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Abstract

Cyanobacteria are a diverse group of photosynthetic bacteria found in marine, fresh-
water and terrestrial habitats. Secondary metabolites are produced by cyanobacteria 
enabling them to survive in a wide range of environments including those which are 
extreme. Often production of secondary metabolites is enhanced in response to abiotic 
or biotic stress factors. The structural diversity of secondary metabolites in cyanobacteria 
ranges from low molecular weight, for example, with the photoprotective mycosporine-
like amino acids to more complex molecular structures found, for example, with cyano-
toxins. Here a short overview on the main groups of secondary metabolites according 
to chemical structure and according to functionality. Secondary metabolites are intro-
duced covering non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids and 
isoprenoids. Functionality covers production of cyanotoxins, photoprotection and anti-
oxidant activity. We conclude with a short introduction on how secondary metabolites 
from cyanobacteria are increasingly being sought by industry including their value for 
the pharmaceutical and cosmetics industries.

Keywords: cyanobacteria, secondary metabolites, nonribosomal peptides, polyketides, 
alkaloids, isoprenoids, cyanotoxins, mycosporine-like amino acids, scytonemin, 
phycobiliproteins, biotechnology, pharmaceuticals, cosmetics

1. Introduction

1.1. Cyanobacteria

Cyanobacteria are a diverse group of gram-negative photosynthetic prokaryotes. They 

are thought to be one of the oldest photosynthetic organisms creating the conditions that 

resulted in the evolution of aerobic metabolism and eukaryotic photosynthesis [1, 2]. They 
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are primarily photoautotrophic performing oxygenic photosynthesis using photosystems  

I and II to produce energy, requiring water, carbon dioxide, inorganic compounds and light 

to grow. They are also able to grow under heterotrophic conditions without light using an 

organic carbon substrate to obtain energy [3].

Morphologically cyanobacteria can be unicellular or filamentous and have spherical, rod 
and spiral shapes [4, 5]. Taxonomically they are divided broadly into five major sub-sections 
using morphological and physiological characteristics as described in [5]: Subsection I (order: 

Chroococcales), II (order: Pleurocapsales), III (order: Oscillatoriales), IV (order: Nostocales) 

and V (order: Stigonematales). Subsections I and II are unicellular as single cells or aggregates 

that reproduce by binary fission or budding (I) and multiple fission or both binary and mul-
tiple fission (II). Subsections III-V are filamentous, which are composed of trichomes (chain 
of cells), these reproduce by trichome breakages to produce short motile fragments known as 

hormogonia. Subsection III cyanobacteria divide in one plane only and are composed of veg-

etative cells only whereas subsections IV and V are capable of cell differentiation. An example 
includes the production of heterocysts in the absence of a nitrogen source, which is used for 

nitrogen fixation [5]. The classification of cyanobacteria is constantly evolving with newer 
systems based on phylogenetic analyses [6].

Cyanobacteria live in a wide range of habitats encompassing freshwater, marine and ter-

restrial ecosystems (Table 1). A key feature of cyanobacteria is their ability to thrive under 
extreme conditions and their ability to adapt and evolve to cope with abiotic stress factors 

such as high light, UV and extreme temperatures. As extremophiles cyanobacteria can exist 
as thermophiles (high temperature tolerant) e.g. Synechococcus found in hot springs and geo-

therms, psychrophiles (cold tolerant), acidophiles (low pH tolerant), alkaliphiles (high pH 

tolerant) and halophiles (salt tolerant) [7].

Species of cyanobacteria Order Habitat

Unicellular

Microcystis sp. Chroococcales Freshwater

Synechococcus sp. Chroococcales Marine

Synechocystis sp. Chroococcales Freshwater

Hyella caespitosa Pleurocapsales Marine

Filamentous

Lyngbya majuscula Oscillatoriales Marine (tropical)

Oscillatoria sp. Oscillatoriales Freshwater

Anabaena sp. Nostocales Freshwater

Nostoc sp. Nostocales Terrestrial

Fischerella muscicola Stigonematales Freshwater

Table 1. Cyanobacterial species by morphology, order and habitat.
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1.2. Cyanobacterial secondary metabolites

Secondary metabolites, also described as natural products, are usually described as com-

pounds that are not directly required for an organism’s primary metabolism. These secondary 

metabolites are usually unique to specific organisms and are not present during all environ-

mental conditions.

Although most metabolites can be categorised as primary or secondary there is some overlap 
between the two. Some are essential for primary metabolism but are only synthesised by spe-

cific species and are therefore also secondary metabolites.

Secondary metabolites are often produced by cyanobacteria in response to biotic or abiotic 

stress in the surrounding environment by providing protection and aiding in survival giv-

ing an advantage over other species [2, 8]. Because of their ability to survive under a diversity 

of environments, cyanobacteria are a rich source of secondary metabolites. Different suites 

Figure 1. Chemical structures of a variety of secondary metabolites; lyngbyatoxin-a (1), anatoxin-a (2), microcystin-LR 

(3), patellamide-a (4), aeruginosamide (5), saxitoxin (6), hapalindole-a (7), geosmin (8), β-carotene (9), zeaxanthin (10) 
and scytonemin (11).

Secondary Metabolites in Cyanobacteria
http://dx.doi.org/10.5772/intechopen.75648

25



of secondary metabolites can be produced according to the stress environment with a high 

degree of structural variation across the different compound classes. These suites of metab-

olites include; peptides, polyketides, alkaloids, terpenoids and UV-absorbing (Figure 1).  

Accordingly they possess a wide variety of functions to protect the cells such as; defence against 
predators and grazers, chemosensory, photoprotection and antioxidant roles. These properties can 
be utilized in industrial biotechnology as nutraceuticals, cosmeceuticals and pharmaceuticals.

2. Cyanobacterial secondary metabolites by chemical structure and 

biosynthesis

2.1. Nonribosomal peptides and polyketides

Commonly occurring as secondary metabolites in cyanobacteria are nonribosomal peptides 

NRPs. These are produced using specialised nonribosomal peptide synthases (NRPS). NRPS 

contains modules, which are responsible for integrating specific amino acids into peptide 
chains. These modules consist of an adenylation domain, peptidyl carrier domain and a con-

densation domain, which incorporates proteinogenic and nonproteinogenic amino acids. 

Other domains can also be present for further modifications such as N-methylation, epimer-

ization and cyclisation of the amino acid backbone, which gives rise to the intricate chemical 
structures produced [9]. Lyngbyatoxins, such as lyngbyatoxin-a (Figure 1 (1)), are biosynthe-

sised via NRPS pathway in Lyngbya majuscule and comprise of an indolactam ring composed 

of L-valine, L-tryptophan and methionine [10]. Lyngbyatoxin-a is a dermatoxin with potent 

tumour promoting activity by activation of protein kinase C (PKC) [11].

Another large class of secondary metabolites found in cyanobacteria are the polyketides, 
which are biosynthesised from acetyl-CoA using polyketide synthases (PKS). Similarly to 
NRPS, PKS modules consist of a acyltransferase domain, acyl carrier protein domain and 

ketosynthase domain as well as additional domains for further modification [12]. The neuro-

toxin anatoxin-a (Figure 1 (2)) from Anabaena sp. Binds irreversibly to nicotinic acetylcholine 

receptors and is biosynthesised from L-proline using three PKS modules [9].

Hybrid metabolites are primarily derived from the attachment of polyketide or fatty acids 
using PKS to nonribosomal peptides in a natural combinatorial biosynthetic pathway to 

produce an array of chemical structures with specific roles and bioactivity. Microcystin-LR 
(Figure 1 (3)) is biosynthesised using multi-enzymes of NRPS and PKS modules and has 
potential as a lead compound for the treatment of cancer due to its cytotoxicity [13].

2.2. Ribosomal peptides

Ribosomal peptides (RPs) are synthesised on the ribosome and only use proteinogenic amino 

acid. They are similar to NRPs due to their posttranslational modifications. A prevalent group 
of ribosomal peptides found in cyanobacteria are the cyanobactin. These are cyclic and less 

commonly linear peptides formed through the post-ribosomal peptide synthesis (PRPS) path-

way, which then undergoes post modifications to form their final complex structures [14],  
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formally known as ribosomally synthesised and posttranslationally modified peptides (RiPP). 
Examples include the cyclic peptides patellamides, such as patellamide A (Figure 1 (4)) and 

the linear peptide aeruginosamide (Figure 1 (5)) [9].

2.3. Alkaloids

Alkaloids are nitrogen containing natural compounds, which usually have toxic properties, 
an example includes the saxitoxins also known as paralytic shellfish poisons (Figure 1 (6)), 

which are neurotoxins found in a number of cyanobacteria [15].

Indole alkaloids are a class of alkaloids containing an indole moiety such as the hapalin-

doles (hapalindole-A, Figure 1 (7)), hapalindolinones, ambiguines, fischambiguines, fisherin-

doles, and welwitindolinones, which are only found in cyanobacteria of subsection V. Their 

structural diversity is due to the cyclisation, methylation, oxygenation and chlorination of 

terpene precursors [16]. Hapalindole isolated from Fischerella sp. has been found to possess 

antibacterial activity against gram negative and gram positive bacteria such as; Escherichia coli 

ATCC25992 and Staphylococcus aureus ATCC25923 [13].

2.4. Isoprenoids

A wide range of isoprenoids (also known as terpenoids) are produced by cyanobacteria, 
which have a common pathway utilising isoprene diphosphate (IDP) and dimethylallyl tri-

phosphate (DMADP) precursors. These have many possible configurations resulting in high 
structural diversity due to modification by cyclisation, rearrangements and oxidation [17]. 

They are biosynthesized through the methylerythritol-phosphate (MEP) pathway. Using 
glyceraldehyde-3-phosphate and pyruvate produced from photosynthesis, the five carbon 
building blocks IPD and DMADP are formed [17].

The smallest group of isoprenoids is the hemiterpenes, which are formed from a single iso-

prene unit composed of five carbons. Monoterpenes have 10 carbons and are formed from IDP 
and DMADP or two molecules of DMADP monomers to form geranyl diphosphate (GDP). 
An example includes 2-methylisabomeol, which gives taste and odour to water. Geosmin 
(Figure 1 (8)) in an odorous sesquiterpene found in Nostoc punctiforme PCC 73102, which gives 
rise to its earthy smell and is synthesised from the condensation of an IDP molecule to the 

monoterpene GDP to form farnesyl diphosphate (FDP) [17, 18].

An abundant group of isoprenoids found in cyanobacteria are the carotenoids. These are tet-
raterpenes formed from the head to head condensation of two geranyl geranyl diphosphate 

(GGDP) molecules [17]. Located within cell membranes due to their hydrophobic nature, this 

group of metabolites can be divided into two classes; carotenes, hydrocarbon carotenoids such 

as β-carotene (Figure 1 (9)) and xanthophylls, which are oxygenated derivatives of hydrocar-

bon carotenoids such as zeaxanthin (Figure 1 (10)). Other carotenoids commonly found within 

cyanobacteria are echinenone, canthaxanthin and myxoxanthophyll. In many cases individual 

carotenoids could be considered as primary rather than secondary metabolites because of their 

role in photosynthesis however, other carotenoids are more specifically involved in photoprotec-

tion and in antioxidant protection and therefore fall into the secondary metabolites category [19].
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3. Cyanobacterial secondary metabolites by function

3.1. Toxic metabolites

A wide variety of toxic metabolites (Table 2) are produced by cyanobacteria that have a nega-

tive effect on target species in their surrounding areas and are referred to as cyanotoxins 
[2]. These toxins are found during cyanobacterial blooms on stagnant surface water bodies. 

Cyanobacteria that bloom include the unicellular Microcystis and the filamentous Anabaena, 

and Nostoc [20].

Cyanotoxins have a diverse range of chemical structures including ribosomal peptides and 

NRPs, polyketides alkaloids and lipopolysaccharides. These toxins can be classified accord-

ing to their biological effect; neurotoxins targeting the nervous system, hepatotoxins targeting 
the liver, cytotoxins targeting cells, dermatoxins targeting the skin or endotoxins, which are 

irritants [15]. The most prevalent and potent hepatotoxins are the cyclic peptides microcys-

tins, which are produced through NRPS in Microcystis, Anabaena, Planktothrix and Nostoc [15].

An example of a non-protein amino acid neurotoxin is β-N-methylamino-L-alanine, which 
can be produced by a variety of cyanobacteria [21]. It was originally isolated from cycad 

seeds in Guam and many investigations have implicated this neurotoxin in neurodegenera-

tive diseases such as amyotrophic lateral sclerosis (ALS) and Parkinsonism dementia com-

plex (PDC) [22]. Other neurotoxins include saxitoxin (paralytic shellfish poisons) and the 
anatoxins [15].

Cyanotoxin Biological effects Cyanobacteria

Microcystin Hepatotoxin, inhibits eukaryotic protein 

phosphatases (types 1 and 2A)
Microcystis, Anabaenopsis, Nostoc

Nodularin Hepatotoxin, inhibits eukaryotic protein 

phosphatases (types 1 and 2A)
Nodularia

Saxitoxin Neurotoxin, binds to voltage-gated Na+ 

channels, causing neuronal communication 

blockage

Aphanizomenon, Anabaena, Lyngbya

Anatoxin-a Neurotoxin, binds to nicotinic acetylcholine 

receptors irreversibly

Cylindrospermum, Planktothrix, 

Oscillatoria

β-N-methylamino-L-alanine Neurotoxin, damages motor neurons Many species including; Anabaena, 

Nostoc, [24]

Lyngbyatoxin Cytotoxin, binds to protein kinase C, 

tumour promoting

Lyngbya majuscula

Aplysiatoxins Cytotoxin, binds to protein kinase C, 

tumour promoting

Lyngbya majuscula

Lipopolysaccharides Endotoxin, irritant Microcystis, Anabaena, Spirulina, 

Oscillatoria

Table 2. Cyanotoxins and their biological effect.
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Although dangerous to animals, fish and humans, these toxins have potential uses as biocides 
(algaecides, fungicides, herbicides and insecticides) and pharmaceuticals (antimicrobial, anti-

cancer, antiviral and immunosuppressant) [15, 23].

3.2. Photoprotective metabolites: Mycosporine-like amino acids (MAAs) and 

scytonemin

Mycosporine-like amino acids (MAAs) are a group of about 30 colourless, water soluble, low 
molecular weight molecules found primarily within the cytosol of cells and sometimes found 

glycosylated on the outer cell membrane such as in Nostoc commune [25]. MAAs have strong 
absorption in the UV region between 310 and 365 nm [2] with high molar extinction coeffi-

cients (ε = 28,100–50,000 l·mol−1·cm−1) providing photoprotection with the ability to disperse 

energy without producing reactive oxygen species (ROS) [26].

They consist of cyclohexenone or cyclohexenimine chromophores conjugated to nitrogen sub-

stituents from amino acids or imino alcohols. The variety in absorption is due to the differing 
nitrogen substituents and side groups [27, 28] (Table 3).

There are two biosynthetic routes involved in the production of MAAs. The first is the shiki-
mate pathway (biosynthesis of aromatic acids) [29], by first forming deoxy-D-arabinoheptu-

losonate-7-phosphate (DAHP) from phosphoenolpyruvate (PEP) and erythrose-4-phosphate 
(E4P) using DAHP synthase. DAHP is then converted to 3-dehydroquinate and subsequent 
transformation into 4-deoxygadusol (4-DG). The primary MAA mycosporine-glycine is then 
formed from the reaction of 4-DG with glycine, which can then be converted into a secondary 
MAA by addition of other amino acids such as serine (to produce shinorine) and threonine (to 
produce porphyra-334) [25]. The other pathway involved is the pentose-phosphate pathway, 

which also produces the intermediate 4-DG from sedoheptulose-7-phosphate via 2-epi-5-epi-

violiolone [19].

Another photoprotective metabolite produced by cyanobacteria alone is scytonemin  
(Figure 1 (11)), this is located in the extracellular polysaccharide sheath of cyanobacteria [19]. 

With a molecular weight of 544 Da it is a hydrophobic alkaloid comprising of idolic and 

phenolic substituents usually linked by a carbon–carbon double bond. It has an absorption 
maximum at 380 nm [2, 26]. Scytonemin has an extinction coefficient of 136,000 l·mol−1 cm−1 

at 384 nm, which makes it an excellent photo-protective compound. It is biosynthesized in 
response to UV-A and has two major forms, an oxidised state (brown) and reduced state (red).

3.3. Antioxidants

Unavoidably ROS are produced by cyanobacteria during photosynthesis and respiration. 

Abiotic factors that produce these species include UVR, osmotic perturbations, desiccation 
and heat. Hydrogen peroxides (H

2
O

2
), superoxides (O

2
•−) and hydroxyl radicals (OH•) which 

damage biomolecules within cells are all examples of ROS [30].

Cyanobacteria require multiple approaches to prevent inhibitory effects of stressful environ-

ments. They can prevent the production of ROS by energy dissipation in the photosynthetic 
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apparatus. One mechanism is the non-photochemical quenching (NPQ) of excitation energy 

via photosystem II using the carotenoid zeaxanthin. They also produce enzymatic antioxi-
dants such as; superoxide dismutases (SOD), catalases and peroxidases) as well as non-

enzymatic antioxidants such as; carotenoids, phycobiliproteins, tocopherols and ascorbic 
acid [31].

Carotenoids absorbs light in the region of 400–500 nm and have several roles including sun-

screening, singlet oxygen quenching, releasing excessive light as heat through the xantho-

phyll cycle and radical scavenging [30].

Another group of antioxidants are the phycobiliproteins (PBP). These are present only in cya-

nobacteria and are primarily used as major light harvesting antennae but also have antioxidant 

MAA Molecular structure λmax (nm), ε 
(l·mol−1·cm−1)

Species of 

cyanobacteria

Mycosporine-glycine 310, 28,800 Nostoc commune

Shinorine 334, 44,668 Anabaena sp.

Asterina-330 330, 43,800 Gloeocapsa sp.

Porphyra-334 334, 42,300 Nodularina baltica

Table 3. Example of MAAs [27, 28].
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roles within the cells [32]. They are water soluble proteins that are brightly coloured due to 

the covalently attached linear tetrapyrrole prosthetic groups called bilins, which gives rise to 
cyanobacteria prominent colour. They, along with linker protein are able to form giant supra-

molecular structures known as phycobilisomes [33].

4. Potential of cyanobacterial secondary metabolites in industrial 

biotechnology

Sustainability in industry is increasingly important due to global warming and the depletion 

of fossil fuels. A considerable amount of research has been conducted to find new sources of 
industrially important compounds to reduce the carbon footprint and increase sustainability.

Cyanobacteria has received much interest in becoming a promising alternative due to their 

diversity, simple growth needs and simple genetic background, which are easily manipulated 

to form cell factories [34].

Some strains of cyanobacteria are already being used in industry, examples include the edible 

Arthrospira (Spirulina) and Nostoc, which have been used as a food source for thousands of 

years [35].

Spirulina has been well researched for its application within industry. It is used as a health 

food due to its extensive source of proteins, polyunsaturated fatty acids (γ-linoleic acid, GLA), 
antioxidants (phycocyanin and carotenoids) and vitamins [36].

A challenge remains in assessing and understanding the ability of cyanobacteria to produce 
target metabolites in sufficient quantities to be of use under standard and repeatable condi-
tions. This will be easier moving into the future as ‘omic’ studies enable improved under-

standing on metabolite pathways using a whole systems approach.

4.1. Pharmaceuticals and cosmetics

Natural products have been used to treat disease for thousands of years and are a useful 

source of bioactive compounds used in the pharmaceutical industry as leading compounds 

in drug discovery. They can be used as templates for synthesis of new drugs to treat complex 

diseases. Cyanobacteria have been widely researched for their applications in this field. They 
have found to possess a wide range of potential antimicrobial, anticancer, antiviral and anti-

inflammatory activities [37]. Some known bioactives are listed below (Table 4) [11].

Chemotherapies currently used in the treatment of cancer cause serious side effects; naturally 
derived alternatives give opportunities for synthesising new highly potent drugs with fewer 

side effects [15, 42]. Cytotoxic metabolites produced by cyanobacteria usually target tubulin or 

actin filaments in eukaryotic cells, which make them promising anticancer agents. Dolastatins 
found within Leptolyngbya and Simploca sp. are synthesised by NRPS-PKS enzymes and are 
able to disrupt microtubule formation. Other cyanobacterial metabolites act as proteases 

inhibitors such as the lyngbyastatins, which are cyclic depsipeptide derivatives, which are 
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thought to be elastase inhibitors. Apratoxins such as Apratoxin-a from Lyngbya majuscule is 

another metabolites biosynthesized from a hybrid NRPS-PKS pathway. It is cytotoxic due its 
ability to induce G1-phase cell cycle arrest and apoptosis [42].

Antibacterial metabolites produced by cyanobacteria are effective against gram negative and 
gram positive bacteria. In the age of antibacterial resistance, new drugs are essential to com-

bat bacterial infections. The hapalindole-type class of indole alkaloids has been found to pos-

sess antimicrobial (bacteria, fungi) and antialgal activity [16].

Secondary metabolites can be used as natural ingredients in the cosmetics industry. 

Uses include the photoprotective MAAs in sunscreens to protect the skin from harmful 
UVR. Pigments such as carotenoids and phycobiliproteins could be used as natural colou-

rants but also as antioxidants to protect the skin from damage caused by UV exposure [11].

Other potential uses for cyanobacterial secondary metabolites include their use in the nutra-

ceutical and agricultural industry [11, 43].

5. Conclusion

Cyanobacteria have a long evolutionary history and have adapted to deal with natural and 

anthropogenic stress. The morphological, biochemical and physiological diversity of cyano-

bacteria gives rise to the vast amount of secondary metabolites produced all with their own 

specific functions that aid in the organism’s survival. These secondary metabolites can also 
be utilised in drug discovery as lead compounds due to their complex structures and varied 

bioactivities. New natural products can be identified through biosynthetic pathway analysis 
using genomic data with around 208 cyanobacterial genomes sequences publically available 
[12]. Although extensive research has been conducted on cyanobacterial secondary metabolites 

Species of cyanobacteria Bioactive compound Biological activity References

Spirulina platensis Spirulan Antiviral [38]

γ-linolenic acid Precursor to prostaglandins [39]

Phycocyanin Cosmetic colourants [1]

Lyngbya majuscule Apratoxins Anticancer [23]

Nostoc commune Nostodione Antifungal [38]

Carotenoids Antioxidant [36]

MAAs Sunscreen [40]

Anabaena circinalis Anatoxin-a Anti-Inflammatory [11, 38]

Fischerella muscicola Fischerellin Antifungal [11]

Scytonemin Anti-inflammatory, Anti-proliferation [41]

Table 4. Potential applications of cyanobacterial natural products in pharmaceutical and cosmetics industry.
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there is still a large selection of species, which have yet to be sequenced and investigated with 

many potentially important secondary metabolites yet to be discovered.
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