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Abstract

In this chapter, we report the nano-heat transport in metal-oxide-semiconductor field
effect transistor (MOSFET). We propose a ballistic-diffusive model (BDE) to inquire the
thermal stability of nanoscale MOSFET’s. To study the mechanism of scattering in the
interface oxide-semiconductor, we have included the specularity parameter defined as the
probability of reflection at boundary. In addition, we have studied the effective thermal
conductivity (ETC) in nanofilms we found that ETC depend with the size of nanomaterial.
The finite element method (FEM) is used to resolve the results for a 10 nm channel length.
The results prove that our proposed model is close to those results obtained by the
Boltzmann transport equation (BTE).

Keywords: nano-devices, thermal conductivity, BDE model, temperature jump, heat
dissipation

1. Introduction

Considerable exploration focused on the fast progress of nanodevice. In recent years, the

thermal analysis is important to inquire the phonon transport in nano-materials. The study of

the heat conduction in nano-electronics lead to compare the thermal stability of nano-

transistors [1–3]. The increase of the heat dissipation has been owned by the miniaturization

and the reduction of the thermal conductivity [3]. The smaller channel device was assumed to

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



(13) nm for the current (2018) and less than (6) nm for long-term (2026) [4]. The Fourier’s law

has generally used to predict the diffusive heat conduction [5]. In nanoscale the characteristic

time and size of nanodevice was smaller than the mean free path (MFP). The classical heat

conduction based on local equilibrium lead to the linear equation

q ¼ �κ∇T (1)

where q is the heat flux, ∇T is the temperature gradient and κ is the bulk thermal conductivity.

Actually, the BTE is an effective method to study the non-continuous temperature and heat

flux in nanosystems [6, 7]. Many transport models have been derived from the BTE used to

investigate the thermal transport in solid interface [8], nano-transistor [9–12] and carbon

nanotubes [13].

Alvarez et al. [14] have studied the nonlocal effect in nanoscale devices. They inquired the heat

transport in ballistic regime. They found that the thermal conductivity bank on the Knudsen

number.

Nano-heat transport includes both temporal aspects and spatial aspects. More elaborated

model have been developed to describe the nanoheat conduction [15]. The phonon hydrody-

namic model [16–19], single- phase-lag model [2] and dual-lag phase model [1] have been

applied in modeling thermal transport in nanostructures. Nasri et al. [2, 3] have been investi-

gated the heat transfer in many architecture of nano-MOSFET. They found that the Tri-gate

SOI-MOSFET with a wideness of 20 nm is more thermally stable than the device having a

length of 10 nm. To study the nature of collision, it is found that the temperature jump

boundary condition was an accurate approach to explore the heat transport in interfaces [2].

The ballistic-diffusive equation (BDE) was used to explain the temperature dependence in

nano-structure [20, 21]. Humian et al. [22] proposed the BDE to evaluate the heat transport in

two-dimensional domain. They have been used the finite element analysis to validate the BDE

model. Yang et al. [23] solved the BDE model to access the heat transfer in two-dimensional

conventional MOSFET. In this work, we have been developed the BDE model to address the

phonon transport in nanodevice. Due to the miniaturization the thermal conductivity, reduce

by scattering [24, 25]. The scattering mechanism induced to the use of the ETC [26–29]. We

have proposed a theoretical approach, which describe the nature of phonon collision with

boundary. The specularity parameter defined as the probability of reflection at boundary

[25, 30]. We include this parameter in the ETC to portend the rise of the temperature in nano-

structure. To validate our results, the proposedmodel is tested with results obtained by Yang et al.

[23] and a previous work [2, 9]. The proposed (ETC) will be compared with the results obtained

by McGaughey et al. [31]. To compute the proposed BDE model depended with the temperature

jump boundary condition, we have used the FEM. This method is a useful procedure to model the

thermal properties of nanodevice [2].

2. Computer model

The phonon BTE can be defined as [7]:
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∂f r; v; tð Þ

∂t
þ v∇f r; v; tð Þ ¼ �

f � f 0
τR

(2)

where f is the distribution function, f 0 is the equilibrium distribution function, ν is the group

velocity, and τR is the relaxation time related to resistive collisions written as

τR ¼
3� k

C� v2
(3)

where κ is the thermal conductivity written as

κ ¼
C� v� Λ

3
(4)

where Λ is the mean free path defined as Λ ¼ vτR and C is the volumetric heat capacity [20].

The ballistic-diffusive approximation is to divide the distribution function into a diffusive term

fm and ballistic term f b [20]:

f ¼ fm þ f b (5)

where f b arise from the boundary scattering [20], defined as

∂f b r; v; tð Þ

∂t
þ v∇f b r; v; tð Þ ¼ �

f b
τR

(6)

The second part grouped into fm. The basic equation for fm is defined as:

∂fm r; v; tð Þ

∂t
þ v∇fm r; v; tð Þ ¼ �

fm � f 0
τR

(7)

We can calculate the diffusive flux [7, 20].

qm t; rð Þ ¼

ð

ε

v r; tð Þfm r; ε; tð ÞεD εð Þdε (8)

where ε is the kinetic energy and D εð Þ is the density of states. By the development in Taylor

series to the first order of Eq. (7), we obtain [7]:

τR
∂qm r; tð Þ

∂t
þ qm r; tð Þ ¼ �κ∇Tm r; tð Þ (9)

We use the energy conservation equation to eliminate qm

�∇:q r; tð Þ þ _qh ¼
∂u r; tð Þ

∂t
(10)

where _qh is the volumetric heat generation, q is the heat flux and u is the internal energy

defined as [20].
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q t; rð Þ ¼ qb t; rð Þ þ qm t; rð Þ

u t; rð Þ ¼ ub t; rð Þ þ um t; rð Þ
(11)

We can rewritten two temperature Tb and Tm such that [20, 21].

∂u

∂t
¼ C

∂T

∂t
¼

∂um
∂t

þ
∂ub
∂t

¼ C
∂Tm

∂t
þ

∂Tb

∂t

� �

(12)

where T ¼ Tm þ Tb

Tm is the temperature to the diffusive part and Tb arise from the ballistic parts.

By using the same reasoning of Eq. (9), Eq. (6) becomes [20].

τR
∂
2Tb r; tð Þ

∂t2
þ C

∂Tb

∂t
r; tð Þ ¼ �τR �

∂ ∇:qb r; tð Þ
� �

∂t
(13)

Substituting Eqs. (9) and (13) into Eq. (10) we obtain the ballistic-diffusive-equation [20, 23].

τR
∂
2Tm r; tð Þ

∂t2
þ

∂Tm r; tð Þ

∂t
¼

κ

C
∇∇Tm r; tð Þ �

∇qm r; tð Þ

C
þ

_qh
C

þ
τR

C

∂ _qh
∂t

(14)

The conventional Fourier heat conduction equation cannot predict the heat transport in nano-

structure. Hua et al. [26] studied the ETC in nanostructure. They derived a model for the ETC

based on the phonon BTE written as [26]:

κeff ¼ κ= 1þ α� Knð Þ (15)

where Kn ¼ Λ

L is the Knudsen number, L is the length of nanofilms and α is a coefficient depend

with the geometries.

For Kn ¼ 0, Eq. (15) becomes κeff ¼ κ (diffusive regime).

For Kn > 1, the thermal conductivity reduce due to the ballistic transport. Using the Fourier’s

law the ETC defined as [26]:

κeff ¼
q� L

ΔT
(16)

where L is length of the nanostructure q is the heat flux and ΔT is the temperature difference.

Kaiser et al. [28] proposed a non-Fourier heat conduction at the nanoscale. They recently derived

an analytic expression for the ETC. In addition, they proved the impact of the temperature jump

in nanostructure. In this work, we propose a theoretical model for the ETC [19], defined as

keff Knð Þ ¼ κ 1�
2Kn� tanh 1=2Knð Þ

1þ CW � tanh 1=2Knð Þ

� �

(17)

where CW ¼ 2� 1þp
1�p

� 	

is a constant related to the properties of the walls [19] and p is the

specularity parameter [30].
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For high values of Kn, where the regime ballistic is dominant, the thermal conductivity

reduced by scattering (reflection at boundary) [24, 25], Eq. (17) predict that the ETC behaves

[19]:

κeff Knð Þ ¼ κ
CW

2Kn

� �

(18)

In our case, the BDE model rewritten as:

τb
∂
2Tm r; tð Þ

∂t2
þ

∂Tm r; tð Þ

∂t
¼

κeff

C
∇∇Tm r; tð Þ �

∇qb r; tð Þ

C
þ

_qh
C

þ
τb

C

∂ _qh
∂t

(19)

where τb is the relaxation time related to the phonon scattering at boundary [7] defined as:

τb ¼
3� κeff

C� ν2
(20)

Substituting Eq. (18) into Eq. (20), we obtain the Ziman formula [24]

1

τb
¼

1� p

1þ p

� �

�
ν

L

� 	

(21)

where 1
τb
is the collision rate.

3. Boundary and initial condition

When the ballistic transport appear the temperature jump at boundary occur and cause the

reduction of the thermal conductivity [27, 32]. Ben Aissa et al. [12] have been explored a nano-

heat conduction in cylindrical surrounding-gate (SG) MOSFET. They used the DPL with the

temperature jump applied in the interface oxide-semiconductor defined as

ΔTJump ¼ �d� Kn� L� ∇T (22)

where d is an adjustable coefficient, the ETC defined as [12]:

d ¼
R� κeff

Kn� Lc
(23)

where R is the thermal boundary resistance. The proposed ETC given by Ben Aissa et al.

[12, 32] is written as:

κeff ¼ κ= 1þ 4� Knð Þð Þ (24)

Hua et al. [33, 34] discussed the temperature jump in nanofilms. They have studied the phonon

transport in interfaces. They derived a boundary temperature jump defined as

Study of Heat Dissipation Mechanism in Nanoscale MOSFETs Using BDE Model
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T � TW ¼ �d�Λ�
∂T

∂x
(25)

where TW is the temperature jump at the wall.

Yang et al. [35] explained the impact of the temperature jump in the continuum flow and slip

flow. They have investigated the heat transfer in nanofluids. At the wall, the temperature jump

lead to the following expression by Gad-el-Hak [35]

TS � TW ¼
2β

βþ 1

2� σT

σT

Λ

Pr

dT

dy













Wall

(26)

where TS is the system temperature and TW is the wall temperature, σT is the thermal accom-

modation coefficient, β is the ratio of specific heats, and Pr is the gas Prandtl number. Singh

et al. [36] noted that in ideal monoatomic gas (Kn < 0:1), the temperature jump at the solid

interface rewritten as

TS � TW ¼
1:25�Λ

Pr

dT

dy













Wall

(27)

Due to the utility of the temperature jump, the following expressions are summarized in

Table 1.

4. Structure to model and numerical method

The architecture used in this present work is the two-dimensional conventional MOSFET. The

proposed structure shown in Figure 1. The substrate is compound by Silicon (Si). The Si-

MOSFETs thickness used in this model is 50 nm. The channel length is Lc = 10 nm. In order to

compare our results with similar works, the reference temperature is T0 = 300 K and the

maximal power generation is _qh ¼ 1019w=m3 [23]. The right and left boundaries are assumed

to be adiabatic. The temperature jump boundary condition is applied in the interface (Si-SiO2). In

this side the phenomena of collision phonon-wall is more frequent. The MFP used in this pro-

posed work isΛ ¼ 100 nm [23]. Using Eq. (17), we found that the thermal conductivity reaches 18

Wm�1 k�1. In this case, the adjustable coefficient d attains 0.09 for R = 0.503 K m2 W�1 [37].

Work Adjustable coefficient d

Ben Aissa et al. [12] 0.05 For Kn ¼ 3:33

Hua and Cao [33] 0.66 For Kn < 5

Sing et al. [36] 1:25
Pr For Kn < 0:1

Present work 0.09 For Kn ¼ 10

Table 1. First-order temperature jump condition.
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To solve the BDE model coupled with the temperature jump at boundary we use the FEM [4].

The finite-element approximation used in the BDE model can be defined as:

B½ � Ttf g þ B1½ � Tttf g � D½ � Tf g ¼ mf g (28)

where B½ �, B1½ � and D½ � is a matrix valued, Ttf g, Tttf g and Tf g represent the nodal temperature,

mf g is the matrix vector.

The discretization of Eq. (25) leads to

Tpþ1

� � B½ �

Δt
þ

B½ �

Δt2

� �

¼ Tp

� � B½ �

Δt
þ 2

B½ �

Δt2
þ D½ �

� �

� Tp�1

� � B½ �

Δt2

� �

þ mf gp (29)

where Δt is the time step and Tp

� �

is the nodal temperature at the time tp.

The materials used in our simulation are Silicon [2] and Silicon dioxide [2] and their thermal

properties are illustrated in Table 2.

5. Results and discussion

The reduction of the thermal conductivity have a strong dependence with the Knudsen num-

ber. We take account the specularity parameter and Knudsen number because we studied the

mechanism of boundary scattering.

Figure 1. Schematic geometries of the MOSFET transistor.

Symbol V (m s�1) K (Wm�1 K�1) C (J m�3 k�1) Λ (nm) Kn

Si 3000 150 1.5 � 106 100 10

SiO2 5900 1.4 1.75 � 106 0.4 0.04

Table 2. Thermal properties of Silicon and Silicon dioxide.

Study of Heat Dissipation Mechanism in Nanoscale MOSFETs Using BDE Model
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In Figure 2 we shows the impact of the thermal conductivity which depend on the specularity

parameter. In this case, we use Eq. (17) to inquire the ETC. It is obvious that the thermal

conductivity reduce when the Knudsen number increase. In similarity to the analytical model

proposed by Hua and Cao et al. [32], it is found that the thermal conductivity reaches 62% of

the bulk value for Kn = 1.

Figure 3 plot the ETC for various the length of nanofilms. For low thin films (L = 10 nm) the

thermal conductivity attains 10–20% of the bulk value. The ballistic transport involve the rapid

increase of the ETC. For p = 0.25 we shows the same shape obtained by Ma [29]. For thin films

(L > 1000 nm), p = 0.25 is a good approximation.

The advantage of our proposed model is the capture of the increase of the temperature better

than the other transport model (DPL, SPL and classical BDE). We associated the BDE model

with the temperature jump. The obtained results are presented along the centerline (Lx/2, Y = 0)

at the time t = 30 ps. In the ballistic regime (Kn = 10) we use Eq. (18). For high Knudsen number

the heat transport influenced by the mechanism of scattering related to the boundary. This type

of collision was examined by Guo et al. [38] they deduced a discrete-ordinate-method (DOM)

derived by the Callaway‘s model [38]. They found acceptable results to determinate the ETC in

a rectangular graphene ribbon. The Callaway‘s model based on a simple boundary scattering.

Figure 4 illustrate the comparison of the peak temperature rise in the nano-transistor at

t = 30 ps. The classical BDE, BTE, DPL, SPL, Fourier law and our proposed model reaches

respectively 318.7, 327, 320.5, 318.9, 305 and 322.7 K. The new BDE model capture the increase

of the temperature near the BTE. For low thin-film (Lc = 10 nm) one can see that the tempera-

ture attaints the maximal at short time. The saturation of the temperature varied to 12–15 ps for

all model transport. The classical Fourier law cannot predict the temperature profile due the

nature of phonon thermal transport [39].

Figure 2. Effective thermal conductivity vs. Knudsen number.
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The temperature peak rise in the Y-direction at the centerline of the nanodevice is demon-

strated in Figure 5. The decrease of the temperature is owned to the reduction of the thermal

conductivity. Our present model has the same form with the classical BDE model. The differ-

ence appear in low temperature due to the collision rate, which depend on the specularity.

Figure 6 illustrate the 2D distribution of the temperature at t = 30 ps. In a short time, the

temperature increase in the left and right side of the channel region. This side known as the

heat zone of the nanodevice. A self-heating processes appear due to nature of the phonon

Figure 4. Comparison of the peak temperature at the centerline.

Figure 3. Effective thermal conductivity in Silicon thin film at room temperature.

Study of Heat Dissipation Mechanism in Nanoscale MOSFETs Using BDE Model
http://dx.doi.org/10.5772/intechopen.75595

23



Figure 5. Peak temperature rise versus Y-axis at the centerline of the MOSFET at t = 10 ps.

Figure 6. A 2D temperature distribution for p = 0.18 at t =30 ps.

Green Electronics24



collision which is characterized by a frequent scattering at boundary. The augmentation of the

temperature cause an important dissipation of energy, which affect the environment. In the last

years, organic electronic was made to reduce the energy consumption and the thermal resis-

tance between materials [40].

Figure 7 shows the comparison of the heat flux in the Y-direction at the centerline of nano-

MOSFET. Using the BDE model for p = 0.18, we obtain the same shape and amplitude given by

the BTE. The temperature jump at boundary is a good argument to predict the non-Fourier

heat transfer [41]. The increase of the heat flux is caused by two raison: the reduction of the

thermal conductivity and the length of nanostructure. To reduce the heat dissipation in

nanoelectronic materials, it is necessary that the current densities was minimized [9]. A prefer-

ment devise is characterized by minimal power consumption. In a technological concept, the

graphene is an excellent material which described by high thermal conductivity and low

temperature rise [25, 42].

6. Conclusions

In this chapter, we report a nano-heat conduction based on the BDE model. The temperature

jump is good proof to study the thermal properties of nano-materials. Our proposed model is

efficient approach for the non-Fourier heat conduction. In addition, our obtained results agree

with other transport model. In nanostructure the reduction of the thermal conductivity and

phonon collision mechanism. Our study explain the distribution of the temperature in 10 nm

Figure 7. Comparison of the heat flux in the Y direction at t = 10 ps.
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MOSFET. The maximal temperature is located in the interface oxide-semiconductor. To reduce

the effect of the thermal transport in nano-electronic materials it is obvious that we should

replace Si based materials by organic technologies (carbon based). Green electronics are

involved in recent integrated circuits, solar cell and high-speed processors. In addition, green

materials has a wide biocompatibility and a safe impact on the environment [43].
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