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Abstract

In this chapter, the physical principles to be taken into account in thermoelectricity at the
nanometre scale are discussed.We argue that the numerical methodsmust also be adapted to
the emergence of new physical behaviours at that scale, namely, wave propagation of heat,
diffusive-ballistic transition, nonlocal effects, among others. It is first shown that thermoelec-
tric phenomena at the nanoscale can be described by introducing thermodynamic inertia and
nonlocal effects. The transport equations are obtained from the thermodynamics of irrevers-
ible processes. After this, we introduce the Spectral Chebyshev Collocation method as a well-
suited numerical method to deal with the new physical behaviours appearing at the nano-
scale. We then show the use of these formalisms to analyse specific and interesting aspects of
the optimization of pulsed thermoelectricity and coupled thermoelectric modules.

Keywords: electrothermal, pulsed thermoelectricity, nanometre length scale, heat wave
propagation, size effects, thermal optimization, coupled thermoelectric modules

1. Introduction: irreversible thermodynamics of thermoelectricity

Heat, electron and hole transport and generation-recombination of electron-hole pairs are

processes which determine the functioning of thermoelectric devices. In this section, the prin-

ciples of irreversible thermodynamics of modelling of thermoelectric phenomena are exposed.

The contributions to the entropy production in the stationary state due to the dissipative
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distribution, and reproduction in any medium, provided the original work is properly cited.



effects associated with electron and hole transport, generation-recombination of electron–hole

pairs as well as heat transport are analysed.

The operation of thermoelectric devices occurs on the basis of the so-called cross effects. On

the one hand, the Seebeck effect which arises when an external temperature difference is

applied leading to a charge flux and, on the other hand, the Peltier effect which causes

thermal fluxes in the presence of an applied voltage [1, 2]. This is also connected with the

Joule and Thomson effects arising with the electrical current together with the non-

equilibrium electrons and holes and electron–hole recombination phenomena. The latter

becomes a thermal source causing an internal energy heterogeneity described through the

internal energy balance equation [3].

The importance of electron–hole recombination must be remarked since the optimization of

the device must be achieved in the regime of bipolar transport [4]. In this context, the problem

of heat dissipation and its removal concerns the parameters that characterize the work of the

device. When the dimension of the device goes to the nanometric length scale, nonlocal and

memory effects must be taken into account [5]. This is achieved through the introduction of

thermodynamic inertia in the constitutive equations of the dissipative fluxes and local depen-

dence of transport coefficients, respectively. In the following, the constitutive equations of

dissipative fluxes will be derived from the very principles of irreversible thermodynamics [6].

Then nonlocal and inertial effects will be introduced.

Let us consider the system constituted by two species (electron and holes) and the lattice.

Firstly, define the electron and hole densities by n r
!

; t
� �

and p r
!

; t
� �

. The continuity equations

for the electrons (electric charge �q) and holes (electric charge þq) are given by

q
∂n

∂t
� ∇ � Jn

!
¼ �qR, (1)

q
∂p

∂t
þ ∇ � Jp

!
¼ �qR, (2)

where Jn
!

and Jp
!

are electric charge fluxes of electrons and holes, respectively, q is the elemen-

tary electric charge and R is the balance of generation and recombination of electron–hole pairs

processes. Now we write the balance equation of total internal energyu including the contri-

bution of electrons un, holes upand the lattice uL:

∂u

∂t
þ ∇ � Ju

!

¼ � E
!
� Jn

!
�Jp

!
Þ þ P,

�

(3)

with u ¼ un þ up þ uL and Ju
!

¼ J
!u

n þ J
!u

p þ J
!u

L the total internal energy flux. The total electric

field (external plus self-consistent field) is represented by E
!
. Finally, P is a source term which

can include light energy transference to the lattice and other processes. We use the expression

for the Gibbs equation for each of the components of the system in order to find the balance
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equation of the total entropy density. We begin by writing the corresponding Gibbs equation

for electrons, holes and the lattice. They are

Tndsn ¼ dun � Φndn,

Tpdsp ¼ dup þ Φpdp,

TLdsL ¼ duL,

(4)

In these equations, Φx is the electrochemical potential of species x ¼ n, p. Explicit expressions

for the electrochemical potentials are the following.

Φn ¼ νn � qφ,

Φp ¼ νp þ qφ
(5)

being φ the total electric potential (external plus self-consistent field). At this point, it is

convenient to mention that the self-consistent electric field is given by Poisson’s equation:

∇ � ε∇φs

� �

¼ q N�
A þNþ

D þ n� p
� �

, (6)

where ε is the permittivity constant and N�
A , N

þ
D are the densities of ionized acceptors and

donors, respectively. It is now assumed that the components of the system are in thermal

equilibrium, that is, Tn ¼ Tp ¼ TL � T. The sum of Eqs. (4) yields the balance equation for the

total entropy density. One gets

∂sT
∂t

þ ∇ � J
!s

T ¼ J
!s

T � ∇
1

T

� �

þ
1

T
Jn � E

!`,

n þ
1

T
Jp � E

!,

p þ R
Φn � Φp

T

� �

þ
P

T
: (7)

In obtaining Eq. (7) use has been made of Eqs. (1–3). The total entropy density sT in Eq. (7) is

then given by.

sT ¼ sn þ sp þ sL: (8)

The total entropy flux J
!s

T has been defined as

J
!s

T ¼
1

T
Jq
!
þq�1

ΦnJn
!

þq�1
ΦpJp

!
Þ,

�

(9)

and the heat flux Jq
!
becomes:

Jq
!
¼ Ju

!

: (10)

The field E
!,

x in Eq. (7) is a generalized electric field given by E
!,

x ¼ q�1∇Φx ∓ E
!
, with x ¼ n, p.

The right-hand side of Eq. (7), excepting the term P=T, is the entropy generation term divided

by the temperature, that is,
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Tσ ¼ Jn
!

�E
!`,

n þ Jp
!

�E
!,

p
� J

!s

T � ∇T þ R Φn � Φp

� �

, (11)

and it has the form
P

Ji
!
�Xi

!
, where Ji

!
and Xi

!
are generalized fluxes and thermodynamic forces,

respectively. This allows us to identify the dissipative fluxes, and therefore, the origin of

irreversibilities in the system. The generalized fluxes are Jn
!
; Jp
!
; J
!s

T
;R

� �

and the corresponding

forces E
!,

n; E
!,

p;∇T;Φn � Φp

� �

.

The second law of thermodynamics demands that σ > 0: This condition is satisfied if the

thermodynamic forces and fluxes are linearly related as follows:

J
!

n

J
!

p

J
!s

T

R

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼

Lnn 0 Lns 0

0 Lpp Lps 0

Lsn Lsp Lss 0

0 0 0 LRR

0

B

B

B

@

1

C

C

C

A

E
!,

n

E
!,

p

∇T

Φn � Φp

0

B

B

B

B

B

@

1

C

C

C

C

C

A

, (12)

where the coefficients Lxy are the so called Onsager coefficients. They are determined through

phenomenological arguments and obey the reciprocity Onsager relations, namely, Lxy ¼ Lyx,

with x, y ¼ n, p, s, R. Eq. (12) are the constitutive equations of the system which make complete

the description offered by Eqs. (1–3, 6) together with the caloric equation uT ¼ cVT, where cV is

the specific heat at constant volume. The constitutive equation, Eq. (12), contain well-known

phenomenological laws: Ohm, Fourier, Fick, and Peltier and Seebeck effects. In the following

section, we expose some additional considerations to be taken into account when the dimen-

sions of the thermoelectric systems are in the nanometric length scale.

2. Non-local and memory effects

In this section, we address the problem of heat transport in a thermoelectric nanoscaled layer

when an electric current circulates through it. At that length scale, nonlocal and memory

effects must be included. The former are due to size effects on the transport coefficients when

going to the nanometric scale and the second one become from the thermodynamic inertia of

the system. Let us consider the thermoelectric system shown in Figure 1, and let us pay

attention to one of the semiconductor branches, the n type for instance.

The analysis of heat transport in that element of the device of Figure 1 is based on the

constitutive equations obtained in Section 1, Eqs. (12). The equations explicitly read [7–9]

τeff
∂q

∂t
þ q ¼ � K Lð Þ þΠSE Lð Þσ Lð Þ½ �

∂T

∂x
�Πσ Lð Þ

∂V

∂x
, (13)

τJ
∂J

∂t
þ J ¼ �SE Lð Þσ Lð Þ

∂T

∂x
� σ Lð Þ

∂V

∂x
, (14)
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where for the sake of simplicity, we have denoted the heat and electric charge fluxes as q and J,

respectively. Inertia and no locality were introduced through the time derivatives of the heat

and electric charge fluxes and the dependence of the transport and thermoelectric coefficients

on the width of the layer, respectively. The equations have been written in one spatial coordi-

nate since if the length L goes to the nanometric scale, the dimensions of the branch n in the y

and z directions become much larger than L. The times τeff and τJ are the relaxation times of the

heat and electric charge fluxes, respectively. K, σ and SE are the thermal conductivity, the

electric conductivity and the Seebeck coefficient, respectively. In Eqs. (13) and (14), they are

denoted to depend on the length L. Expressions for the transport coefficients as functions of L

are obtained within the higher order dissipative fluxes framework of extended irreversible

thermodynamics [10, 11]. The expressions are the following

K Lð Þ ¼
K0L

2

2π2l2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4π2
lp

L

� �2
s

� 1

0

@

1

A, (15)

σ Lð Þ ¼
σ0L

2

2π2l2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4π2
le
L

� �2
s

� 1

0

@

1

A, (16)

SE Lð Þ ¼
4π2S0l

2
e

3L2
2π le=Lð Þ

arctan 2π le=Lð Þð Þ
� 1

� ��1

, (17)

Figure 1. Thermoelectric couple system. From Ref. [5].
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with lp and le the mean free path of heat and electric charge carriers, respectively. K0, σ0 and S0

are the bulk thermal conductivity, electric conductivity and Seebeck coefficient, respectively. A

hyperbolic-type transport equation for temperature can be obtained by introducing Eqs. (13)–

(14) in Eq. (3) (with P ¼ 0) and using the caloric equation for the inner energy. The procedure

may be followed in Appendix A of reference [5]. The resulting equation is

αeff
∂
2T

∂t2
þ

∂T

∂t
¼ ν

∂
2T

∂x2
þ βJ2 þ ςJ

∂

∂t

∂T

x

� �

, (18)

where the dimensionless coefficients are defined as follows:

αeff ¼
τeff

τ
, ν ¼

K Lð Þτ

rCvL
2
,

β ¼
τJ20

rCvσ Lð ÞTh
, ς ¼

J0τeff SE Lð Þ

rCvL
:

(19)

The characteristic time τ ¼ π2L2rCv

4K Lð Þ is the diffusion time and Th is a reference temperature.

Equation (18) is here solved numerically for a thermoelectric thin film (in the branch n, see

Figure 1) subjected to a Dirichlet boundary condition in the hot side of the thermoelectric

device and a Robin type one in the cold side. We choose the space domain as �1 ≤ x ≤ 1, in such

a way that boundary conditions can be written as:

∂T

∂x

	

	

	

	

x¼�1

¼ γJT, T 1ð Þ ¼ 1, (20)

where the dimensionless coefficient γ is defined as γ ¼ SE Lð ÞJ0L= 2K Lð Þð Þ. As the initial condi-

tion, we state that the device is at room temperature, that is, T x; 0ð Þ ¼ 1. Eq. (18) shows step-

solutions which are very challenging numerically speaking. Thus, it was solved by using the

numerical code based on the Spectral Chebyshev Collocation method described in Section 3. In

Figure 2a, it is shown the time evolution of the cold temperature towards the stationary state.

Since Silicon is a basic material for short and long scale devices, our departing results come

from considering doped Silicon as working material, whose properties have been published

before in [12]: K0 ¼ 149 Wm�1 K�1, σ0 ¼ 35:5� 103 Ω
�1 m�1, SE ¼ 440� 10�6 V K�1 and

aE ¼ 88� 10�6 m2 s�1, where aE is the thermal diffusivity. The mean free path of the heat

carriers and their mean velocity are [10] lp ¼ 40nm and v ¼ 3K=rCplp, respectively. The mean

free path of electric charge carriers was assumed to be of the order of the lattice constant of

Silicon le ¼ 0:5 nm. As hot side temperature, we use Th ¼ 373:1 K [12]. We present the results

without further discussion. The temperature starts to decrease once the electric current is

applied. The transient to the stationary strongly depends on L. As it can be appreciated in

Figure 2a, as the Knudsen numbers δ (defined as lp=L) increases the wave behaviour appears.

On the contrary, for small δ, the steady state is reached quickly through a relaxation process

without any oscillation. The minimum reached temperature is about 160 K when δ ¼ 4. The

response of the system to a short electric pulse superimposed to the stationary state obtained
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with the optimal electric current was also studied. The squared electric pulse with magnitude

3:5 is applied at time t ¼ 50. The wave behaviour of temperature produces subsequent

supercooling transient process once the electric current pulse has been applied. The duration

of it exceeds the duration of the supercooling obtained with the pulse. The minimum reached

temperature is about 300 K when δ ¼ 4. In Figure 2a, it can also be seen an overheating after

the application of the current pulse (which occurs at the dimensionless time 50). This effect is

due to the thermal inertia, and it is more pronounced for small values of L for which the

thermal inertia plays a more important role. Figure 2b shows the evolution to the stationary

state by omitting in the calculations the effect of the size L on the Seebeck coefficient given by

Eq. (17). The oscillating decay for small values of L remains but, interestingly, the minimum

temperature reached is much higher than that reached when the effect of the size L on the

Seebeck coefficient is included by means of Eq. (17). Thus, the thermal efficiency of the cooling,

measured by the temperature difference reached, is much greater due to the influence of the

size on the Seebeck coefficient.

3. Computational methods

In this section, we present a couple of numerical methods in order to solve the hyperbolic

transport equation (Eq. (18)) that models the heat transport in thermoelectric thin layers. Since

Eq. (18) cannot be solved analytically, a numerical approach must be accomplished. Typically,

low-order numerical methods such as finite differences (FD) are used. However, because of the

high temporal gradients (due to the source term with crossed derivatives) for the small scales

in the problem, that is, when the heat wave propagation or ballistic transport is present, the FD

method fails in providing satisfactory results. As commented previously, this kind of equations

is very challenging and we opt for a high-order numerical method in order to find its solution.

High-order (or spectral) methods have previously been used to study heat transport based on

the Maxwell-Cattaneo-Vernotte equation giving a hyperbolic transport equation in macro-

scopic systems [14, 15] and in some microscopic devices [16]. Thus, in this section, we discuss

Figure 2. (a) Cold side temperature Tc as a function of time t for different δ. From Ref. [5]. (b) Cold side temperature Tc as

a function of time t for different L. In this case, there is no applied squared electric pulse and size effects on Seebeck

coefficient have been omitted. From Ref. [13]. The initial temperature in both cases (a) and (b) is 373.1 K.
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the numerical approximations of the one-dimensional hyperbolic heat transport equation for a

low- and a high-order schemes.

3.1. Finite differences

The code for the finite differences scheme is a standard one. It considers a forward difference

and a second-order central differences for the first and second derivatives in time, respectively.

In turn, for the second-order spatial derivative, a second-order central differences was used as

well. The grid points were uniformly spaced, the time integration was an explicit with constant

time step.

3.2. Spectral Chebyshev collocation

The high-order numerical code is based on the Spectral Chebyshev Collocation (SCC) method.

The method departs by establishing a partial sum of Chebyshev polynomials. The partial sum

is then considered to represent the solution of a partial differential equation (PDE). The

solution of the PDE equation is satisfied exactly at the Gauss-Lobatto collocation points

xi ¼ cos
iπ

N

� �

, i ¼ 1, …, N � 1, (21)

where N denotes the number of points or the size of the grid. Thus, the solution is in the

domain of the standard Chebyshev polynomials, that is {x| �1 < x < 1}. The partial sum of

Chebyshev polynomials was inserted in the spatial derivatives of Eq. (18) obtaining expanded

derivative matrices. The obtained coefficient equation system was solved by the matrix-

diagonalization method in the physical space directly. A further explanation of the SCC

method is found in [17, 18]. In order to compare directly with FD scheme, a coordinate

transformation to interval to 0 < x < 1 was done. The time marching scheme was the same as

the FD method.

3.3. Comparison

Figure 3a presents the steady-state temperature as a function of the spatial x-coordinate in the

thermoelectric film for the micro-scale. We can easily observe that the temperature difference

between the hot (Th) and cold (Tc) sides is about 3.1 degrees. Because of the Joule effect, the

temperature profile is parabolic. The cold side temperature Tc as a function of time is shown in

Figure 4b. The departing point is the initial condition when Tc = 373.1 K, then the cooling

Peltier effect acts till the temperature reaches the steady state Tc = 370 K. We can observe (in

Figure 3) that both numerical schemes agree quantitatively in the steady state spatial distribu-

tion as well as modelling the transitory state. If we define the error between both solutions as

ε ¼ max uFD � uSCCj j: (22)
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The maximum error for the steady profile (Figure 3a) with N = 30 is ε ¼ 8:6� 10�5, and the

error for the transitory is one order of magnitude higher, that is ε ¼ 2:5� 10�4 which is

acceptable.

As the length of the system L diminishes, reaching the nanoscale, the steady state is a line with

positive slope, see Figure 4a, whereas the wave heat transport is clearly visible during the

transient, showing a damped harmonic oscillation, see Figure 4b. At this scale, the αeff coeffi-

cient in the heat Eq. (18) becomes important, and thus, the wave term becomes dominant, see

Table 1. The overall error for the steady-state solution is acceptable (ε ¼ 9:8� 10�5). However,

it is considerable larger (ε ¼ 6� 10�3) for the transient. Finally, we can conclude that the SCC

technique is more robust since the convergence of the solution is assured with smaller grid

points than the FD method.

Figure 3. Comparison of the numerical schemes in the micro-scale. (a) Steady-state temperature profile; (b) transient of

the cold side. From Ref. [19].

Figure 4. Comparison of the numerical schemes in the nanoscale. (a) Steady-state temperature profile; (b) transient of the

cold side. From Ref. [19].
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4. Optimal performance of thin thermoelectric layers

The control of heat in the nanoscale could have important consequences in applications as

refrigeration, energy generation, energy transport and others. So, nanophonics has become a

very active field of theoretical, computational and experimental research in the last 15 years.

Many questions about the use of non-equilibrium thermodynamics principles at the micro and

the nanoscale are being discussed, and several issues should be solved to make devices at

those scales a matter of practical use. Particularly, devices in the micro and nanometric length

scales work at high frequencies and they generate heat fluxes that can be in the order of

thousands of watts per square centimetre. These irreversible processes elevate temperature

reducing the device’s life time. This makes necessary the study of those operating conditions

producing less dissipation, which often correspond to the minimum entropy production. Here

we describe the effects of the width on the time evolution of temperature in thin thermoelectric

layers and, particularly, on the thermal figure of merit and the entropy generation. The analy-

sis is based on hyperbolic-type Eq. (18) describing the time evolution of dissipative flows

including size effects on the thermal and electric conductivities. The hyperbolic Eq. (18) was

solved with a numerical code explained in Section 3. The transition from the diffusive heat

transport to the wave propagation regime is controlled by the system’s size when going from

the micro to the nanometric scale of lengths.

When applying an electrical current to the thermoelectric system in order to obtain the maxi-

mum gradient between boundaries, the temperature distribution along the system’s length is

parabolic as it can be seen in Figure 5a. Such current is named the optimal electrical current. In

turn, the entropy generation is a parabolic decaying function showing its higher value at the cold

end of the device. It is important to note that these profiles are invariant to the device length

when applying the optimal current. Figure 5b shows the dependence of the temperature differ-

ence between the boundaries of the thermoelectric (Eq. (23)), the thermal figure of merit

(Eq. (24)), the entropy generation (Eq. (25)), and, as functions of the length’s device (inset):

ΔT ¼ Th � Tc, (23)

ZTh ¼
2ThΔT

Th � ΔTð Þ2
, (24)

L(m) αeff β γ

1 � 10�4 2.16 � 10�8 7.81 � 10�3 7.38 � 10�3

1 � 10�5 2.16 � 10�6 7.81 � 10�5 7.38 � 10�4

1 � 10�6 2.16 � 10�4 8.27 � 10�7 7.82 � 10�5

1 � 10�7 2.16 � 10�2 2.39 � 10�8 2.26 � 10�5

1 � 10�8 2.16 � 100 2.00 � 10�9 1.89 � 10�5

1 � 10�9 2.16 � 102 1.97 � 10�10 1.85 � 10�5

Table 1. Dimensionless coefficients in Eqs. (18) and (20) as a function of the length of the system.
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S
:

xð Þ ¼ SJ
J2

T
þ SF

1

T2

dT

dx

� �2

, (25)

where the coefficients are SJ ¼ J0
2=σTh and SF ¼ K=l2. In Figure 5b, we can note that devices

with L < 10�6 m increase their thermal figure of merit, from ZTh ¼ 0:017 (for L < 10�6 m) to

ZTh ≈ 0:4 for L < 10�8 m.

We find that the steady-state thermal figure of merit (TFM) improves as the width goes to the

nanoscale while the entropy generation increases. We identify a transition at a length of the

order of the mean free path of heat carriers; in silicon it is about 40 nm. When going from the

micro to the nanoscale, this transition is featured by an abrupt increment of both the total

entropy production and the TFM. Above L = 40 nm, the heat transfer is dominated by diffusive

processes; below this value, it is in the form of heat waves. The wave heat transport is clearly

visible in the nonstationary process. An interesting study of the ballistic-diffusive transition in

metals controlled by the wave number vector can be seen in [20].

5. Pulsed thermoelectric phenomena in thin films

As it was shown in Section 2, pulsed regimes produce a lower temperature than that obtained

in the stationary state even with the optimal electric current for both uniform and non-uniform

materials. This phenomenon is due to the fact that the Peltier effect occurs mainly at the cold

junction while Joule heating is distributed in the bulk introducing a difference in the time taken

by each one to influence the cold side of the device. The cold temperature is first changed by

the Peltier effect and after diffusion Joule heat reaches the cold junction affecting it. Some

Figure 5. Temperature T and entropy generation S profiles. Lines and dots denote the exact and numerical solutions,

respectively. J0 ¼ 5:7785x107 A/m2, L ¼ 1:0x10�4 m. (b) Temperature difference between boundaries ΔT, thermal figure of

merit ZTh and total entropy generation S as a function of L using the optimal electrical current. From Ref. [13].
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examples of devices which need to be overcooled during a short time are mid-IR laser gas

sensors [21], condensation hygrometers and microelectronic processors generating hotspots

[22–26]. The effect of the pulse form has been widely studied in macroscale of lengths. It has

been shown that by applying a quadratic pulse form, the supercooling effect can be improved

over other forms [27]. Some other pulse forms present additional advantages [28, 29]. Here we

explore the influence of the electric pulse shape in the supercooling effect when the dimensions

of the thermoelectric device go to the submicrometre length scale. We study the effects of the

shape of the electric pulse on the maximum diminishing of temperature by applying pulses in

the form t
a with a being a power going from 0 to 10.

In Figure 6, it can be seen the different shapes of the imposed electric pulse as a function of

time. The duration in all cases is 0.163 and the maximum magnitude 3.5 over the stationary

electric density (with normalized magnitude of one). The values are the optimal in order to

obtain the maximum supercooling for the squared shape (t0). In the same figure, t0 denotes the

squared-shape pulse.

In Figure 7, it can be seen the time evolution of the temperature during the supercooling at the

cold side Tc of the thermoelectric for two distinct thickness of the film, namely, (a) L ¼ 1� 10�4 m

and (b) L ¼ 1� 10�8 m. Each curve corresponds to one of the shaped pulses accordingly with the

notation of Figure 6. The curves in Figure 7a reproduces the previous result found in [23]

Figure 6. Pulsed electric density current as a function of time. Different pulse shapes are used in optimizing the

supercooling effect. From Ref. [30].
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(microscopic case). The curves in Figure 7b are the result of the present analysis. It is remarkable

the fact that the super cooling effect is about eight times larger at nanometric than at micrometric

scale.

Pulses with a fractionary number perform better for nanoscaled devices, whereas those with a

bigger than unity do it for microscaled ones. We also find that the supercooling effect is

improved by a factor of 6.6 over long length scale devices in the best performances and that

the elapsed supercooling time for the nanoscaled devices equals the best of the microscaled ones.

6. Coupled thermoelectric modules

Thermoelectric systems are efficient devices for small size cooling objectives. Thus, this section

is devoted to study the thermal performance of system composed of two thermoelectric

devices. As a first step, a theoretical model of the heat transport in both thermoelectric devices

will be developed. As a second step, the theoretical results will be compared with experimental

data. Similar experimental devices have been previously reported in the literature [31–36].

However, we use a local approach instead of global energy balances, which allow us to obtain

spatial distributions of the main physical properties.

6.1. Experimental procedure

The experimental set-up is conformed by a two-stage Peltier cooler, that is, two thermoelectric

modules connected electrically independent and thermally in series, see Figure 8. The modules

(with side length L = 30 mm and width h = 3.6 mm) are denoted by M in the figure and are

made of Bismuth Telluride alloys. The two-stage system is located on a metal plate (15� 8 cm).

The plate is kept at a constant temperature by the contact with hot water, which is continuously

forced to circulate by a pump in a rectangular frame where the hot plate is located. The pump is a

LMIMILTON ROYMicroprocessor dosing and is denoted by B. The modules are operated by an

electric current I from a BK PRECISION 1696 DC power supply V. The electric currents are in the

range 0 < I < 1.517 A. Avoiding the transient, the temperature on top of module one M1 was

Figure 7. Cold side temperature Tc as a function of time t for due to pulse shapes: (a) Microscale and (b) nanoscale.

Fractional pulse shapes perform better at the nanoscale. From Ref. [30].
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measured with a thermocouple (K type, Extech 470 True RMS Multimeter). Silitek thermal paste

was used for the joints between the thermocouple and the cold wall, and the two modules. The

latter is for avoiding the thermal decoupling of joints. When the two-stage system is turned on,

the temperature in the cold wall is diminished because the modules generate a heat flow from

the cold to hot wall. The error in the temperature data was obtained by adjusting a normal

distribution to the data at same points.

6.2. Mathematical model

The heat transport problem can be reduced by considering only the heat flux in a branch (n

type) of the thin thermoelectric modules, see Figure 9. An electric current Ii, i = 1, 2, is injected

through each of the thermoelectric modules. The system is thus subjected to a Dirichlet

boundary condition in the hot side at Th, and a Robin type one in the cold side Tc, see Eq. (20).

Figure 8. Scheme of two coupled thermoelectric devices. This study is devoted to the thermal analysis of the thermoelec-

tric materials denoted by n type. The devices are actioned by injecting an electric current Ii. The thickness (width) is

denoted by Li. The i denotes the first (1) and second (2) device. From Ref. [37].
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At this point we assume that each of the thermoelectric modules behaves independent, as the

single thermoelectric case (Eq. (18)), and they only share a common boundary. The heat

transport for the coupled system is modelled by a system of two one-dimensional differential

equations, each for every thermoelectric module

0 ¼ ν1
d2T1

dx2
þ β1J1

2, 0 ¼ ν2
d2T2

dx2
þ β2J2

2
: (26)

The subscript denotes the first (1) and second (2) modules. The boundary conditions for the

cold and hot sides are, respectively,

Figure 9. Scheme of two coupled thermoelectric devices. This study is devoted to the thermal analysis of the thermoelec-

tric materials denoted by n type. The devices are actioned by injecting an electric current Ii. The thickness (width) is

denoted by Li. The i denotes the first (1) and second (2) device. From Ref. [37].
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dT1

dx


 �

x¼�1

¼ γ1J1T1 �1ð Þ, T2 1ð Þ ¼ 1: (27)

While the coupling boundary conditions are

γ1J1T1 0ð Þ �
dT1

dx


 �

x¼0

¼ δLδKγ2J2T2 0ð Þ � δLδK
dT2

dx


 �

x¼0

, T1 0ð Þ ¼ T2 0ð Þ, (28)

being δL ¼ L1=L2 and δK ¼ K2=K1the ratios between the lengths and the thermal conductivi-

ties of modules 1 and 2, respectively. The coupling boundaries at x = 0 are obtained from a heat

balance and by equalling the temperatures of both devices. The solution to the system of

Eqs. (26) reads

T1 xð Þ ¼ a1x
2 þ b1xþ c1, T2 xð Þ ¼ a2x

2 þ b2xþ c2, (29)

where the coefficients ai, bi and ci are given by.

ai ¼ �
βiJi

2

2νi
, c1 ¼

δLδK a2 � 1ð Þ þ
a1 2þ γ1J1
� �

1þ γ1J1

γ1J1
� �2

1þ γ1J1
� δLδK 1þ γ2J2

� �

¼ c2,

b2 ¼ 1� a2 � c2, b1 ¼ c1 γ1J1 � δLδKγ2J2
� �

þ δLδKb2:

(30)

The difference of temperature between the hot and cold side is

ΔTcoupled ¼ T2 1ð Þ � T1 �1ð Þ: (31)

6.3. Comparison

Before presenting and discussing the theoretical results, the experimental measurements for a

single and a coupled system are shown in Figure 10a, b. Figure 10a shows the temperature

difference between the hot and cold sides ΔT as a function of the circulating electric current for

a single thermoelectric device. A parabolic behaviour with a maximum ΔT ≈ 25 K can be

appreciated. Figure 10b presents elliptic isocurves of ΔT as function of the two electric cur-

rents, in the case that the system is composed of two thermoelectric modules. For this array, the

maximum of the temperature difference is ΔT ≈ 34 K, that is, nine degrees of extra cooling are

obtained when using two thermoelectric modules instead of a single one. For both cases, the

single and two thermoelectric module system, the electric current is normalized with

I0 ¼ 0:93 A, which is the optimal current for a single module.

Figure 10c shows the temperature difference ΔT between the hot and cold sides as a function

of the electric current for a single thermoelectric device. This result can be compared with the

experiment, Figure 10a, and the parabolic behaviour with a maximum is found. Figure 10d

makes evident the dependence of ΔT when the system is composed on two thermoelectric
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devices, presenting elliptic isocurves. Theoretical results (Figure 10c, d) obtained from the

simple model discussed before agree qualitatively with the experimental ones (Figure 10a, b)

showing a maximum ΔTfor certain values of the electric currents. Since the theoretical model

used to get Figure 10c, d is a one-dimensional representation of a three-dimensional problem,

a quantitatively comparison is far from reflecting the experimental measurements. However, if

we calculate the percentage of the maximum extra cooling obtained when using two thermo-

electric modules instead of a single one, that is ΔTcoupled � ΔTsingle

� �

=ΔTsingle, we find that it is

the same for both the experimental and the theoretical results. The maximum extra cooling that

could be reached is 36%.

Some conclusions derived from the above are the following. First, the theoretical solutions of

the temperature difference between the hot and the cold sides show a good qualitative agree-

ment with the experimental measurements. Second, an optimal cooling with respect to the

electric currents circulating through the modules has been found. Finally, an improvement of

Figure 10. Temperature gradient ΔT as function of the electric current. (a) and (c) Single device. (b) and (d) Coupled

devices. First row, experimental measurements from reference [37]. Second row, theoretical predictions from Ref. [37].
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36% in the performance, measured as mentioned above, of the coupled thermoelectric modules

with respect to a single thermoelectric module is theoretically predicted. The analysis made in

this section can be useful for the design of thermoelectric coolers.

7. Discussion and conclusions

We have analysed different aspects of the performance of thermoelectric films when an

electric current flows through them, maintaining one of their sides at a constant temperature.

First, we considered the effects of the size of the film on the Seebeck coefficient and the

thermal and electrical conductivities as well as thermal inertia. This forms the basis for all the

analysis of the problem of reducing the dimensions to the nanoscale. The introduction of

such effects was done through the use of Eqs. (15)–(17) in the constitutive equations of the

irreversible thermodynamics of electric charge and heat transport, Eqs. (12). When the latter

are combined with the conservation equations of charge and energy, Eqs. (1)–(3), we arrive at

the heat transport equation that was used systematically throughout the development of the

analysis, Eq. (18). The different effects studied, namely, the wave behaviour of the propaga-

tion of heat, the response of the material to a pulse of electric current, the coupling of

thermoelectric couples, the transition from the diffusive regime of heat transport to wave

propagation, and so on were explained in terms of Eq. (18). The conclusions were diverse: (1)

Figure 11. Effect of Eqs. (15)–(17), which describe the variation of the transport and thermoelectric coefficients with the

size of the material l, on the thermoelectric figure of merit defined as usual: ZT ¼ σS
2
E
T=K.
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thermodynamic inertia improves the thermal performance of a cooler, (2) the transition from

diffusive transport to wave propagation of heat is controlled by the size of the thermoelectric

material, (3) in the operating pulsed mode in a cooler, the shape of the electrical pulse is

crucial for its thermal performance, (4) it is always possible to find values of the thermal

parameters of a device that optimize its performance, (5) the operation of thermoelectric

systems is closely related to the production of entropy in the system. Behind all these

behaviours is the combined effect of the reduction of the thermal and electrical conductivi-

ties of the material and the increase of the Seebeck coefficient with the reduction of the

dimensions. To close this section we show in Figure 11 the behaviour of the thermoelectric

figure of merit, ZT ¼ σS
2
E
T=K, when the thickness of a doped silicon semiconductor film

decreases towards the nanoscale of lengths. As can be seen in the figure, the increase in the

Seebeck coefficient dominates the reduction of thermal and electrical conductivities. The net

effect is the increase of the thermoelectric figure of merit. Notably, the figure at a length of

l ¼ 10�9
m is greater than that at l ¼ 10�5

m by a factor of 287.

8. Perspectives

Undoubtedly, a work perspective in thermoelectric power generation and refrigeration sys-

tems is to bring to the nanoscale the dimensions of the elements that make up structured

systems. There is a lot of work done in systems composed or structured from elements in the

millimetric escale of lengths or in larger scales [38], but a very promising perspective is the

construction of those energy converting systems from nano-components such as for instance,

the case of 1D phononic crystals. Several problems on thermoelectric phenomena that

require attention when going from the macro to the nanoscale are: effects of size on the

thermoelectric properties of the components of the nanostructured systems, the wave char-

acter of the propagation of heat and the phenomena of thermal interference and resonance,

the effect of wave propagation of heat in pulsed systems, the effects of size on irreversible

processes, the simultaneous consideration of the effects of size and the temperature depen-

dence of the properties of materials, the effect of thermal inertia on the wave propagation of

heat. It is also necessary to study the relationship between entropy generation and thermo-

electric conversion efficiency and between structure and efficiency. In relation to this, a

working hypothesis is that it is possible to find a structure that minimizes the production of

entropy and to exploit interference and resonance phenomena to improve the thermoelectric

energy conversion efficiency.
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