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Abstract

This chapter constitutes a review of the recent literature on metabolic response and pro-
filing of bioorganic phosphates and phosphate metabolites in disease related to traumatic 
brain injury (TBI). In this report we emphasize the emerging role of advanced imaging 
techniques in both the translational research of TBI biology and in the development of 
new modalities for the diagnosis and therapy of TBI-related diseases. To date, several 
neuroimaging techniques have been used for assessing phosphate metabolites related 
to TBI. These techniques include 31P-MRI/MRS imaging, magnetic resonance imaging, 
and incorporation of phosphate derivative hydrogels, all of which are of particular inter-
est in identifying TBI. These advanced neuroimaging techniques are currently under 
investigation in an attempt to optimize properties for therapeutics purposes. In addition, 
this chapter also discusses the role of endogenous and exogenous phosphates related 
to TBI. TBI imaging is a rapidly evolving field, and a number of the recommendations 
presented will be updated in the future to reflect the advances in medical knowledge.

Keywords: phosphate, TBI, molecular imaging, phosphorylation, brain edema, MRI 
contrast agents

1. Introduction

As progress of medical science/technology and imaging accelerates into the future, this 
work is intended as an important review regarding the related chemistry and biochemistry 
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Figure 2. Instruments used in the scientific laboratory such as the multinuclear NMR spectrometer (left), high-resolution 
mass spectrometer (middle), and fluorimeter (right). (Photos acquired at KAIST (Daejeon, Korea); high-resolutionmass 
spectrometer photo taken from kara.kaist.ac.kr.).

of traumatic brain injury (TBI). While some pertinent reviews have also appeared [1], we 
review what is known regarding phosphate chemistry. This is of critical importance for future 
researchers, and relates to brain-related injury, especially TBI. We sought to cover phosphates 
and phosphorylation in this context. From a database search, a list of keywords (phosphate, 
phosphonate, phosphorylation, traumatic brain injury, and probe, imaging, or sensor) and 
approximately 35 references have been acquired (ISI Web of Science, accessed in 2017).  
[1–35]. Instrumental techniques are also critically important and certain physical techniques 

are introduced and described as well (Figures 1 and 2). Reviews of biological phosphate 
imaging have emerged in the literature [36–39] and a combination of clinical and research 

aspects are presented. In addition, critically important phosphate species, probes, proteins, 
and related medicinal molecules are illustrated (Figures 3–6).

Figure 1. Dynamic 31P-magnetic resonance spectroscopy (http://www.mrtm.ethz.ch/research/mr-spectroscopy/
physiological-projects/muscle-physiology.html).
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Figure 3. Phosphates under discussion in this review.

Figure 4. Phosphates under discussion in this review.
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2. TBI introduction

According to the US Centers for Disease Control and Prevention (CDC), every year in the 
United States approximately 1.7 million individuals receive an injury classified as a TBI), and 
52,000 of these cases led to death [40]. TBI can be defined as alterations in brain functions and 
brain metabolism due to head collision with a stationary or moving object, or striking of a 
physical subject or coupling of an external mechanical force (e.g., g-force, blast shockwave) 
with the head [41–44]. Research has revealed that TBI can be associated with a variety of 

outcomes, from mild shock upon a single impact, to developing chronic traumatic encepha-

lopathy (CTE) at a later time, a neurodegenerative disorder linked to repetitive brain injuries 
[45]. Each damaging event may lead to a specific clinical condition, which requires specific 
observation and care to prevent long-term neurological damage.

Figure 6. Some of the important proteins under discussion including apolipoprotein (APOE), the CREB protein, etc. 
(Copied without permission from the Internet, accessed in September 2017, Wikipedia.). CREB (top) is a transcription 
factor capable of binding DNA (bottom) and regulating gene expression.

Figure 5. Therapeutic agents studied in the context of TBI and related studies. The nicotinamide adenine dinucleotide 
phosphate (NADP) oxidase inhibitor.
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Related head injuries can involve different motions of the event that ultimately impose a 
stretching force on neurons, commonly resulting in the dangerous formation of edema in 
the tissue, which increases tissue volume. Brain edema is influenced by complex molecular 
and cellular changes in blood–brain barrier (BBB) function, as well as cell volume regulation. 
These changes may also develop into pathological pathways. Edema resulting from the origi-
nal sustained injury has a devastating impact on morbidity and mortality. These downstream 
effects of TBI increase intracranial pressure, impair cerebral perfusion and oxygenation, and 
contribute to additional ischemic injuries [46]. Therefore, these changes may also develop 
into pathological pathways. Other issues related to cerebral hypoperfusion range from loss 
of consciousness to devastating neuronal damage. The reason for these symptoms is the lack 
of high-energy phosphate compounds and high-energy metabolic demand caused by disrup-

tion of the continuous oxygen supply in the blood to the brain.

In general, there are three major types of traumatic brain edema. The first is vasogenic due to 

disruption of the BBB, which results in extracellular water accumulation. The second is cyto-
toxic/cellular due to sustained intracellular water collection. The third is called osmotic brain 

edema, which happens because of osmotic imbalances between blood and tissue. Rarely after 
TBI do we encounter a “hydrocephalic edema/interstitial” brain edema related to an obstruc-

tion of cerebrospinal fluid outflow [47]. Various detailed case studies have emerged that con-

tinue to raise the alarm and grab the attention of researchers to understand the effects of 
TBI. For many repeated types of injuries to the head, in certain individuals CTE has similari-
ties to age-related neurodegenerative diseases [1]. Model systems such as rats [4, 6, 12, 13, 15, 
17, 28, 29, 32, 33] and mice [5, 9, 11, 12, 18, 20, 25] have been employed to better understand 
the mechanisms of TBI.

Phosphorus is a very important element in the body and is responsible for approximately 
1.1% of total body mass. In the body, almost all of the phosphorus is combined with oxygen, 
forming phosphate. Phosphate acts as a body’s electrolytes, carrying an electric charge in 
body fluids such as blood. The majority of phosphate in the body (85%) comes from bone [48]. 

The rest is stored as high-energy phosphate or in its free form, where it acts as a substrate for 
adenosine triphosphate (ATP) production. Even though phosphate metabolism in trauma has 
not been well studied, there are some interesting reports on phosphate in TBI that involve 
hypophosphatemia. In 2010 Lindsey et al studied 25 patients with TBI and found out that 
these individuals had a lower serum phosphorus concentration than those without TBI, sug-

gesting ongoing phosphate loss in the TBI patients [49].

To date, conventional computed tomography (CT) is the main technique for the evaluation 
of TBI for patients’ diagnoses. However, CT and magnetic resonance imaging (MRI) still can-

not be used to predict neurocognitive functional deficits at any stage of TBI, because they 
do not image the functional pathology for the neurocognitive outcome [50]. Therefore, other 
techniques such as 31P-magnetic resonance imaging/spectroscopy (31P-MRI/MRS) and posi-

tron emission tomography (PET) are used as alternatives to provide insight into the metabolic 
changes that arise from TBI and to reveal the damage that contributes to short- and long-
term impairment. In this chapter, a review of several relevant contributions of neuroimaging 
towards an improved understanding of TBI is presented, using both PET and 31P-MRI/MRS.
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3. MRI techniques for TBI that involve phosphates

In terms of MRI for TBI, various techniques have been employed (Figures 1 and 2). For 
example, T2-weighted MRI has been used [5]. Interestingly, in 1990 Heiss et al. used PET of 
[18F]fluorodeoxyglucose (FDG)coupled with 31P-MRS to diagnose tumors in the brain. The 
study suggested that both methods can examine different aspects of tumors in the brain and 
can be used as a tool for further classification of brain tumors or diseases related to the brain 
such as TBI [51]. A further study in 2002 by Greenman et al. used a method called three-
dimensional rapid acquisition with relaxation enhancement (RARE) pulse sequence for 
direct measurement of phosphocreatine (PCr) images of the human myocardium. The aim 
of this study was to assess the metabolic state of myocardial tissue in several disease states 

and determine the efficacy of therapeutic mediation [52]. Then, in 2005, Greenman et al. 
published a work related to 31P-MRS to evaluate the metatarsal head region of the foot in 
neuropathic diabetic patients. The study concluded that a very uniform net magnetization 
can be achieved and the use of double-tuned birdcage radiofrequency coils can improve 
the quality of MRI/MRS examinations [50]. A study in 2018 conducted by Chen et al. using 
in vivo 31P-MRS magnetization transfer (MT) suggested that MRS provides a direct mea-

sure of neuronal activity at the metabolic level by investigating the change in cerebral ATP 
metabolic rates in healthy adults upon repeated stimulation [45]. 31P-MRS has also proven 

effective in detecting a selective saturation sequence for ATP and phospholipids. Thus, the 
31P-MRS-MT technique at 3 T is a good candidate for neurological and neuropsychiatric 
disorders because of the noninvasive nature of NMR studies. Additionally, 31P-MRS was 

reported and discussed in 2004 by Cernak et al. [6] The technique involving metals such as 
manganese is also applicable: manganese-enhanced MRI was used in a 2011 study by Tang 
et al. [29] Additionally, ex vivo diffusion tensor imaging was implemented in a study in 
2012 by Jin and coworkers [5].

1H, 31P, and 13C in vivo MRS are complementary techniques that allow noninvasive mea-

surement of different aspects of brain metabolism that may contribute to the clinical man-

agement of patients with acute TBI [53]. 13C-MRS measures the breakdown of intake of 
13C-labeled sugar (e.g., glucose) via glycolysis and the tricarboxylic acid cycle. Even though 
not many 13C-MRS studies have been conducted, the development of in vivo hyperpolarized 
techniques shows a potential to detect TBI. On the other hand, 31P-MRS allows measure-

ment of high-energy phosphates (ATP and PCr) produced by oxidative phosphorylation 
and creatine kinase in mitochondria [54]. Changes in these metabolites have been noted in 
several patients and animal studies (further study might reveal the role of the high-energy 
phosphates). 1H-MRS is the most commonly used MRS technique for studying brain metab-

olism following TBI. It has the potential to measure various metabolites: some are associ-
ated such as lactate, Glu and Gln, which can also be measured by 13C-MRS. Creatine and 
N-acetylaspartic acid are associated with the ATP and PCr, which can also be measured with 
31P-MRS. Thus, the ratios of high-energy phosphates are thought to represent a balance in 
the brain. In addition, the chemical shift difference between inorganic phosphate and PCr 
enables calculation of intracellular pH. 13C-MRS detects the 13C isotope of carbon in brain 
metabolites [55]. 
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4. Molecules of importance

There are various small molecules used either as diagnostic agents or potential therapies in 
the context of phosphate TBI studies. We can also consider small molecule probes and those 
coupled with the use of pharmaceuticals (Figures 3–6).

5. PET imaging

PET is an important clinically used instrumental technique that requires an administration 
of artificial diagnostic agents (Figure 1). The artificial agents used involve one disintegrating 
atom such as the 18F or 11C isotope. The isotope is generated and then covalently attached (by 
a simple chemical reaction and protocol) to a small molecule prior to nuclear medical exami-
nation [13, 21].

PET imaging is well known for its sensitivity for small molecular changes (nanogram scale) 
compared to milligram or microgram for MRI or CT. PET also is able to provide important 
information on brain metabolism. As a result, PET imaging is used to measure a change in the 
glucose metabolism after TBI. The magnitude and duration have been correlated with worse 
behavioral and cognitive outcomes [56]. These results regarding cerebral glucose utilization 
were obtained using deoxyglucose (DG) labeled with 14C and autoradiography [57]. DG was 
chosen because DG is phosphorylated but not further metabolized, becoming trapped in the 
cell with a slow clearance rate. For noninvasive imaging, a positron-emitting isotope such as 
18F can be incorporated within DG, resulting in the production of [18F]FDG; this then accumu-

lates in brain tissue in proportion to glucose uptake and the level of phosphorylation and is 
quantifiable using the technique of PET imaging [58].

For more information on nuclear chemistry and the mechanism of positron/electron capture 
as well as the preparative chemistry, please see other sources.

6. Phosphate species

There is a range of phosphate species used in biology. In some ways, the phosphates are cen-

tral to the discussion, but in other ways they are peripheral to the thrusts of literature reports. 
The phosphates under discussion are shown in Figure 3 and listed below.

7. Phosphorylation

Phosphorylation of proteins (serine, threonine, and tyrosine), for example, is an essential 
theme in biology. It is a constantly monitored and investigated process in biological systems, 
and continues as a vital aspect in the study of neurodegenerative disease research because it 
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relates to kinase and phosphatase activity (Figure 3). For example, tau protein has been cen-

tral in Alzheimer’s disease (AD) hypotheses for many years. Hyperphosphorylation is consid-

ered to be an important step in disease pathology [59].

Among many kinases proteins, mitogen-activated protein kinases (MAPKs), protein kinase 
B (also known as Akt), and glycogen synthase kinase (GSK) are the major kinases involved 
in cellular signaling, and as confirmed by the study from Joseph T. Neary, MAPKs, Akt, and 
GSK respond to trauma of the central nervous system (CNS). Therefore, it is very important 
to conduct further studies of these proteins to provide a better understanding of their role in 
the pathogenesis of many disorders, including traumatic injuries of the brain [58]. A study 

by Naoki Otani et al. showed that the extracellular signal-regulated kinase (ERK) pathway 
is triggered in lesions in regions of selective vulnerability after TBI and has a devastating 
effect on the hippocampus. The results show that pretreatment with U0126 (an ERK inhibitor) 
decreases neuronal cell loss after TBI [60]. Meanwhile, a study conducted by Noshita et al. 
also suggested that phosphorylation of Akt at serine-473 and DNA fragmentation after TBI in 
mice showed that phospho-Akt was decreased in the injured cortex 1 h after TBI and tempo-

rarily increased at 4 h in the perifocal damaged cortex. They concluded that the degree of Akt 
phosphorylation is dependent on the intensity of cellular damage after TBI [61].

Another study revealed that MAPKs are involved in pathophysiological TBI. Thus, regulat-
ing the MAPK pathway-mediated cerebral damage after acute injury could be a direction for 
the development of the novel therapeutic target in TBI [62–64]. Study of a simple chemical 

compound, sodium selenite, was performed. Sodium selenite was found to upregulate pro-

teins that help to remove the phosphorylation group from its position on the amino acids in 
particular proteins. The specific enzyme is called PP2A/PR55 (protein phosphatase 2A regula-

tory subunit PR55). In a study from 2014 by Zhu et al., phosphorylation of various molecules 
was considered as a result of cerebral contusion (mouse model). The following molecules 
were studied: Akt, mTOR (mammalian target of rapamycin), and S6RP [35]. For example, the 
Thr308 and Ser473 sites of Akt are important phosphorylation sites for activating Akt. Thr308 
becomes phosphorylated by PKD1 and other enzymes, including PDK2 phosphorylate Ser473. 
Activated Akt mediates several responses, including phosphorylating a range of intracellular 
proteins. mToR and S6RP are downstream targets of the PI3K/Akt pathway. Phosphorylation 
of a precursor stimulates activation of mTOR and S6RP [65–67]. Some phospholipids are ubiq-

uitous and have been the subject of imaging regarding cell membrane dynamics.

8. Other phosphates

Various free, small, and organically bound phosphates are encountered in the phosphate 
imaging TBI literature:

• Pentose phosphate (see Figure 3)

• ATP and its dynamics [8]

• Reduced nicotinamide adenine dinucleotide phosphate (NADPH)
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• N-acyl-phosphatidylethanolamines [20]

• Lysophosphatidylcholine [20]

• Ceramide phosphate [20]

• Bis(monoacylglycero)phosphate [20]

• Sphingosine-1-phosphate [20]

• Lysophosphatidylserine [20]

• N-acylethanolamine phospholipids

The result from Emily V. Mesev et al. proposes that the endogenous production of ceramide-
1-phosphate (C1P) via ceramide kinase in brain tissue increases the basal activity of P-glycoprotein 
and contributes to general neuroprotection in healthy brains within the BBB. In cases of cellular 
injury or stress, it is possible that increases in C1P would act as a neuroprotector [68].

A study from Alice E. Pasvogel et al. showed that following TBI, membrane integrity of neu-

rons and neuroglia is compromised resulting in elevated phospholipid levels in the cere-

brospinal fluid. The pattern of change and the concentration of each of the phospholipids 
were different for those who died and those who survived following TBI. In conclusion, the 
study found the increase concentration of lysophosphatidylcholine in those who died. These 

findings give a preliminary proof of greater disruption of central nervous system membrane 
phospholipids in patients who died after TBI [69, 70].

9. Extracellular phosphates

In addition to the endogenous phosphate species that are produced in the biological system, 
there are also exogenous or xenobiological compounds that can be discussed. Chitosan com-

bined with β-glycerophosphate disodium (β-GP) for use as a thermosensitive hydrogel was first 
reported by Chenite in 2000. This gel-forming biopolymer can be used for the development of 
therapeutic implants. Further study by Dong et al. from 2015 involved a hydrogel that consisted 
of derivatives of phosphate groups [10]. The result suggests that an injectable thermosensitive 
chitosan/gelatin/β-glycerol phosphate (C/G/GP) hydrogel could release the phenolic antioxidant 
ferulic acid (FA), which can inhibit the neurological oxidative stress and effectively protect the 
brain from further impairments. Another study from Ibrahim Jalloh et al. in 2015 also suggested 
that there was a shift in glucose metabolism from glycolysis to pentose phosphate pathways 
(PPPs) with decreasing brain tissue oxygen concentrations after TBI. This finding gives another 
perspective on the roles of PPPs and glycolysis after TBI, and whether they can be manipulated 
to enhance the potentially antioxidant role of PPPs and give better outcome to TBI patients [71]. 

In 2014, Brend L. Fiebich et al. suggested that prostaglandin E2 (PGE2), produced by the 
enzymatic activity of cyclooxygenases (COX) 1 and 2, is the common mediator for the inflam-

matory brain that leads to TBI. The group proposed a two-hit model for neuronal injury. First, 
an initial localized inflammation mediated by PGE2 was then followed by the release of ATP 
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by injured cells (second hit). In this study, it was concluded that by inhibiting the P2 recep-

tor in the second hit using P2 receptor-based antiinflammatory drugs (PBAIDs) the activity 
of specific ectonucleotidases and release of excessive ATP could be increased and is another 
approach to counter neuroinflammation [72, 73].

10. MRI contrast agents

In TBI phosphate literature, MRI contrast agents have been previously described [31]. Structural 

information about the brain can be quantified using brain volume based on T
1
-weighted 

MRI. Even though the most common contrast agents are based on gadolinium, new pharma-

ceuticals (for example, gadobenate benate dimeglumine (Gd-BOPTA)) have been developed 
with higher T

1
 and T2 relaxivity to improve signal intensity enhancement and thereby improve 

lesion visualization [74]. Garcia-Martin et al. used a phosphonated Gd3+-based contrast agent 
to measure intravascular acidification in rat gliomas. To distinguish the differences in pH, [75, 
76] the contrast agent used undergoes changes in T

1
 relaxivity over a broad range from pH 6 to 

8 [77]. This application is an example of an alternative for TBI symptom detection.

Another study using manganese-enhanced MRI (MEMRI), in which the manganese ion acts 
as an MRI contrast agent, was used to study rats subjected to a controlled cortical impact. The 
results suggest that MEMRI detected early indications of excitotoxic injury and BBB disruption 
that preceded vasogenic edema in the hyperacute phase and offer a novel contrast that comple-

ments conventional MRI in the study of TBI [78, 79]. In 2009 Chapon et al. revealed that MRI con-

trast agent can detect the inflammatory progression by radiolabeled peptide (IELLQAR) to target 
E-selectin, an important intercellular adhesion molecule involved in the leukocyte cycle [78].

11. Therapeutics tested

Small molecules are at the heart of medically treating people who have received TBI. (R,S)-2-
Chloro-5-hydroxyphenylglycine (CHPG [5]) was studied. This compound has been studied 

by  David J loane et al. in 2013 [80] and the result in mice model demonstrate that activation 
of mGluR5 using the selective agonist and CHPG, within 30 minutes after the moderate-
level TBI significantly improved sensorimotor and cognitive function recovery and reduced 
TBI-induced lesion volumes in the mice model. Next, edaverone (Figure 5) was used [11]; 
it was found to be effective in the mouse model under study. The theme of concussion-
induced depression is elucidated in this paper [11].

12. Proteins and enzymes

There are also related proteins in these studies. Perhaps the most central protein in a discus-

sion of neurodegeneration is the beta amyloid protein (Aβ)—one of the hallmarks of AD. It 

Traumatic Brain Injury - Pathobiology, Advanced Diagnostics and Acute Management164



can be used as a baseline measurement. Studies by the Smith [81] and Sharp groups [82] 

showed that Aβ plaques may be found within TBI patients. The study also suggests that rapid 
Aβ plaque formation may result from the accumulation of amyloid precursor protein in dam-

aged axons and a disturbed balance between Aβ genesis and catabolism during the process of 
TBI. In this study, the authors took an image of Aβ plaque burden in long-term survivors of 
TBI and made determinations to generate a correlation between traumatic axonal injury and 
Aβ concentration. By comparing the distribution of Aβ to AD, they found that Aβ-comprised 
plaque in the TBI survivors decreased in neocortical regions but increased in another brain 
region, the cerebellum. This then suggested that TBI may dispose one to an AD-like fate [25]. 

There are also phosphate-related reports involving studying the reduction of certain pro-

teins after the onset of TBI. Such proteins include CREB and PSD95 [26]. Then there is car-

bamylated erythropoietin (EPO) [4]; EPO is a pleiotropic cytokine that identified its role in 
erythropoiesis (the process by which red blood cells are produced) [83]. EPO was recognized 
for its hematopoietic properties; however, many researchers around the globe were attracted 
by its function as a tissue protector. In 2004, a study from Leist et al. showed that the carba-

mylation of EPO formed a kind of nonhematopoietic derivative, cEpo. This reaction surpris-

ingly eliminated its erythropoietic effects; however, it keeps its function in tissue protection 
[84]. These results led to another study conducted by Fiordaliso et al. from 2004, which sug-

gested that the erythropoietic and tissue-protective effects of EPO were based on different 
receptors [85]. These discoveries have brought many researchers to design and synthesize 
EPO derivatives with tissue-protective effects only. To date, there are two major, developed, 
modified EPO molecules that have tissue-protective effects: cEpo and asialoerythroprotein 
(asialoEpo). Interestingly, the first modification of EPO through carbamylation was reported 
by Leist et al.; however, the method of producing cEpo was described in a patent by Warren 
Pharmaceuticals [86]. This newly reported research may shed new light on the development 
and application of cEpo, a prospective drug candidate for neuroprotection. There are studies 
that involve delayed mGluR5 activation and targeting of intermediate proteins [3]. One study 
found that activation of metabotropic glutamate receptor 5 (mGluR5) by CHPG decreases 
microglial activation and release of associated proinflammatory factors in vitro, which is 
mediated, in part, through inhibition of reduced NADPH oxidase. These results suggested 
that treatment with CHPG may significantly limit lesion progression in TBI through mGluR5 
receptors [87].

13. Conclusions and future outlook

There are various ways that the wide variety of phosphates that exist in biology are involved 
in health and disease; ions such as phosphates can be exploited in many prospective ways 
in the future and in particular they could be imaged in new ways. This review concerned 
phosphates and TBI reports in which the discussion or study involved molecular imaging. 
The reports were clinical and involved laboratory studies. Animal models were often used. A 

great deal of biochemistry was described; often, enzyme activities were monitored and these 
trends were published.
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This fresh review was intended to help medicinal chemists make new connections. The major 

goals are intended to help achieve future innovation of potential treatment of TBI with chemical or 

biological agents. Administration within the “golden hour” for the best efficacy is an essential point 
to make. In terms of imaging there are new MRI techniques and experiments that are avail-
able as well. Some of the most important instrument manufacturers such as GE Healthcare 
(Milwaukee, WI), Bruker, Hitachi Medical Corporation, Phillips, and Toshiba Medical 
Corporation provide the current hardware for the task at hand [88–92]. However, biochem-

istry can allow for additional innovative imaging to be undertaken. Below are a few detailed 
aspects for future study with regard to TBI and phosphate research.

13.1. Future

More commonly, research in the future will prominently feature the effects on phosphate 
metabolism. With phosphate metabolism still in its infancy [93], a fuller treatment would 
involve a great deal of related research. Therefore, we have described some related papers 
that involve important points about phosphates.

• Much research effort involves the status of enzyme activity. The importance of accurately 
carrying out immunohistochemistry involving phosphorylated proteins can be under-

scored [16, 47]. How well Western blots and other related assays are prepared and con-

ducted by laboratory personnel and how they can be best carried out and executed are 
extremely important for the field.

• The theme of subcellular redistribution of phosphates can be made more pronounced [16]. 

Novel chemical probes that can “chase” the constituents between different cellular com-

partments can be designed and studied.

• The importance of the maintenance of vasculature and smooth muscle cells that help con-

stitute the microvessels within neurological tissue can be further studied. How these struc-

tures are effected by TBI in, e.g., mouse models can be further determined [16].

• Overabundant Reactive Oxygen Species (ROS) concentration driven by Fenton reaction has 
major role in the transformation of many highly radical species such as ROS/RNS. These 
highly reactive species, can lead to many disturbances such as TBI. See references herein 

and elsewhere for an introduction to ROS and their analysis. MRI is a very common theme 
in research [1, 15, 28, 29, 31], as well as the closely related instrumental technique of NMR 
spectroscopy.

• How phosphates are interrelated (via brain injury) with the range of ROS is an important 
quest in basic science.

• More research about phosphates in gliosis needs to be researched. How can gliosis best be 
imaged and can it relate to the homeostasis of phosphates?

• What is the range of factors that delays mGluR5 activation and how do phosphates or 
phosphonates become involved?

• How can researchers parse between secondary and primary pathology at the chemical level 
regarding both experimental and clinical research of TBI phosphate activity?
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• What divergent effects might arise from prior organophosphate/organophosphonate pesti-
cide exposure (a history of exposure) in which phosphonates are located where phosphory-

lation usually takes place? How does this effect hinder or perhaps help in etiology? How 
can medicine take advantage of this artificial preloading?

Abbreviations

AD Alzheimer’s disease

ADP adenosine diphosphate.

ATP adenosine triphosphate

Akt protein kinase B

APOE apolipoprotein

BBB blood brain barrier

C1P ceramide-1-phosphate

CBF cerebral blood flow.

COX cyclooxygenases

CREB cAMP response element-binding protein

CTE chronic traumatic encephalopathy

Gd-BOPTA gadolinium benate dimeglumine

Gln glutamine

Glu glutamic acid

HR-MS high resolution–mass spectroscopy.

KCl potassium chloride.

KH2PO
4
 monopotassium phosphate.

MEMRI manganese-enhanced MRI

mGluR5 metabotropic glutamate receptor 5

MRI magnetic resonance imaging

MRS magnetic resonance spectroscopy

mTOR mammalian target of rapamycin

NAA N-acetylaspartic acid

NADPH nicotinamide adenine dinucleotide phosphate

NaCl sodium chloride.

Na2HPO
4
 sodium hydrogen phosphate.
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NMR nuclear mass resonance

NOX2 nicotinamide adenine dinucleotide phosphate oxidase.

PGE2 prostaglandin E2

PBAID P2 receptor-based antiinflammatory drugs

PBS phosphate buffered saline.

PET positron emission tomography

PP2A/PR55 protein phosphatase 2A regulatory subunit PR55

PSD95 postsynaptic density protein 95

TBI traumatic brain injury

Tg mice transgenic mice.

TP triphosphate

S6RP phosphorylation of S6 ribosomal protein
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