
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 10

Ka-Band HTS System User Uplink SNIR Probability
Models

Liping Ai and Hermann J. Helgert

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75920

Abstract

Ka-band High-throughput-satellite (HTS) systems reuse frequency bands in spot beams
for much higher system capacity and better spectrum efficiency. They however are prone
to intra-system co-color interference and so suffer from the channel signal-to-noise-plus-
interference ratio (SNIR) degradation. This chapter presents the development of the
uplink SNIR probability models for Ka-band spot beam HTS systems. The models are
applicable to different Ka-band propagation channel conditions of statistical significance.
Its use of collective representation to model traffic variation of co-color beams captures the
statistics of traffic variation and allows feasibility and variety of use case representation.
The analytical approach complements known studies and fills in the blank of the use cases
of urban and mobile users. The models can be used for system design performance
estimation and prediction. It features computation time and memory savings in numerical
implementation.

Keywords: spot beam, signal-to-noise-plus-interference ratio (SNIR), probability model,
co-color interference (CCI), Ka-band

1. Introduction

Communications satellites have been transitioning from coverage to capacity steadily in the

past three decades because of, mainly, the ever increasing demand for high data rates in

broadcast and Internet access, and the big data of Internet of Things (IOT). Going higher in

spectrum is one way to address the capacity demand. The first dedicated Ka-band experimen-

tal advanced communications technology satellite (ACTS) developed and operated by

National Astronomy and Space Administration (NASA) concluded the Ka-band precipitation

attenuation models and spot beam hopping via on-board switching. Its many experiments laid
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out the foundation for the current high throughput satellite (HTS) systems; most of them

operate in Ka-band.

A HTS system is a user spot beam system with frequency and polarization (color) reuse

applied among spot beams [1]. The higher frequency bands and color reuse increase system

capacity or throughput measured by data rate drastically compared to that of the traditional

broad beam systems in lower frequency bands without color reuse. Depending on the service

area, served population and service type, the later also increase the spectrum efficiency many

times. The highest capacity Ka-band HTS system today is ViaSat2 which offers a system

throughput of over 270 Gbps.

A variety of uncertainties exist in the complex Ka-band HTS systems including signal propa-

gation channel conditions from a user terminal to satellite, the channel noise, and the varying

co-color interference (CCI) power levels. The uncertainties also differ under different system

architectures or configurations [2]. They affect the system performance and are studied using

probability and statistics before a complex HTS system is constructed. These studies are aimed

at assessing system quality of service (QoS) performance matrix against the design specifica-

tions and are only feasible via simulations or numerical implementations for a complex system.

The current HTS systems are dominantly geostationary systems for its many advantages [2]. The

distinct disadvantage of a HTS system is its many co-color interferers (CCIs) resulted from

the color reuse. Moreover, Ka-band systems suffer much higher precipitation attention and noise

at higher operating frequency bands. Before DVB-S2, site diversity and power control were the

only regularly used fade mitigation methods; link availability at 99.9% is very expensive next to

unaffordable. With the use of DVB-S2 capable of covering a link budget gap of more than 15 dB

and other digital fade mitigation techniques, uninterrupted operation today has become afford-

able. To select the right combinations of the available digital technologies, the system designers

first estimate the system offered signal-to-noise-plus-interference ratio (SNIR) in a system design

as part of the estimation of the other system parameters in simulations or numerical

implementations of analytical studies at the early stage of a system design.

The SNIR is the fundamental QoS parameter of a communications system [3]. It determines the

achievable capacity with known resources and its complementary cumulative distribution

leads to link availability directly. In a HTS system, it varies randomly because of the uncer-

tainties of the signal channel, the CCI channels, the uncertain traffic patterns of the CCIs and

the random varying noise in the signal channel for a given system layout and a given satellite

antenna design. The SNIR variations also defer in different operational scenarios and applica-

tion types. Therefore to study the user uplink SNIR of an individual channel or a beam average

in a HTS system, we first define the operational scenarios within which the SNIR applies. Each

application scenario is often also called use case.

In the remainder of this chapter, we start with a discussion of the major prior works known

and relevant to our study in Section 2, follow up with system assumptions in Section 3 with a

touch of the use cases and proceed to present the user uplink SNIR probability model in

Section 4 applying probability theory to the Ka-band slant path channel to satellite together

with the collective representation. Then in Section 5, two specific use cases are explored to
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show the applications of the SNIR models. Proceeding to Section 6, sample SNIR numerical

implementation results of the model system described in Section 3 are evaluated. Finally we

conclude our study of the SNIR models and the sample applications in Section 7.

2. Relevant prior work

Several publications reported the research in SNIR estimation for system capacity prediction

with iterative and interactive design of the physical layer and the system parameters for a

given HTS system with intra-system CCI. In reports by European Space Agency (ESA), a

comprehensive HTS system level simulation was described with a model system of 43 spot

beams covering Europe and each of the 43 beams is uniformly populated with users [4–7]. The

traffic patterns are proportioned and classified for different traffic types with typical traffic

probability models. The traffic is fed to each user in a beam one at a time according to the

traffic models which is modulated and transmitted to satellite uplink with real system param-

eters (transmitter EIRP, receiver antenna G/T and etc.). The system adopts multi-frequency

time division multiple access (MF-TDMA) system access scheme where a user chooses the

channel with the highest power for its traffic delivery which renders one CCI per co-color

beam. Typical Ka-band satellite antenna radiation patterns in closed analytical formulas are

used for co-color transmission power and signal-to-interference ratio (SIR) distribution estima-

tion. The channel attenuations are assumed fixed. The simulations measure the CCI, SIR, bit-

error-rate, call drop rate, link data rates and system capacity at varied system design parame-

ters and traffic load conditions. Two CCI distributions measured at the satellite receiver point

are reported in the study, one with the signal beam at the edge of the service coverage area and

the other in the center of the service coverage area. The CCI distribution under loaded system

condition is symmetric for center located signal beam, resembling a non-central chi-squared

(χ2) probability density function (pdf). It is skewed for the edge located signal beam. The SNIR

is not simulated but bench mark calculated.

In another representative HTS system level study, beam average capacity is estimated with the

physical layer resource utilization optimization in a loaded system with varied system param-

eters including transmission powers and reuse size [8]. The system optimization and perfor-

mance assessment simulation uses the parameters (transmitter EIRP, receiver antenna G/T and

etc.). The goal of the study is to improve beam average capacity via DVB-S2X physical layer

specification. The total CCI seen by the satellite receiver is simply assumed half-Gaussian

distributed in their resource allocation optimization formulated as a mathematical min max

problem. The study also reports CCI in χ
2 distribution for the MF-TDMA use case in their

Menlo Carlo simulations.

When these studies were made, user uplink traffic is predominately short calls such as web

browsing requests, satellite news gathering and email messages. The co-color user powers

received by the geostationary satellite are treated as constants in clear-sky (CS) line-of-sight

(LOS) channel conditions [4–6, 8]. However, with the introduction of ever increasing number

of different data types and operational scenarios such as urban mobile users holding steady
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calls, the channel multipath variations are to be included which requires the probability

representations of the satellite received powers as well as a collective representation of the

total CCI power variation as will be shown later. Our study addresses these use cases.

3. System assumptions

A HTS system typically assumes a system architecture shown in Figure 1. It consists of a

geostationary satellite relaying the communications traffic in the sky, typically several to about

ten gateways and tens of thousands to several hundreds of thousands of users served by the

spot beams.

A four co-color reuse with user beams on the right hand side is shown in the figure where total

bandwidth for user spots is divided into four sub-bands and each is used by a spot beam

marked in one of the four numbers. Every four spot beams numbered one through four form a

cluster. The total bandwidth is reused by clusters. The advantage of capacity increase and

disadvantage of the intra-system CCI of the HTS system can be deducted from the figure

readily. The CCI results because the real antenna radiation patterns do not cease beyond the 3

or 4 dB defined beam edge. In theory, the spots are hexagons seamlessly attach each other or

circles with triple cross points for every three adjacent spots as shown in the figure. The circles

mark the 3 or 4 dB edge of the spots down from the power of the centers of the spots. In real

systems, the spots trace ellipsis contours of different sizes with each contour line indicating a

power level. Two channels are defined for the typical digital broadcast and Internet access

applications. By DVB-S2 convention, the forward channel is from a gateway via satellite to

a user while a reverse channel is from a user via satellite to a gateway. Although Ka-band

tropospheric precipitation brings much higher attenuation to the slant path signals, the shorter

wavelengths of Ka-band have also made high EIRP directional antenna possible with the

Figure 1. HTS system architecture.
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satellite and the gateways. Because gateways typically operate in different frequency bands

from that of users and the sites for gateways can be arranged carefully and in advance,

interference among gateways uplink is not a performance limiting factor. Our study focuses

on the uplink of the reverse channel with users where the color reuse interferences among the

spot beams limit the system performance. For its many advantages with geostationary satellite

systems, multi-frequency time-division-multiple-access (MF-TDMA) is selected for the model

system and it renders one interferer per co-color beam.

The HTS model system which will be used for the system SNIR distribution numerical estima-

tion in this study is a Ka-band system covering US and parts of its borders with 101 spot beams

and frequency reuse three as shown in Figure 2. The user uplink operates in 30 GHz band. The

elliptic spots in the system are in average 350–470 km in minor when illuminated by the

geostationary satellite at 99� west with the ITU simple Ka-band satellite antenna radiation

pattern at 3 dB apertures of 0.5� side-to-side [9]. The centers of the spot beams are selected a

prior according to the service coverage sub-areas. We also assume that there are 1000 users per

co-color beam. Each user uses the same user station directional antenna. The user uplink signal

received by the satellite is interfered by CCIs because of the imperfect satellite antenna radia-

tion pattern.

The majority of the user reverse channel traffic on the right of Figure 1 consists of short burst

transmissions including emails, network access requests or sales transactions for the second

generation Ka-band HTS system applications [10]. This scenario has been studied by simula-

tions and numerical evaluations [4–8]. In this use case, the assumption that the satellite

received powers from co-color user transmissions are constants is justified because the signal

and CCI power levels vary little in short time frames. Two current application scenarios arise,

however, with user reverse channels that require steady transmissions. They are real-time

Figure 2. A user spot beam model system.
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news gathering return channel defined in DVB-S2 and teleconferencing. Same applies to future

systems with Internet-of-Things (IOT) applications such as WiGRID data. All involve multi-

path channels typically.

Because of the urban multi-path environments of the links for the two scenarios, the signal

and/or co-color interferers’ power levels received by satellite antennas vary over time and in

space. Therefore they must be treated as random variables [10]. We investigate the two scenar-

ios as one use case and assess its SNIR performance with an analytical approach which results

in simple numerical implementation and statistical accuracy.

Figure 3 illustrates the HTS user reverse channel model with major channel impairments of

statistical significance [10]. The SNIR is measured at the reference point of the receiver shown

in Figure 3(b) in this study.

4. User reverse channel SNIR probability model

With reference to Figure 1 and 3, we can formulate the user reverse uplink SNIR as:

SNIR ¼
βsEs αsð ÞGs θsð Þ

N þ
Pn

j¼1 Ej αj

� �

Gj θj

� �

βjμj

(1)

where the Greek symbols can be read by Figure 1 except Ej,αj, N and μj. We let μj be the traffic

factor taking a value between 0 and 1 for the fraction of the time of the interferer traffic

presence while the signal is in steady transmission, N the channel noise measured at the

reference point of Figure 3(b) and Ej αj

� �

the user reverse channel transmitter gain in the

direction to satellite away from its nadir. It is clear from Figure 1 that Ej αj

� �

βj is the satellite

antenna received signal power while Gj θj

� �

is the satellite receiver antenna radiation pattern

gain in the direction of incoming signal or interferer. The summation term represents the total

co-color interference.

Assume that the user terminal antenna radiation patterns are low in EIRP because of their

limited sizes, then e(α)s vary little and Eq. (1) can be simplified to

Figure 3. The HTS system uplink transceiver and communications channel.
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SNIR ¼
βs Gð ÞGs θsð Þ

N þ
Pn

j¼1 Gj θj

� �

Gð Þβjμj

(2)

and further simplified to [10]

SNIR ¼
βsGs θsð Þ

N þ
Pn

j¼1 τjβj
(3a)

¼
βsGs θsð Þ

N þ ττ0a
Pn

j¼1 βj
(3b)

by lumping the interferer traffic factors and gains and relocate them outside of the summation.

We let τ to represent the traffic factors μj collectively while τ0 satellite antenna angular filtering

of the CCIs Gj θj

� �

collectively. For a mobile user in the urban or open space environment or a

stationary user in the urban environment, the user reverse link transmission power varies over

time because of the existence of multi-paths. The Rice distribution has long been used for such

a propagation channel [10, 11]. It is well known that the Rican distribution is non-central chi-

squared (χ2) distributed in power which can be readily used for the random variable β in clear-

sky (CS) line-of-sight (LOS) channel conditions. This χ2 channel model is applicable for steady

transmissions over time in multi-path channel conditions such as urban and mobile users’

reverse channels including the future mobile users in autonomous vehicles. It has been shown

that the power of SNIR as a random variable in Eq. (3) has a probability density function (pdf)

in closed analytical form [10]:

f zð ÞS= denð Þ ¼

ð

∞

0

yf Signal yzð Þf den yð Þ dy (4)

where

f den ¼ f IcllrþN ¼

ð

∞

0

f I
x

y

� �

f cllr yð Þ
1

y

�

�

�

�

�

�

�

�

dy

� �

∗fN (5)

is the pdf of the sum of noise random variable and the total CCI random variable. The later has

a pdf

f I ¼ f χ2 ycs
� �

¼
1

2

� �

e� ycsþλð Þ=2 ycs
λ

� �

n1
2 �

1
2ð Þ
In1�1

ffiffiffiffiffiffiffiffiffi

λycs
p� �

(6)

where * in Eq. (5) denotes convolution; λ ¼
Pn1

i¼1 λi, λi denotes each interferer’s χ2 distribution

parameter for CS LOS channels and steady CCI transmission [10, 12]. For the burst short

transmission in the same CS LOS channel, constant power received at the satellite can be

assumed [4–8, 10]. In this scenario, the CCI pdf in Eq. (5) can be represented by a delta function

f I ¼ δ x� Itð Þ (7)
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where It is the CCI power of short calls received by the satellite receiver, and

fN xð Þ ¼ n0e
�n0x (8)

is the power pdf of the additive-white-Gaussian-noise (AWGN) with noise power density

measured at the reference point of Figure 3 [3, 10].

The pdf fcllr denotes the collective representation of τ and τ0 in Eq. (3b) as a scaled probability

density function to model the satellite received CCI power variations in the user reverse

channels. This is possible because the total CCI power seen by the satellite is typically much

less than that of the signal. The collective representation will be shown to produce fairly

accurate descriptions of typical system operational scenarios. The separation of the nominal

CCI power levels and their channel conditions also facilitates the total CCI power pdf represen-

tation owing to channel conditions as a single valid pdf shown in Eq. (6) and Eqs. (8–12) [10].

Precipitation is another important channel condition for Ka-band [10, 13]. For a signal and n2
CCI channels of precipitation, we find the signal power pdf as the function of the rain attenu-

ation model developed by ITU for individual channels [10, 13].

f s xð Þ ¼ f LN 10 log xð Þð Þð Þ 10

ln 10ð Þ

� �

1

x

� �

(9a)

¼ f LN Aps

� � 10

ln 10ð Þ

� �

10Aps=10
� �

(9b)

where AP is the ITU rain attenuation random variable in dB. The ITU model predicts annual

rain attenuation in dB as lognormal distribution. We then use moment function and Gaussian-

Hermit transformation to find the pdf of the sum of n2 CCI power random variables by

equating the means and variances of the lognormal distributions [3, 10, 12]. They give us the

total power pdf of n2 CCI through precipitation slant paths

f I xð Þ ¼ f LN 10 log xð Þð Þð Þ 10

ln 10ð Þ

� �

1

x

� �

(10a)

¼ f LN AptI

� � 10

ln 10ð Þ

� �

10AptI=10
� �

(10b)

by equating themoment generating functions and applying the GaussianHermit transformation:

�1ð Þn2
Yn2

j¼1

Xk

n¼1

wn

ζ
ffiffiffiffi

π
p

� �

e�sIj anð Þ
� �

¼ �
Xk

n¼1

wn

ζ
ffiffiffiffi

π
p

� �

e�sI anð Þ (11)

where

Ij anð Þ ¼ b 10�Apj=10
� �

¼ b 10
�exp

ð
ffiffi

2
p

anσjþμj
ζ

� �

=10

 !

j ¼ 1, 2,……,n2 (12)

I anð Þ ¼ n2b 10�Ap=10
� �

¼ n2b 10�exp
ð
ffiffi

2
p

anσþμ
ζ

� �

=10

� �

(13)
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where the (σj,μjÞ are known. The (σ, μ) in Eq. (13) can be solved by setting two real values for

parameter s in Eqs. (10b–11) [10, 13]. The pair is the lognormal distribution parameters for Aptl

in Eq. (10b). The justification for the model selection and development can be found in [10].

5. Collective representation

A quick examination of Eq.(5) shows that the user reverse channel SNIR model consists of

noise probability model, the signal and CCI channel models and the collective representation

fcllr of the distribution of the total CCI power filtered by traffic activity and the satellite antenna

radiation pattern. For all co-color users in multi-path urban or mobile channel conditions of

Eq. (6) or Eqs. (8–12), a Beta collective representation in Eq. (3b) represents well the typical 24 h

traffic pattern classification of full, heavy, average or light loads for the simplified random user

spatial distribution scenarios because all CCI call holding time fall into interval between zero

and one when normalized with respect to the signal call holding time [10]. The constant one

assumed by the collective traffic τ represents the fully loaded CCI condition. The Beta distri-

bution has a pdf:

f Bt xð Þ ¼
xα�1 1� xð Þβ�1

B α; β
� � (14)

Figure 4 shows a typical traffic pattern set in Beta collective representation for the simplified

user spatial distribution use case [10]. Let the simplified user location distribution scenario or

use case described above is use case one, then the total CCI power filtered by the satellite

antenna radiation pattern in Eq. (3b) is represented collectively by a Beta probability distribu-

tion function for use case one [10]. In general, depending on the application scenario or use

case, it is collectively represented by a combination of probability distribution functions. This

is shown later in this section with fully loaded systems of use cases two and three.

Figure 4. CCI traffic Beta collective representation.
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The user reverse channel calls in current HTS systems are most often short calls such as emails

or network access requests originated from the randomly located stationary users with CS LOS

channels in the co-color beams. In such calling environment, the signal power loss along

the slant path to satellite varies little and a constant loss is justified. Another typical use case

scenario would be a few urban long holding time calls in the midst of the short stationary calls

during the peak hours in the co-color beams of the model system of Figure 2. The long calls

could be video teleconference calls from an office of an organization header quartered in the

downtown area of a city with satellite offices in difference cities of similar urban environments

or a news gathering van in an urban area reporting an event during peak traffic hours when

the system is loaded. By adaptively applying the models in Section 3 to these two typical use

cases, namely, the all short calls use case two and the mixed calls use case three in the model

system of Figure 2 with several further assumptions, we investigate the scenario collective

representation in CS LOS channel conditions. First, we expand our original simplified user

location assumption to 1000 users uniform or/and Gaussian randomly located in the co-color

spot beams. Second, the system is assumed fully loaded. One co-color call at a time from one of

the 1000 random user locations is made to the satellite continuously from all co-color beams.

This equates the CCI traffic factor in Eq. (3b) to 1 and puts the variation of the total CCI power

across the co-color beams received by satellite at the receiver reference point of Figure 3

dependent on the satellite antenna radiation pattern angular filtering of the incoming CCIs.

Finally, the second green beam in the right most column green beams at the edge of the service

coverage area in Figure 2 is designated as the east signal beam (ESB). The rest 32 green beams

constitute CCIs to the ESB signal at the satellite receiver. Together, the green 3 reuse system is

denoted as ESBg3.

In use case two of all short calls for ESBg3, the total CCI power distribution over time is

obtained by summing the 32 CCI gains seen by the satellite antenna at any time instance over

equally weighted 1000 time intervals. This distribution at uniform user location distribution

can be collectively modeled as a linear combination of two scaled Beta distributions of different

parameters:

f ccis ¼ f cllr ¼ a1f Beta1 þ b1f Beta2 (15)

For the same system but mixed call use case three, it is a combination of an exponential and a

Gaussian distribution:

f ccis ¼ f cllr ¼ a2f exp þ b2f norm (16)

The parameters a1, b1, a2, b2, λ of fexp, (μ, σ) of fnorm, (α1, β1) of fBeta1 and (α2, β2) of fBeta2 vary with

the type of user location distribution, the satellite antenna radiation pattern and the number of

interferers. Clearly, the as, and bs are constrained by a + b = 1. Figures 5 and 6 show two use

cases ESBg3 typical short call CCI power distributions and their collective representations by

Eqs. (15–16). The collective approximation can be refined with additional or/and different

combinations. The parameters for the two figures are tabulated in Table 1 of Appendix A.
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Both use cases in Figures 5 and 6 illustrate the averaged total CCI power temporal variation

when the equally probable random short calls at the co-color user reverse channels progress at

full system load. A more realistic scenario of use case two is that the user short call holding

times also vary randomly. This scenario can be modeled by weighting the 1000 user call times

by a random number generator for each co-color beam which also embodies the spatial CCI

variation of that beam. A simple CCI spatial variation approximation has been made in use

case one [10]. Clearly, depending on the intended SNIR distribution estimation, the total

nominal CCI power variation represented collectively by the random variable τ0 in Eq. (3b)

can be modeled in a variety of ways.

Figure 5. Beta collective approximation of CCI distribution in use case two.

Figure 6. Combined exponential and normal collective representation of mixed call CCIs.
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6. Sample applications

In this section, we assess Ka-band HTS system user reverse channel SNIR performances in use

cases defined above and present the sample assessment results using the model system of

Figures 2 and 3 and the assumptions made progressively in Sections 3 through 5. They serve to

capture the typical geostationary Ka-band HTS system characteristics essential in system

design. We also show the wide range applicability and scenario representation flexibility of

the models. A central signal green reuse 3 system (CSBg3) is defined with the signal beam

being at the center of the service coverage area at the intersection of the fifth column and third

row of the green reuse beams in Figure 2 similar to ESBg3. We exam:

• Use case two CCI distributions characteristics and comparison

• Traffic distribution and user location impact on the SNIR distribution by use case one

• Beam average SNIR distributions and comparison for use case two

• Individual short call SNIR pdfs in all short call scenario of use case two

• Steady call SNIR distributions in a mixed call environment of use case three

The green reuse beam system of Figure 2 is simulated as shown in Figure 7 for use. The light

green beam shows the ESB whereas the CSB sits in the middle among the five dark green

beams. They are used with user case two and three results presented below. Gaussian user

location distribution is used for Figure 7 whereas both Gaussian and uniform user location

distribution are used for SNIR performance evaluation. We choose the centers of the user

location distributions at the co-color beam centers. The beam centers are determined according

to the service demand of the area. For user case one, the simplified user random location

scheme presents one user per co-color beam within the beam coverage area [10].

Continuing on CCIs, we find that the CCI of CSBg3 is heavier than that of ESBg3 in Figure 8

and the typical co-color beam CCI spiky distributions in Figure 9 for use case two. Clearly, the

Figure 7. ESBg3 Gaussian co-color beams simulation illustration.

Broadband Communications Networks - Recent Advances and Lessons from Practice170



average 2.5 dB more CSBg3 CCI results because the CSB is surrounded four sides by the close-

by first 2 tier CCIs whereas the ESB faces them in three sides only. The individual beam CCI

distributions are shaped like spikes within 3 dB because of the many non-linear transforma-

tions from the user location Uniform distribution in contrast to the signal beam power distri-

bution which approximates a Uniform.

The traffic distribution impact and typical co-color beam user location random variation effects

on ESBg3 user reverse channel SNIR performance for use case one are shown in Figures 10

and 11. The traffic distribution in Figure 4 is used for Figure 10 which results in up to 1 dB

difference at peaks. This is because in use case one, the CCI gain reduction with Gaussian

satellite antenna radiation pattern is much more pronounced than traffic load variation in the

system. Figure 11 further shows that the simplified CCI user random location in use case one

renders SNIR distribution approximately 1 dB that of all co-color users at the beam centers.

Figure 8. Total CCI distribution comparison.

Figure 9. Individual beam CCI distribution.
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Therefore, the all center user SNIR distribution is a fair approximation of the beam SNIR

distribution average [10].

For use case two of all short calls Uniform or Gaussian distributed in each and every co-color

beams, only the beam average signal-to-inference ratio (SIR) or SNIR using average noise

power spectrum density is measurable and meaningful. In Figures 12–14, we compare the

beam average SNIR distributions in CS LOS channel conditions with fixed channel power loss:

f SNIR ¼ f
X

1000

j¼1

S xj; yj

� �

n0 þ
P

32

k¼1

Ik xj,k; yj,k

� �

0

B

B

B

@

1

C

C

C

A

(17)

where f denotes the frequency counts of the SNIR values calculated at 1000 users in the parenthesis.

Figure 10. Traffic impact (CSBr4).

Figure 11. ESBg3 user location effect.
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Figure 12. A beam average SNIR distribution comparison.

Figure 13. Beam average SIR/SNIR.

Figure 14. Individual user SNIRs.
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Among the four distributions in Figure 12, the user location Uniform distributed SNIR pdfs

show a flat top from 4 dB to approximately 9 dB whereas the user location Gaussian distrib-

uted SNIR pdfs are pointed with peaks at approximately 8 and 9 dB. This results because the

Gaussian user location distribution produces higher user density at the beam center but much

lower density of users at the edge of the beam coverage area compared to Uniform user

location distribution in which users are evenly distributed in the beam coverage area. The

former has a larger distance separation between CCI users and signal users which results in

less CCIs as shown in Figure 8. Consequently, the SNIR performance improves. Figure 12 also

shows the ESBg3 system performs 2 dBs better on the high end due to the overall less first 2 tier

CCIs. The high pdf value at low CCI power results because the many more low CCI powers

produced by the many far away CCI beams exit in the ESBg3 system. Figure 13 plots the

average beam performance degradation by approximately 2 dB at the high end and 1 dB

average at the low end because of the inclusion of noise.

The beam average SNIR power spreads are approximately 11 dB in Figure 12 with ESBg3

leading 2 dB higher at high end. When noise is taken as a fixed power density value, the

individual user SNIR is a fixed value for short reverse channel calls. If the noise power is taken

as a random variable instead of the mean power density for individual users and by treating

the CCI power as a delta function as shown in Eq. (7), we find the SNIR distributions for the

typical user short calls of user case two in Figure 14. Clearly, for short calls where the signal

and the CCI are assumed fixed power levels, the SNIR starts from a fixed value and spreads to

the lower end to left as noise power spreads to the higher end at right. Compared to the beam

average SNIR spread of approximately 11 dB also shown in Figure 14, the individual call

SNIRs vary only 2–3 dB.

By treating the total CCI as a fixed value and using delta function as its pdf representation as

shown in Eq. (7), we reach the beam average SNIR via probability theory using Eqs. (4–5).

Figure 15 shows the good approximation of the beam average SNIR distribution of the user

Gaussian distributed ESBg3 system by applying the probability models. The high end

Figure 15. ESBg3 beam average SNIR distribution.
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mismatch is due to the large noise power spread of the noise probability model used with pdf

operation. The beam signals for the figure are approximated by a Beta distribution collectively.

The parameters of the figures are given in Table 2 in the Appendix A.

For use case three of mixed calls, we set three CCI beams holding the long call with ESB. They

are the beams at Caribbean, in the middle of the continent US and at the northwest of the

continental US. The rest of the CCI calls are short random calls one at a time in a beam. The

ESB is located at the northeast of continental US by the edge of the service area. The total 29

short CCI calls vary a little from that of the 32 short calls in distribution. The short call CCI

distributions are collectively modeled as a weighted combination of exponential and Gaussian

in Eq. (16) whereas the long signal and CCI calls are each χ2 distributed with a power scaling

factor determined by the satellite antenna radiation pattern angular filtering. As shown in

Figure 16 the SNIR performance of user Gaussian distributed ESBg3 outperforms the user

Uniform distributed ESBg3 SNIR by approximately 4 dB at peak and Gaussian SNIR is

approximately equally probable from 6 to 12 dB indicating a consistent performance at the

power spread range. Compared to the user location Uniform distributed mixed call ESBg3

SNIR, it ceases approximately 2 dB higher in power spread at lower end because of the low

density CCI users at the beam edges.

Compared to the beam average SNIR performance of use case two with all short reverse

channel calls shown in Figures 12 and 15, the SNIR of use case three mixed calls of Figure 16

shares with them the most probable power level of about 10 dB at Gaussian user location

distribution. They differ however in spreads for about 2–4 dB because, in part, that the long

call χ2 distributions and the noise exponential distribution included in Figure 12 contribute to

the larger SNIR power spread than that of the beam average SNIRs. Compared to the user case

one of Figures 10 and 11 for which the Gaussian satellite antenna radiation pattern is used, use

case two and three is less performing in SNIR power level because the sharp slope of the

Gaussian antenna pattern filters out much more CCI power. In those simplified random

individual user location scenario, the channel SNIRs are approximately 10 dB less in spread

due to the CCI power spatial simplification.

Figure 16. ESBg3 mixed call SNIR distributions.
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7. Conclusions

Two approaches are commonly used in assessment of a complex system of many variables

including random variables. They are simulation and analytical approaches or a combination

of the two. Ka-band HTS systems are complex systems with many uncertain quantities includ-

ing traffic loads, channel weather conditions, and intra-system CCIs. This study chooses the

random variables of the system of statistical significance, and develops the probability models

by taking an analytical approach to characterize the variations of the system or channel SNIRs,

the most important QoS measure of a Ka-band HTS system. It results in a closed analytical

SNIR distribution model which can be implemented by numerical evaluations, leading to

significant savings in both computation time and storage. Complementary to the known

studies [4–8], it captures the statistics of the random variations relevant to SNIR estimation by

abstraction and fills in the blank of the study of the topic for urban and mobile user scenarios.

By treating the signal and CCI power variation caused by the channel conditions as random

variables and the traffic variation and CCI power variation caused by satellite antenna radia-

tion pattern angular filtering with collective representations, this study allows for system

offered user uplink SNIR prediction with significantly reduced computational complexity in

the early stage of a system design. It is statistically accurate for user uplink SNIR estimation in

multi-path channel environments particularly [10].

Our discussion of the model application focuses on the collective representation of application

scenarios in CS LOS channel conditions in this chapter. The sample application result of

Figure 9 confirms the beam CCI distribution reported in [4–6]. Moreover, it can be inferred by

an examination of Figures 5, 6, 8 that the total CCI distribution can verify the half Gaussian

distribution assumption made in [8] if less mid-range CCIs more far away tier CCIs are filtered

into the satellite receiver by the satellite antenna radiation pattern. The average beam CCI

power distribution spread of 14 dB is comparable to the 15 dB found in [4–6]. The 1 dB diffe-

rence should come from the different number of beams which is 43 in ESA’s system perfor-

mance simulation whereas it is 101 in this study. Though not shown here, our other sample

results with ESBg3 and CSBg3 share the spatial CCI distribution characteristics with those

reported in ESA.

Compared to ESA study of the same topic, the collective representation of this study can

achieve the same traffic simulation effects by profiling the user traffic factor in Eq. (3b) and

therefore predict the system capacity performance at offered SNIR distributions for a wide

range of system architecture and operational scenarios. However, it can’t achieve the interac-

tive design of the physical layer of the system for optimal resource allocation at different

system traffic loads by the total system simulation efforts reported in [4–6, 8]. It can be used

in the initial stage system architecture design and performance prediction at beam and user

level stand alone or incorporated into total system operation simulation packages as a SNIR

estimation unit. In real system design, user population probability models and beam centers

can vary in accordance with the service area and population distribution. The study is appli-

cable to real system satellite and user antenna radiation patterns and other system parameters.

The sample results should improve with them [4–6, 10].
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A. Appendix A

Figure 5: use case two of ESBg3 short calls with user location Uniformly distributed

Semi-minor uniform (�164, 164); semi-major uniform (�185, 185)

a1 = 0.6, b1 = 0.4, α1=1, α2=1, β1=17, β2=6, max(ATTccisum) = 0.3898

Figure 6: use case three of ESBg3 mixed calls with user location Gaussian distributed

Semi-minor Gaussian (0, 53); semi-major Gaussian (0, 75)

a2 = 0.55, b2 = 0.45, λ = 9, μ = 5, σ = 2.5

Table 1. User total CCI collective representation parameters at θ3dB ¼ 0:5
�

and λS ¼ �99
�

.

Figures 14 and 15: use case two at short calls of user location Gaussian distributed

Semi-minor Gaussian (0, 53); semi-major Gaussian (0, 75);

Signal: beta(6, 1); Noise: n0 = 0.0134; CCI: Figure 6 parameters;

Figure 16: use case three of mixed calls

Steady call1 CCI beam numbers: 5, 16, 25, 32; χ2 distribution K factor: 100

1The four calls that last the entire SNIR evaluation time frame when the other calls are short bursts in the mixed call use

case three

Table 2. ESBg3 SNIR distribution parameters at θ3dB ¼ 0:5
�

and λS ¼ �99
�

.
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