the corresponding identified limitations. SiC polytypes can experience anisotropic

properties, therefore when aiming multidimensional device simulation, these must be

accounted for in the material parameter file and physics equations [14]. 4H-SiC experiences

such behaviour, whilst 3C-SiC experiences isotropic behaviour. The parameters are then

included within the ‘Device (and Circuit) Simulation’ tool of TCAD tools.

2.1.1. Band parameters

The desired properties of the WBG SiC originate from its bandgap characteristics. The value of

Eg shall not be considered constant, but variable with dependencies on both the concentration

of impurities and temperature as shown in Figures 3 and 4 correspondingly. Increasing the

temperature of the material essentially leads to lower gap values as described by Eq. (1). In

Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications20



addition, the phenomenon of bandgap narrowing causes band displacements in the energy

scale directly related to doping according to Eq. (2), (3). These displacements represent poten-

tial barriers that may influence carrier transportation phenomena in the device. The bandgap

dependence on doping in SiC can be described as in Eq. (4). The perception of the modeled

effective bandgap value for the SiC can be expressed as Eg, eff Tð Þ ¼ Eg Tð Þ � Ebgn utilizing the

parameters shown in Tables 1–3.

Eg Tð Þ ¼ Eg 0ð Þ � αT2= T þ β
� �

(1)

Econd
bgn ¼

An∙N
1=3
tot þ Cn∙N

1=2
tot , ND,0 > NA,0

Bp∙N
1=4
tot þDp∙N

1=2
tot , otherwise

8

<

:

(2)

Figure 3. The 3C-SiC (top) and 4H-SiC (bottom) bandgap dependence on temperature as described with the models

given in this chapter are in excellent agreement to literature data [15] for both β-SiC and α-SiC, respectively.

TCAD Device Modelling and Simulation of Wide Bandgap Power Semiconductors
http://dx.doi.org/10.5772/intechopen.76062

21



Figure 4. The bandgap narrowing phenomenon as modeled for TCAD simulations assuming n-type SiC material. The

measured energy displacements of the bands are sourced from [16].
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Eval
bgn ¼

Bn∙N
1=4
tot þDn∙N

1=2
tot , ND,0 > NA,0

Ap∙N
1=3
tot þ Cp∙N

1=2
tot , otherwise

8

<

:

(3)

∆E0
g ¼ �Econd

bgn þ Eval
bgn (4)

To model the intrinsic characteristics of the semiconductor, the temperature dependence of the

density of states (DoS) for SiC in Eq. (5) is used. The parameters of Table 4 determine the

Lindefelt model coefficients 4H-SiC semiconductor material

n-type p-type

An,p [eV�cm] �1.791 � 10�8 3.507 � 10�8

Bn,p [eV�cm
3/4] 8.927 � 10�7

�2.312 � 10�6

Cn,p [eV�cm
3/2] �2.2 � 10�12 6.74 � 10�12

Dn,p [eV�cm
3/2] 6.24 � 10�12

�1.07 � 10�12

Table 3. 4H-SiC bandgap narrowing doping dependence.

Parameters description 3C-SiC 4H-SiC

NC (300 K) [cm�3] 1.5536 � 1019 1.719 � 1019

NV (300 K) [cm�3] 1.1639 � 1019 2.509 � 1019

Table 4. SiC temperature dependent density of states.

Parameters description 3C-SiC 4H-SiC

Eg(0) [eV] 2.39 3.265

α [eV/K] 0.66 � 10�3 3.3 � 10�2

β [Κ] 1335 1.0 � 105

Table 1. SiC parameter set related to bandgap.

Lindefelt model coefficients 3C-SiC semiconductor material

n-type p-type

An,p [eV�cm] �1.48 � 10�8 1.3 � 10�8

Bn,p [eV�cm
3/4] 9.0 � 10�7

�4.8 � 10�7

Cn,p [eV�cm
3/2] �3.06 � 10�12 1.43 � 10�12

Dn,p [eV�cm
3/2] 6.85 � 10�12

�6.41 � 10�13

Table 2. 3C-SiC band gap narrowing doping dependence.
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intrinsic carrier concentration of the semiconductor as well as quantities like the effective

carrier masses. In Figure 5, plotting the intrinsic carrier concentration against the temperature

a discrepancy with measurements can be noticed for the case of 3C-SiC. This suggests that the

TCAD simulations of 3C-SiC power devices utilizing this model should yield reasonably good

results for limited temperature range of 200–500 K.

Under low field conditions, the mobility of both types of carriers in SiC also depends on the

doping concentration and on temperature. The first dependence is described by the Caughey-

Thomas (C-T) model μ0 ¼ μmin þ μmax � μmin

� �

= 1þ N=Nref

� �α� �

as illustrated in Figure 6. Each

coefficient in the C-T equation changes with temperature as in Eq. (6) and the values in Table 6.

Currently, there is an uncertainty for the holes’ mobility actual value in 3C-SiC. However, the

values adopted in Table 5 are suggested from recent measurements [16, 17]. The mobility of

carriers for the temperature range of 250–700 K was described in [12]. In high field conditions,

with magnitude of values as shown in Figure 7, the mobility and velocity of carriers become

inseparable directly affecting each other. The Canali model, Eq. (7) is utilized for these purposes

and its parameters for SiC are presented in Table 7. In Eq. (8), the holes’ saturation velocity

determines the range of electric field values at 200 kV/cm < E < 2000 kV/cm [12].

NC,V Tð Þ ¼ NC,V300� T=300ð Þ
3 2= (5)

Par ¼ Par0 � T=300Kð Þγ (6)

μ0 Eð Þ ¼
αþ 1ð Þμlow

αþ 1þ
αþ1ð ÞμlowE

vsat

� �β
� �1 β=

(7)

Figure 5. The intrinsic carrier concentration as resulting from the model of DoS for both SiC cases in question. Compar-

ison with literature data for 3C-SiC [18] and 4H-SiC [16] is performed. Assuming low doping levels (5� 1015 cm�3) the

bandgap narrowing is considered negligible.
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Figure 6. Based on experimental data [19], the SiC models utilized result in a very good accuracy. Increased the doping

concentration, more scattering occurs and the mobility drops. The maximum carrier mobility values in SiC range and

depend on crystal thickness [20] and impurities level.

Parameter 3C-SiC 4H-SiC [perpendicular to c-axis] 4H-SiC [parallel to c-axis]

Electrons Holes Electrons Holes Electrons Holes

μmax [cm
2/Vs] 650 70 910 114 1100 114

μmin [cm
2/Vs] 40 15 40 0 40 0

Nref [cm
�3] 1.5 � 1017 5 � 1019 2.0 � 1017 2.4 � 1018 2.0 � 1017 2.4 � 1018

α 0.8 0.3 0.76 0.69 0.76 0.69

Table 5. SiC parameters for low field mobility and coefficients used to express doping dependence.

Parameter 3C-SiC 4H-SiC

[same for both directions]

Corresponding parameter from Table 5

Electrons Holes Electrons Holes

γmax �0.3 �2.5 �2.4 �2.6 μmax [cm
2/Vs]

γmin �0.5 �0.5 �1.536 �0.57 μmin [cm
2/Vs]

γNref 2 0 0.75 2.9 Nref [cm
�3]

γα 0 0 0.722 �0.2 α

Table 6. SiC parameters for low field mobility and coefficients used to express temperature dependence.
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vsat ¼ vsat,0
300K

T

� 	vsat,exp

(8)

2.1.2. Doping and incomplete ionization

Compared to silicon, dopants in wide bandgap semiconductors have larger ionization ener-

gies, making activation of the doping species an issue. The dopant impurities are better

modeled as traps to account for the phenomenon of incomplete ionization. As shown in

Table 8, the formed energy levels depend on the polytype and the impurity. To model this

behaviour, Eqs. (9) and (10) are utilized, where NA,D is the doping concentration, NA,D0 is the

effective doping concentration, EA,D and Ef are the activation energy, and the Fermi level,

respectively, GA is the degeneracy factor, and Ncrit is the value that determines where the

Parameter 3C-SiC 4H-SiC

Electrons Holes Electrons [┴ to c-axis] Electrons [// to c-axis] Holes

beta (β0) 0.75 2.5 1.2 1.2 1.2

γbeta �0.9 0 1.0 1.0 1.0

alpha (α) 0 0 0 0 0

vsat,0 [cm/sec] 2.5 � 107 1.63 � 107 2.2 � 107 1.9 � 107 2.2 � 107

vsat,exp �0.65 1.55 0.44 0.44 0.44

Table 7. SiC parameters for high field mobility and saturation velocity along with coefficients used to express

temperature dependence.

Figure 7. The models for SiC electrons’ velocity allow accurate TCAD simulations for temperatures up to 600 K. Com-

parison with literature data for 3C-SiC [21] and 4H-SiC [19] is performed. A doping level of 5� 1015 cm�3 is assumed.
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metallic-type conductionmechanism starts [22]. The degeneracy factor temperature dependence

can be expressed by Eq. (11), whilst the typical values for gA is 4 and for gD is 2 for the impurity

levels of acceptors and donors in SiC, respectively [23]:

NA,D0 ¼ NA,D= 1þGA∗ EA,D � Ef

� �

=kT
� �

NA,D < Ncrit (9)

NA,D0 ¼ NA,D NA,D ≥Ncrit (10)

GA,D Tð Þ ¼ gA,D � exp
ΔEA,D

kT

� 	

(11)

2.1.3. Impact ionization

The impact ionization coefficients of electrons and holes need to be determined to specify the

breakdown voltage [24]. For 3C-SiC, the Chynoweth law α Eavað Þ ¼ γ∙α∙exp �γb=Eavað Þ can be

adopted. The parameter values are determined in Table 9, following the work of van

Overstraeten-de Man [25]. The temperature dependence of these parameters is expressed by

determining the optical phonon energy as indicated by γ ¼ tanh ħωop=2kT0

� �

=tanh ħωop=2kT
� �

.

Parameters description Parameter

name

3C-SiC 4H-SiC [┴ to c-axis] 4H-SiC [// to c-axis]

Electrons Holes Electrons Holes Electrons Holes

Ionization coefficients for electrons

and holes

an,p [cm
�1] 1.28 �

106
1.07 �

107
1.76 �

108
3.41 �

108
2.1 � 107 2.96 �

107

bn,p [V/cm] 5.54 �

106
1.12 �

107
3.3 � 107 2.5 �

107
1.7 � 107 1.6 �

107

Low field range up to this value E0 [V/cm] 4.0 � 105 4.0 �

105
— — — —

Optical phonon energy ħωop [eV] 0.120 0.120 0.190 0.190 0.190 0.190

Table 9. SiC impact ionization coefficients for T0 ¼ 300 K

Impurity Species type Energy levels [eV]

3C-SiC 4H-SiC

Nitrogen (N) Donora 0.057 0.071

Vanadium (V) Donora 0.660 0.800

Aluminium (Al) Acceptorb 0.260 0.265

Gallium (Ga) Acceptorb 0.343 0.300

Boron (B) Acceptorb 0.735 0.293

aThe formed energy level is considered from the conduction band (EC).
bThe formed energy level is considered from the valence band (EV).

Table 8. SiC impurities/shallow traps due to doping.

TCAD Device Modelling and Simulation of Wide Bandgap Power Semiconductors
http://dx.doi.org/10.5772/intechopen.76062

27



Notably, it has been found in [26] that these values are relatively insensitive to temperature

variations in the range of 300 K < T < 500 K. For 4H-SiC, a slightly different model is utilized

after Hatakeyama’s work [27] to effectively describe the anisotropic behaviour of the ava-

lanche coefficients. The avalanche force is considered to have two components to account for

the anisotropic structure of 4H-SiC [28], satisfying F2 ¼ F2== þ F2
┴
. Utilizing the projections of

these electric field components, the avalanche coefficients can be computed as indicated in

Eqs. (12)–(15), with the default value of θ ¼ 1:

a ¼ a
B�F┴
b┴ �F
ð Þ

2

┴ � a

B�F==
b== �F

� �2

== (12)

b ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� θΑ2 ΒF┴F==
Fb┴b==

� 	2
s

(13)

A ¼ log
a==
a┴

(14)

B ¼
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F┴
b┴

� �2
þ

F==
b==

� �2
r (15)

2.1.4. Generation-recombination

The doping dependence of the SRH lifetime is modeled with Scharfetter in Eq. (16). The band-

to-band non-radiative recombination is expressed with the Auger recombination rates,

RA
net ¼ Cnnþ Cpp

� �

np� n2i, eff

� �

. As shown in Eqs. (17) and (18), the effect of temperature and

doping is accounted for. Typical values for the Scharfetter and Auger models are shown in

Tables 10 and 11. However, since these are heavily process dependent, they need to be

adjusted every time the process conditions change:

Parameter SiC

Electrons Holes

τmin [sec] 0 0

τmax [sec] 2.5 � 10�6 0.5 � 10�6

Nref [cm
�3] 1 � 1017 1 � 1017

γ 0.3 0.3

Tα 1.72 1.72

Τcoef 2.55 2.55

Etrap [eV] 0 0

Table 10. SiC SRH lifetime parameter set.
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τdop ¼ τmin þ
τmax � τmin

1þ
NA,0þND,0

Nref

� �γ (16)

Cn T; nð Þ ¼ An þ Bn
T

T0

� 	

þ Cn
T

T0

� 	2
 !

1þHnexp �
n

N0, n

� 	� �

(17)

Cp T; pð Þ ¼ Ap þ Bp
T

T0

� 	

þ Cp
T

T0

� 	2
 !

1þHpexp �
p

N0, p

� 	� �

(18)

2.2. Gallium nitride

GaN-based devices utilize GaN, AlGaN and AlN materials. AlGaN is a molar fraction of AlN

and GaN. GaN and AlGaN naturally form Wurtzite crystal structures with the ability of

forming different Ga and N faces. For this chapter, only the Ga-face is considered. In TCAD,

it is necessary to define the material properties of AlN and GaN separately. AlGaN material

properties are thereafter approximated through a linear interpolation, depending on the molar

fraction of AlN and GaN. A more accurate result can be yielded wherever the molar com-

pounds are known and experimental evaluation of their properties has been performed. In

those cases, new material parameters can be made which would reflect the exact molar

compound of interest, which in turn would give more accurate simulations.

Similar to modelling SiC, the important parameters include modelling the bandgap, doping

and incomplete ionization, impact ionization, mobility and generation-recombination.

2.2.1. Band parameters

Like all III-Nitride semiconductors, GaN and AlN are direct bandgap semiconductors, that is,

the maximum valley in their valance band is directly below the minimum conduction valley.

Similar to SiC examined earlier, Eg cannot be assumed constant in value and will vary heavily

with temperature and doping concentration. Again, like SiC, thermally exciting GaN leads to

lower band gap energies. According to Eq. (1) the variation of bandgap value can be described

utilizing the parameters in Table 12 [29].

Parameter 3C-SiC 4H-SiC

Electrons Holes Electrons Holes

A [cm6/sec] 0.3 � 10�31 0.2 � 10�31 6.7 � 10�32 7.2 � 10�32

B [cm6/sec] 0 0 2.45 � 10�31 4.5 � 10�33

C [cm6/sec] 0 0 �2.2 � 10�32 2.63 � 10�32

H 1.9 1.9 3.47 8.26

N0 [cm
�3] 1.0 � 1019 1.0 � 1018

T0 [K] 300 300 300 300

Table 11. SiC Auger recombination rates.
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Further, utilizing Eq. (19), the intrinsic carrier concentration of the GaN material can be

calculated. This premises that the DoS and/or the effective carrier masses in this WBG material

are known. Equations (20) and (21) adequately describe this temperature dependent proce-

dure. The intrinsic characteristics of GaN can then be given by [30]:

ni ¼ Nc �Nvð Þ1=2exp �Eg= 2kBTð Þ
� �

(19)

Nc˜ ¼ 4:82 1015 � mΓ=m0ð Þ3=2T3=2 cm�3
� �

˜ ¼ 4:3� 1014 � T3=2 cm�3
� �

(20)

Nv ¼ 8:9� 1015 � T3=2 cm�3
� �

(21)

2.2.2. Mobility

The low field carriers’ mobility for the bulk WBG compound depends on the carriers’ density

following the C-T formula, as illustrated in SiC physical model. However, variations of this

model exist to fit better some compound semiconductors behaviour. In SiC above, the so-called

Arora model is utilized originating from the C-T model. It provides additional control on the

temperature dependence of SiC low field mobility parameters. For GaN and AlN, the Masetti

Parameter GaN AlN

Electrons Holes Electrons Holes

μconst [cm
2/Vs] 1500 [31] – 1800 [29] 20 300 14

γμmax
1 2.1 1 2.1

μmin1 [cm
2/Vs] 85 33 20 11

μmin2 [cm
2/Vs] 75 0 65 0

μ1 [cm
2/Vs] 50 20 20 10

Pc [cm
�3] 6.5�1015 5�1015 8�1017 5�1018

Cr [cm
�3] 9.5�1016 8�1016 7�1016 8�1017

Cs [cm
�3] 7.2�1019 8�1020 5.2�1017 8�1018

α 0.55 0.55 0.88 1.05

β 0.75 0.7 0.75 0.75

Table 13. Coefficients used for temperature and doping (Masetti model) dependency of low field mobility in GaN and

AlN.

Parameters description GaN AlN

Eg(0) [eV] 3.507 6.23

α [eV/K] 9.1�10�4 1.79�10�3

β [Κ] 836 1.462�103

Table 12. GaN/AlN parameter set related to bandgap.
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model, in Eq. (22), is preferred to describe the doping dependence, with the fitting parameters

shown in Table 13. In this table, γμmax
indicates the coefficient for the temperature dependency

of the maximum mobility parameter, as described by Eq. (6). This is the only temperature

dependent parameter that the Masetti model accounts for:

μdop ¼ μmin1exp
Pc

NA,0 þND,0

� 	

þ
μconst � μmin2

1þ
NA,0þ ND,0

Cr

� �α �
μ1

1þ Cs

NA,0þND,0

� �β
(22)

The calculated mobility in low field conditions is utilized in the Canali model, as discussed in

SiC section with Eq. (7). The parameter values presented in Table 14 enable modelling the

mobility in high field conditions while taking into consideration the temperature dependence

with Eq. (6).

2.2.3. Doping and incomplete ionization

Dopants in this WBG semiconductor would not fully ionize even at high temperatures [32]

because the impurities form deep levels, as further observed in Table 15 [33–38]. The models as

presented in Eqs. (9)–(11) can be utilized here following the same degeneracy factor values for

the conduction and valence bands [39]. That is, gA equals 4 for shallow acceptors and gD equals

2 for shallow donors.

2.2.4. Impact ionization

The Van Overstraetan-de Man expression, described in SiC section, with the parameters in

Table 16 can be used to model the impact ionization phenomenon [29]. It is worth noticing that

for the case of high electric fields (i.e. larger than the E0 value) the impact ionization coefficients

are predicted to be similar in GaN [40].

2.2.5. Generation-recombination

The non-radiative recombination [41], SRH, is described by the Scharfetter model in Eq. (15) is

considered a dominant process in the bulk. Table 17 includes the relevant parameter values.

Auger recombination process is realized utilizing Eqs. (17)–(18) along with the coefficient

Parameter GaN AlN

Electrons Holes Electrons Holes

beta (β0) 7.2044 4 17.3681 4

γbeta 6.1973 0 8.7253 0

alpha (α) 0.7857 0 0.8554 0

vsat,0 [cm/sec] 1.3�107 1.7�107 1.5�107 1.25�107

vsat,exp 0.7 0.725 2 2

Table 14. GaN/AlN parameters for high field mobility and saturation velocity along with coefficients used to express

temperature dependence.
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values shown in Table 18 [42]. Auger recombination in nitrides is responsible for the loss of

quantum efficiency in InGaN-based light emitters [43]. This non-radiative loss mechanism is

due to the large values of the Auger coefficients (2� 10�30 cm6/s) for specific parts of the

emission spectrum, like blue to green region.

Impurity Species type Energy levels [eV]

GaN AlN

Ga N Al N

Silicon (Si) Donora 0.017 — — —

Nitrogen (N) Donora — — 1.4–1.85 —

Vacancy (VN) Donora — 0.03–0.1 — 0.17

Carbon (C) Donora 0.11–0.14 — 0.2 —

Magnesium (Mg) Donora — 0.26, 0.6 — —

Vacancy (VGA) Acceptorb 0.14 — — —

Silicon (Si) Acceptorb 0.19 — — —

Magnesium (Mg) Acceptorb — 0.14–0.21 0.1 —

Zinc (Zn) Acceptorb 0.21–0.34 — 0.2 —

Mercury (Hg) Acceptorb 0.41 — — —

Cadmium (Cd) Acceptorb 0.55 — — —

Beryllium (Be) Acceptorb 0.7 — — —

Lithium (Li) Acceptorb 0.75 — — —

Carbon (C) Acceptorb — 0.89 — 0.4

Gallium (Ga) Acceptorb — 0.59–1.09 — —

Aluminium (Al) Donora — — — 3.4–4.5

Vacancy (VAl) Acceptorb — — 0.5 —

aThe formed energy level is considered from the Conduction band (EC)
bThe formed energy level is considered from the Valence band (EV)

Table 15. Impurities and shallow traps due to doping in GaN/AlN

Parameters description Parameter name GaN AlN

Electrons Holes Electrons Holes

Ionization coefficients for electrons and holes an,p [cm
�1] 1.5�105 6.4�105 2.9�108 1.34�107

bn,p [V/cm] 1.41�107 1.46�107 3.4�108 2.03�108

Low field range up to this value E0 [V/cm] 4.0�105 4.0�105 4.0�105 4.0�105

Optical phonon energy ħωop [eV] 0.035 0.035 0.035 0.035

Table 16. GaN/AlN impact ionization coefficients for T0 ¼ 300 K
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2.3. Diamond

Diamond (C) is considered to be a strong contester for high power due to its outstanding

electrical and thermal material properties [44]. However, the realization of power semiconductor

devices based on this material is extremely difficult and such devices are currently at the

research level. The main reason is that there are not enough activated carriers at room tempera-

ture, leading to poor device performance. Furthermore, diamond is also extremely expensive to

fabricate due to large scale material growth constrains.

It is worth mentioning that since diamond is at very early stages of development, it is also at

very early stage at the material characterization and modelling. Currently, diamond does not

exist in the material libraries of the commercial TCAD simulation packages. As a result, all

material properties and fitting parameters of various materials interface with diamond need to

be added manually.

2.3.1. Band parameters

The experimentally extracted value of diamond bandgap (Eg) is about 5.47 eV at room tem-

perature [45]. This value directly translated into high material critical electric strength. High

Parameter GaN AlN

Electrons Holes Electrons Holes

τmin [sec] 0 0 0 0

τmax [sec] 0.7�10�11 2.0�10�11 1.0�10�9

Nref [cm
�3] 1�1016

γ 1 1 1 1

Tα �1.5 �1.5 �1.5 �1.5

Τcoef 2.5 2.5 2.5 2.5

Table 17. GaN/AlN SRH lifetime parameter set.

Parameter GaN

Electrons Holes

A [cm6/sec] 3.0�10�31 3.0�10�31

B [cm6/sec] 0 0

C [cm6/sec] 0 0

H 0 0

N0 [cm
�3] 1.0�1018 1.0�1018

T0 [K] 300 300

Table 18. GaN Auger recombination rates.
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breakdown field strength means that the material can withstand high potential drops across

very thin layers thus minimizing the on-state resistance of the device allowing for the fabrica-

tion of highly energy efficient high voltage high current devices.

The values for the density of states for the valence and the conduction band (Nv,Nc) are given

by expressions Eq. (5) where in this case Nv300 = 1.8e19 and Nc300 = 5e18 [cm�3], as reported

in [22, 44–47]. Therefore, the appropriate levels of density of state could be calculated using

Eq. (19). For CVD diamond this value is around 1.2� 10�27 cm�3 [22] at 300 K, Eg is the

bandgap, T is the absolute temperature in Kelvin and k the Boltzmann constant

(1.38� 10�23 J/K). This value is extremely small for any meaningful numerical analysis using

TCAD simulations. Therefore, possible strategies to facilitate and match experimental results

include adding a fitting coefficient/value for intrinsic concentration, activating the constant

carrier generation models or including trap levels and recombination centres in the materials

bandwidth [22].

2.3.2. Doping and incomplete ionization

Diamond doping either of n-type or p-type to a less extent is challenging; in order to develop

accurate and reliable simulation models one has to include the incomplete ionization models

with the appropriate coefficients. It is therefore necessary to use the ‘incomplete ionization

model’ [48] (Figure 8). The equations implemented follow the model described in Eqs. (9) and

(10). Note that the degeneracy factor in this particular case is a function of temperature, given

by the model in Eq. (23):

gA,D ¼ 4þ 2exp �ΔgA,D= kTð Þ
� �

(23)

Figure 8. (a) Incomplete ionization model implemented for boron in single crystal diamond and (b) variation of activation

energy with doping concentration of boron [22].
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2.3.3. Mobility

For an intrinsic diamond, the hole mobility is up to 3800 cm2/(Vs) whereas for boron-doped

diamond the mobility is dominated by the concentration dependent scattering. At elevated

temperatures, above 325 K it has been shown that the mobility is decreased due to acoustic

phonon scattering [48, 49]. The combination of p+ doped diamond leads to lattice scattering. It

therefore is advisable that these complex relationships between mobility, doping and temper-

ature are taken into consideration when diamond simulations are implemented. A fairly

accurate model, the unified mobility model (UniBo) [50] accounts for the dependence of the

mobility on the doping and on the temperature using with a single model.

2.3.4. Impact ionization

Impact ionization integral coefficients for electron and holes are very important in the design

of diamond devices with the appropriate values been included in the impact ionization models

parameters. Under reverse bias conditions, the increase of the ionization integral towards

unity indicates the increase in the generation of avalanche carriers due to impact ionization,

leading eventually to the device breakdown. The avalanche coefficients are given by Eq. (24)

where in which an,p, bn,p and cn,p are fitting parameters and E is the lateral electric field

through the semiconductor layer. The numerical values for both diamond and silicon are given

in Table 19:

Α ¼ an,pexp �bn,p=E
� �

cn,p (24)

3. Device modelling and simulation

Due to the very low intrinsic carrier concentration of WBG semiconductors, the expected

leakage current is very low (� 10�20Acm�2), which causes converge issues. To alleviate from

this, the numerical precision should be significantly high. This is achieved with the inclusion of

certain keywords in the ‘Device (and Circuit) Simulation’ tool command file (e.g. ‘Extended-

Precision’ for SDevice tool of the Synopsys Sentaurus TCAD). Simulations that use extended

arithmetic precision are computational more intensive, therefore, the arithmetic precision

should be increased in a trade-off manner up to a level that is able to provide a solution.

A further method utilized to improve convergence issues, especially when simulating the

blocking characteristics, is to add extra carriers’ generation through an equivalent keyword

in the command file. The latter can increase the leakage current to levels that are high

enough (e.g. > 10�10Acm�2) for the simulations to converge at lower precision level. This

Ionization coefficients for electrons and holes an (cm
�1) ap (cm

�1) bn (Vcm�1) bp (Vcm�1)

Diamond [22] 1.89�105 5.48�106 1.7�107 1.42�107

Table 19. Avalanche coefficients for diamond.
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method not only helps the simulations convergence but it also helps with accounting the

realistic leakage currents in WBG devices, which are orders of magnitudes higher than the

predicted ideal ones. The reason for the much higher real leakage currents is attributed to the

immaturity of the technology, the high defects and traps density and due to background

irradiation. Their effect on the leakage current is therefore, considered with this constant

carrier generation statement.

The choice of solvers is also important when simulating WBG devices. Some linear solvers will

be more suited for small to medium 2D simulations and others for medium to large 3D

simulations due to their superior parallel performance and significantly smaller memory

usage. In addition, relaxing the numerical setting for the linear solver constitutes another

trade-off which may improve the operation of the solver, however, convergence complications

may come as a cost.

3.1. Silicon carbide

For accurate simulation results, modelling the defects and traps is imperative. They directly

influence the performance and strongly affect its reliability [51]. To highlight the effect of traps

on the device performance and electrical characteristics, the P-i-N rectifier structure of Figure 9

was prepared for modelling and simulation. A Gaussian energetic distribution of deep levels is

considered distributed spatially uniformly.

For most applications, the linear region of the forward I-V characteristics is important [14], the

sub-threshold characteristics, however, are indicators of the material quality [53]. Both regions

of the device characteristics are affected by the presence of traps. Figure 10 depicts the effect of

the traps capture cross section, whereas Figure 11 depicts the effect of the concentration of

deep level traps on the sub-threshold current-voltage (IV) forward characteristics. Because

Figure 9. Simplified device schematic used for simulations of a SiC P-i-N power rectifier following the fabricated diode in

[52]. The Gaussian energetic distribution of the deep levels considered is also illustrated.
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generation-recombination is the main carrier transport mechanism in the sub-threshold region,

an increased concentration of deep levels or a larger capture-cross-section results in a higher

magnitude for leakage current [14].

Figure 10. Sub-threshold region of a SiC P-i-N structure with 10 um drift region at 1.4e16 cm�3. The defects concentration

is fixed with a variable cross section value. The simulated 4H-SiC material contains donor traps (left), whereas the 3C-SiC

contains acceptor traps (right).

Figure 11. Sub-threshold region of a SiC P-i-N structure with 10 um drift region at 1.4e16 cm�3. The defects’ cross section

is fixed with a variable concentration value. The simulated 4H-SiC material contains donor traps (left), whereas the 3C-

SiC contains acceptor traps (right).

Figure 12. The impact of carriers’ scattering lowers with increased temperature. This behaviour is independent of the

type and the concentration of the deep level as can be seen for the 4H-SiC (left) and the 3C-SiC (right) case.
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The forward the linear region is governed by the recombination-generation and the drift-

diffusion. In this case, the defects have an opposite effect on the IV characteristics. An

increased concentration of the traps intensifies carriers scattering, thus effectively reducing

the mobility of carriers, which in turn leads to a decreased conductivity. This behaviour is less

significant at elevated temperatures as the carriers gain enough kinetic energy to remain

unaffected from the presence of nearby defects in the bulk. Consequently, the on-resistance of

the material can decrease, as illustrated in Figure 12.

Traps also need to be included when modelling the interfaces between SiC and other materials.

The traps’ energetic profile at or near the interface in those cases need to be identified and

modeled appropriately. For SiC Schottky interfaces, the combined effect of tunnelling and

traps is modeled with the quantum tunnelling and trap-assisted tunnelling models [54]. The

effect of traps also needs to be modeled at the SiC/SiO2 interface, in particular when modelling

SiC MOSFETs [55].

3.2. Gallium nitride

The GaNHigh Electron Mobility Transistor (HEMT) is regarded as the most successful attempt

at harnessing the superior material properties of Gallium Nitride. The AlGaN HEMT is a

heterostructure formed through the union of AlXGa1-XN and GaN. The inherent spontaneous

and mechanically induced piezoelectric polarization charges a dictate the formation of a 2D

Electron Gas across the heterojunction interface [56]. It is worth noting that the 2DEG channel

is inherently present across the device and therefore, means that the device is naturally on.

This has caused engineers to develop normally off GaN HEMTone being the p-type Gate GaN

HEMTdevice. This device contains a p-typed GaN region beneath the gate which depletes the

2DEG of carriers and therefore, effectively stops the channel underneath the gate. In this

section, device modelling will focus upon this device. The complexities associated with model-

ling GaN HEMTdevices in TCAD are summarized below [57]:

• Reduced crystal symmetry compared to silicon due to the Wurtzite crystal structure.

• The polarization charges and subsequent effects on the device performance.

• The lower intrinsic carrier concentration associated with wide bandgaps semiconductors.

• The exchange of the inter-valley at high field that modulates the current through the Gunn

effect.

• The abrupt nature of the heterojunction between the semiconductors and partially floating

regions.

• The significant and extensive quantity of traps and their subsequent characteristics.

The forward operation of the GaN HEMT device is dependent on the characteristics of the

2DEG channel. There are multiple methods that can be employed to model the 2DEG channel.

The first is the placement of an interface charge across the AlGaN/GaN interface. The second is

a simplified strain model in which the TCAD calculates the polarization charges based on the

material which calculates the spontaneous and piezoelectric charges through the molar
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fraction of the AlGaN layer and the corresponding strain based on the GaN layer. Another

technique is applying a full strain model which calculates the polarization charges and are

expressed through the local strain tensor. Finally, a stress model can be applied which calcu-

lates the polarization charges and are expressed in the local stress tensor.

TCAD simulations with the simplified strain model utilized, describe how the threshold

voltage changes with the thickness of AlGaN. This behaviour is in accordance to Eq. (25) [58]

where; Vth is threshold voltage, ΦB is the height of the Schottky barrier, EC is the conduction

band offset, d is the thickness of the AlGaN barrier, ND is the 2DEG concentration and ε is the

relative dielectric constant of AlGaN. To increase the threshold voltage of the GaN HEMT,

three parameters can be changed, the work function of the Schottky contact, the aluminium

mole concentration in the AlGaN and the thickness of the AlGaN region. In this model, we

have chosen to decrease the thickness of the AlGaN barrier whilst maintaining the same

parameters for the rest of the device. Figure 13 depicts the simplified equivalent schematic

representation of the simulated device and the transfer characteristics for three different

AlGaN thicknesses of 0.20, 0.23 and 25 μm. As shown, the threshold of the device varies even

with a very small change in the AlGaN thickness. This also demonstrates how sensitive the

2DEG is to the process. For that reason, a fixed interface charge across the AlGaN/GaN

interface, is many times the preferred modelling approach, the concentration of which can be

used as a fitting parameter:

V th ¼ ΦB �
∆EC

q
�

ðð
d

qND xð Þ

ε
dx2 (25)

4. Conclusions

Adequate modelling and simulation of WBG power devices and their performance with

TCAD presents challenges and complexities. It includes modelling the material physical prop-

erties, improving the numerical accuracy of simulations, taking special care for the device

structure design and incorporating the effect of defects, often in the form of traps. It also

includes understanding the complexities and trade-offs between convergence and simulation

Figure 13. Simplified schematic representation of the simulated HEMT device (left) and its simulated transfer character-

istics for 0.20, 0.23 and 0.25 μm AlGaN barrier layers (right).
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speed, and how these are affected by the choice of solvers and numerical accuracy. This

chapter gave an overview of those for 3C-SiC, 4H-SiC, GaN and diamond-based devices.
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