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Abstract

Ovarian cancer is the leading cause of gynecologic-related cancer death and epithelial 
ovarian cancer (EOC) is the most lethal sub-type. EOC is usually asymptomatic, and few 
screening tests are available. Diagnosis of ovarian cancer can be difficult because of the 
nonspecific symptoms. Despite the various diagnostic methods used, there is no reli-
able early diagnostic test and it needs to be developed. Specific biomarkers may have 
potential with the least possible invasive procedure. Biomarkers with a high sensitivity 
to ovarian cancer should be identified. Circulating biomarkers that are significant tools 
for non-invasive early diagnosis can be analyzed using circulating tumor cells, exosomes, 
and circulating nucleic acids. Protein, gene, metabolite, and miRNA-based biomarkers 
can be used for ovarian cancer diagnosis. As non-coding RNAs, MiRNAs may have an 
important role in ovarian cancer diagnosis due to their effects on mRNA expression lev-
els. The most recent developments regarding the potential of circulating biomarkers to 
detect early ovarian cancer is presented in this chapter.

Keywords: ovarian cancer, biomarker, cell-free nucleic acids, early diagnosis, miRNA

1. Introduction

Ovarian cancer is a heterogeneous disease and the most important cause of gynecological 

cancer-induced deaths [1]. It is the fifth most important cause of cancer-related deaths among 
women in the world [2]. Different types of tumors may develop from each cell type. These 
tumors are epithelial tumors, germ cell tumors (originating from the ovary cell and follicular), 

and stromal tumors [3].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Molecular and cellular analyses of these tumor types may lead to earlier diagnosis of ovarian 

cancer and it is hoped better survival rates. Many factors play a role in the development of 
cancer, while genomic mutations and epigenetic changes are very important. For this reason, 

studies on mutations and epigenetic alterations may provide information about features such 

as early diagnosis, surveillance, and response to treatment.

2. Biomarkers used in the diagnosis of ovarian cancer

Tumor biomarkers are molecules that are produced by cancer cells or cells around them, 
which can be measured in body fluids or in the blood during the diagnosis, screening or 
treatment of cancer. Molecules that can be used as tumor biomarkers can be counted as cyto-

plasmic proteins, enzymes, hormones, surface antigens, receptors, oncofetal antigens (re-

emerging proteins in cancer that is normally lost after birth), oncogenes or their products. An 

ideal tumor biomarker should be sensitive enough for early detection of small tumors while 
retaining the specificity of the identified cancer type. Unfortunately, however, today there is 
no known tumor biomarker carrying these features [4].

The features that should be found in an ideal tumor biomarker are given below [5]:

• It should have high specificity; it should be specific to only one type of tumor.

• Must have high sensitivity, should not be detected in cases of physiological or benign 

tumors.

• Levels should be proportional to tumor characteristics and size.

• The predictive and prognostic benefit of tumor biomarkers should be known.

• Half-life should be short, frequent and serial monitoring is possible.

• It should be cheap and easy to apply.

• Can be used as a screening test.

• Sample taking should be easy.

Potential biomarkers used in ovarian cancer are grouped as gene, protein, metabolite, and 
miRNA-based biomarkers according to their type [5].

The vast majority of ovarian tumors arise from the accumulation of genetic damage, but the 

specific genetic pathways that are involved in the development of epithelial, borderline, and 
malignant tumors are largely unknown. Considering the important relationship between 
genetic alterations and ovarian tumors, potential ovarian-cancer biomarkers can be found at 
gene-level (hereditary gene mutations, epigenetic changes, and gene expression) studies. The 

most common genes associated with epithelial ovarian cancer are shown in Table 1 [6].

BRCA1, BRCA2, and Lynch syndrome genes show high penetrance and offer lifetime risks of 
7–40% for ovarian cancer. Nowadays, the multigene panels used for clinical genetic testing  
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Gene Gene full name Protein class Scorea No. of 

PMIDsb

No. of 

SNPsc

TP53 Tumor protein p53 Transcription factor 0.245958 144 2

CLDN7 Claudin 7 Cell junction protein 0.201099 5 0

ABO ABO, alpha 

1–3-N-acetylgalactosaminyltransferase and 

alpha 1–3-galactosyltransferase

Transferase 0.200549 3 0

SYNPO2 Synaptopodin 2 Cytoskeletal protein 0.200275 1 0

GPX6 Glutathione peroxidase 6 Oxidoreductase 0.200275 1 0

RSPO1 R-spondin 1 0.200275 1 0

WNT4 Wnt family member 4 Signaling molecule 0.200275 1 0

ATAD5 ATPase family, AAA domain containing 5 Nucleic acid 

binding

0.200275 1 0

EHMT2 Euchromatic histone lysine  

methyltransferase 2

Transferase; nucleic 
acid binding

0.2 1 0

MIR376C MicroRNA 376c 0.2 1 0

BRCA1 BRCA1, DNA repair associated 0.02933 99 5

ERBB2 erb-b2 receptor tyrosine kinase 2 0.017792 57 0

BRCA2 BRCA2, DNA repair associated Nucleic acid 

binding

0.01422 44 4

VEGFA Vascular endothelial growth factor A Signaling molecule 0.012847 39 0

MUC16 Mucin 16, cell-surface associated 0.009 25 0

EGFR Epidermal growth factor receptor 0.008176 22 0

PIK3CA Phosphatidylinositol-4,5-bisphosphate 

3-kinase catalytic subunit alpha
Transferase; kinase 0.007627 20 3

PGR Progesterone receptor Transcription factor; 
receptor; nucleic 
acid binding

0.007287 10 0

ERCC1 ERCC excision repair 1, endonuclease non-

catalytic subunit

Nucleic acid 

binding

0.007077 18 0

EGF Epidermal growth factor Extracellular matrix 

protein; receptor
0.006528 16 0

ESR1 Estrogen receptor 1 Transcription factor; 
receptor; nucleic 
acid binding

0.006528 16 0

IGF2 Insulin like growth factor 2 0.006253 15 1

NBR1 NBR1, autophagy cargo receptor 0.006044 22 0

CDKN1A Cyclin dependent kinase inhibitor 1A Enzyme modulator 0.005704 13 0

TNF Tumor necrosis factor Signaling molecule 0.005704 13 0

ABCB1 ATP binding cassette subfamily B member 1 0.005495 20 3
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include the mild-penetrance genes (lifetime risks of 6–13%) such as BRIP1, RAD51C, and 
RAD51D. The common low-penetrance susceptibility genes make up the rest of the genetic 
risk. Besides, SNPs have approximately 1% risk which is shown by population-based 
genome-wide association studies (GWASs) [7]. Expression analyses of quantitative or semi-

quantitatively specific genes in serum or tumor tissue can potentially contribute to tumor 
recognition. In the last decade, analysis of gene expression has gained momentum due to 

improvements in microarray technology. This is because microarray technology enables 

analysis of tens or hundreds of gene expressions in a single piece of tissue. Gene expression 

profiling has focused on three main topics: the separation of tumor tissue by normal ovarian 
tissue, the identification of different subtypes of ovarian cancer, and the determination of 
cancer according to possible responses to treatment.

DNA methylation and histone modification are epigenetic mechanisms that play important 
roles in gene regulation, tumor formation, and progression. Measuring the rate of methyla-

tion in specific genes in the promoter region helps early detection of cancer, detection of dis-

ease progression, and prediction of therapeutic response. Identification of specific genes that 
change with epigenetic regulation is one of the areas that are actively studied in ovarian can-

cer. In this chapter, we want to focus on circulating biomarkers and other types of biomarkers 
will not be discussed.

3. Tumor materials in circulation: liquid biopsy and their biomarker 

potentials

Non-invasive tumor diagnosis and screening has become an important area of study. Contrary 

to tissue biopsy, through detection of circulating tumor cells (CTCs), tumor nucleic acids 

(“circulating tumor DNA/RNA”), and exosomes, predictive and prognostic markers may 
potentially be developed which is far less invasive. Hence early and multiple evaluations of 

the disease can be made, including retrospective follow-up, identification of treatment effects 
and investigation of clonal development. Isolation and characterization of CTCs, exosomes, 

Gene Gene full name Protein class Scorea No. of 

PMIDsb

No. of 

SNPsc

MLH1 mutL homolog 1 Nucleic acid 

binding

0.005154 11 0

PTGS2 Prostaglandin-endoperoxide synthase 2 Oxidoreductase 0.005154 11 1

BRAF B-Raf proto-oncogene, serine/threonine 

kinase
Transferase; kinase 0.00488 10 1

CDKN2A Cyclin dependent kinase inhibitor 2A Enzyme modulator 0.004605 9 0

aGene-Disease Score.
bTotal Number of PubMed ID (PMIDs) Supporting the Association.
cThe Number of Associated Single Nucleotide Polymorphism (SNPs).

Table 1. The most common genes associated with epithelial ovarian cancer.
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and circulating tumor DNA (ctDNA) will improve cancer diagnosis, treatment, and imaging. 

Liquid biopsy can be performed “real-time” and at every stage of cancer. Although, it has 

some potential disadvantages such as; still is not certain to use in cancer diagnosis, difficulties 
in analysis of data obtaining from high-throughput screening and lack of data verification 
through clinical trials; it has significant potential for clinical cancer diagnosis in future [8].

3.1. Circulating tumor cells (CTCs)

Some cancer derived cells are detected in peripheral blood, and appear as solid tumor cells 

that have broken away into the circulation [9]. There are two main types of CTCs to explain 

this phenomenon. The majority are “Accidental CTCs”, and these are CTCs that are passively 

pushed by external forces, such as tumor growth, mechanical forces during surgical opera-

tion or friction. The rest are CTCs which gain more plasticity and metastatic potential via the 

epithelial-mesenchymal transition (EMT) process [8]. These CTCs can stay in the non-divided 

form in the vein, can spread together, or settle into a new tissue to compose the metastatic 
deposit. Regardless of the CTC pathway, these cells carry important information about tumor 

composition, metastasis, drug sensitivity, and treatment.

CTCs have been demonstrated to have prognostic value among patients with breast, colorec-

tal, gastric, lung, and pancreatic cancers in previous meta-analyses. However, the value of 

CTCs in ovarian cancer still remains controversial. Some studies did not observe any correla-

tion between CTC status and prognosis. In contrast, other studies demonstrated an associa-

tion Zhou et al. has shown that the prognostic value of CTCs was not associated with disease 

stage but with an elevated CA-125, both of which are known to correlate with prognosis either 
directly or indirectly. It has also been known that the CTC status was significant in respect to 
the overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) in 

ovarian cancer [10].

CTCs can be detected in both metastatic patients and patients with early, localized tumors. 

There is a significant potential for CTCs in the clinical management of cancers such as ovar-

ian cancer. CTCs may enable real-time monitoring of treatment efficacy, identification of new 
therapy targets, and detecting and understanding drug resistance mechanisms [11]. CTC 

imaging and separation from leukocytes is dependent on reliable cell-surface markers. Based 
on the precipitation of CTCs in the low-speed centrifuge, the leukocyte fractions can be distin-

guished via physical features as well. Lee et al. used a nanoroughened microfluidic platform 
and detected CTCs in the sera of nearly all female participants (53/54, 98.1%) with ovarian 

cancer [12]. They also showed that although there is no relationship between CTC count and 

PFS in patients with newly diagnosed epithelial ovarian cancer (EOC), in patients with recur-

rent disease and chemoresistance; a relationship was found between CTC-cluster positivity 
and diminished OS [12]. It has been postulated that CTCs could result in metastatic pro-

gression and recurrence by way of epithelial-mesenchymal-transition (EMT) or development 

of stem-like features and hence a reduced OS. Therefore, researchers have tried to identify 
therapy-resistant tumor cells and to overcome treatment failure by analyzing CTCs transcrip-

tional profiles [13]. In this study, the authors analyzed 15 single CTCs from 3 ovarian cancer 

patients and found them to be positive for stem cell (CD44, ALDH1A1, Nanog, Oct4) and 

EMT markers (N-cadherin, vimentin, Snai2, CD117, CD146) [13].
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3.2. Circulating cell-free tumor DNA

Chang et al. were the first to examine the amount of cell-free DNA (cfDNA) in a patient’s 
serum as a marker of disease presence in gynecologic malignancies [14, 15]. Cell free tumor 

DNAs (ctDNAs) circulate in the bloodstream and are derived from tumor cells. The presence 

of ctDNAs has been proven by detection of tumor-specific anomalies such as the presence 
of mutation in circulating tumor DNA (ctDNA), loss of heterozygosity of microsatellite, and 

methylation of CpG islands [16–18]. Similar to CTCs source; ctDNAs are released into the 
bloodstream in two ways: passively whereby ctDNAs from dead tumor cells and actively 

whereby ctDNAs are derived from live tumor cells spontaneously [8, 19]. ctDNA and apop-

totic cell levels are lower in healthy individuals compared to cancer patients because chronic 

inflammation and excessive cell death cause accumulation of cell residues. cfDNA (cell-free 
DNA) is believed to originate from apoptotic cells content and found in elevated levels in 

cancer patients and related to higher tumor stage [20, 21].

The level of ctDNA is higher in the bloodstream of patients with solid tumors and metastatic 

disease compared to those without metastases [20, 21]. In patients with metastatic disease, the 

serum ctDNA level is higher (prevalence 86–100%) when compared to early-staged cancer 

types and patients with no radiographic evidence of disease (prevalence 49–78%) [20, 22]. 

Olsen et al. showed that in 86% of patients, ctDNA can be detected approximately 1 year 

before metastases while they are not observed in those clear of recurrence [23, 24] The antici-

pated short half-life of ctDNA of around 2 hours allows for an almost continuous analysis of 

tumor features including development, metastatic progression, and treatment efficacy. Thus, 
the identification of ctDNA has extraordinary potential as a potential biomarker for observing 
tumor load in the patient both prior and during treatment and in follow up [23].

Earlier studies in gynecological malignancies evaluated the presence of ctDNA at one time 

point using pelvic washings, ascites, serum, and plasma. Pereira et al. has demonstrated that 

serial estimation of ctDNA is a surveillance biomarker in gynecologic malignancies that is 
as sensitive and specific as the FDA-approved serum biomarker CA-125 [25]. Additionally, 

disease recurrence can be detected months earlier with ctDNA than CT checking [25]. 

Furthermore, the survival profiles of patients can be predicted with ctDNA level during the 
start of primary treatment, debulking surgery, and combined platinum/taxane doublet che-

motherapy [25]. Both improved progression free and overall survival appear to be associated 

with undetectable levels of ctDNA [25] Additionally, ctDNA level maybe a stronger predic-

tor than CA-125 of tumor size because of the longer half-life of CA-125 (9–44 days). It is also 

shown that in some patients, relapse of disease can be detected with ctDNA approximately 

7 months before any CT scan changes [25]. Pereira et al. detected occult ovarian cancer cases 

by continuously monitoring the ctDNA even during apparent clinical remission [25]. These 

studies demonstrate that ctDNA could be used in early detection, it can act as a marker of dis-

ease stage as well as disease progression for gynecological cancers especially ovarian cancer.

Early diagnosis seems to be the best solution to reduce rates of ovarian cancer deaths unless 

highly effective drugs are developed with fewer side effects. Bettegowda et al. showed that for 
ctDNA detection in solid tumors, patients are treated at an earlier stage resulting in improved 
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survival [21]. Moreover, even in stage I patients (usually curable with surgery alone), detec-

tion of ctDNA level can be observed in around 47% of all patients [21]. Using ctDNA-level 
analysis, ovarian cancer can be detected in around 70% of all stage III patients [21].

3.3. Circulating cell-free tumor RNA (ctRNA)

Cancer cells have a very specific gene expression profile which differs from normal tissues. 
These tumor-specific gene transcripts can be detected in the circulation of cancer patients [26]. 

Despite the high amount of RNase present in the blood, circulating RNAs have been found to 

be surprisingly stable. This can be explained by the possibility that RNA is destructively pro-

tected by exosomes (such as microparticles, microvesicles, multivesiculas) that pass through 

the cell membrane into the bloodstream [26]. In addition, these mRNAs that are present in 

blood can be used as prognostic and predictive biomarkers [27]. Similar to ctDNA, ctRNA 

requires further study to assess the exact value as a biomarker in ovarian cancer.

3.3.1. Circulating microRNAs

MicroRNAs (miRNAs) are RNAs that do not encode proteins, at about 22 nucleotides in 

length, but they are involved with translation suppression, mRNA degradation, or sequenc-

ing specific gene regulation. Thus these molecules regulate various biological processes such 
as development, cell proliferation, differentiation, and apoptosis [28]. Approximately 3% of 

human genes encode miRNAs, while about 30% of genes encoding protein are regulated by 

miRNAs. These miRNAs vary according to the type of each cell, the stage of development, 

and differentiation of the cell. The release and biological functions of extracellular miRNAs 
are still not fully understood [29].

It has been shown that blood miRNAs in cancer patients have the similar importance as the 

miRNAs in tissues, and the relationship between solid tumors and miRNA expression pro-

files in the blood have been investigated [30, 31]. Circulating miRNAs are not bonded to the 

cell but are protected against endogenous RNase breakdown by binding to microvesicles, 
exosomes, microparticles, apoptotic bodies, and protein-miRNA complexes [32]. MiRNAs 

are resistant to severe conditions such as high temperature, low/high pH, long-term storage, 

and over-applied freezing/thawing [29]. Measurement of circulating miRNA level is diffi-

cult because it can be contaminated with cellular miRNAs of different hematopoietic origin 
[29]. The isolation and stabilization protocols of circulating miRNAs should be standard-

ized and the cancer patient’s plasma should be selectively distinguishable at the single mol-
ecule level [33]. MiRNA expression varies in tumor tissue with respect to normal tissue, and 

these changes can be detected in serum/plasma samples of cancer patients when compared 

to healthy individuals [34]. Further work is needed because of the low level of difference 
detected [29]; however miRNA has been shown to play an important role in cancer develop-

ment as a new oncogene or tumor-suppressor gene class that varies according to the target 

gene [35].

In eukaryotic cells, there are several stages in miRNA biogenesis stages (transcription, pri-
miRNA clipping, pre-miRNA transport, and pre-miRNA cloning) [36, 37]. MiRNA expression  
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levels vary from normal to ovarian cancer, with epigenetic changes, genetic changes (such 

as copy number changes), or differentiated expression of transcriptional factors, targeting 
miRNA genes. Transcriptional gene silencing in cancer cells is often associated with epigen-

etic defects [38, 39]. Studies have suggested that dysfunction or irregularity may occur in key 
proteins that are effective in miRNA biogenesis and may lead to tumor formation [39].

In recent years, many studies have been performed on the miRNA expression profile in EOC 
and it has been shown that there are significant differences in the miRNA expression profile 
compared to normal [35]. Iorio et al. compared 59 EOC operation samples with 15 normal 

ovarian species using a “custom” microarray and found 29 differently expressed miRNAs 
[35]. In EOC patients, miRNA expression profiles obtained from circulating tumor exosomes 
were compared with benign tumors and normal individuals and separated by different 
expression profiles. In this study, exosomes were separated by magnetic beads and anti-
EPCAM antibodies, and miRNAs were analyzed by isolated microarray. As a result, there are 

several differentially expressed miRNAs in ovarian cancer samples [40]. In a study by Resnick 
et al., real-time PCR analysis of miRNA expression was performed on the serum collected 

from ovarian cancer patients and normal subjects, with different miRNAs expression found 
[41]. Patients with the three up-regulated miRNAs (miR-21, miR-92, and miR-93) were found 

to have a normal level of CA-125. Therefore, miRNA analysis may be complementary to other 

diagnostic methods [41].

It is clear that miRNAs play a crucial role in both normal and pathological processes due to 

their ability to regulate the expression of specific genes. However, no consensus has been 
reached as to the exact role/potential in diagnosis, metastasis, and prediction of response to 

treatment in EOC [28]. In addition, ovarian cancer is a heterogeneous disease, treatment and 

diagnostic options may vary from individual to individual; in this context, the tissue and 
origin specificity of miRNAs may be exploited and individualized treatment methods may 
be applied [42].

3.3.2. Circulating long non-coding RNAs

The Long Non-Coding RNAs (lncRNAs) are defined as >200 nucleotides in length and divided 
into five subclasses, which are intergenic, intronic, sense overlapping, anti-sense, and bidirec-

tional lncRNAs [43]. LncRNAs are involved in various regulation processes which include 

protein-coding genes, functions at the level of splicing, chromatin remodeling, transcriptional 

control, and post-transcriptional processing after binding to DNA, RNA, or proteins [44]. These 

differ from tissue to tissue [45, 46] and lncRNAs play a role in growth, metabolism, and cancer 

metastasis [20, 47]. In several human cancer types, differentially expressed lncRNAs have been 
identified [48] which can be related to cancer metastasis and prognosis [49–51]. In addition, 

lncRNAs are specific for certain tumor origins such as the lymphatics, the cardiovascular or 
nervous system, circulating peripheral blood cells, or hematologic stem cells. Therefore, circu-

lating lncRNAs may be informative about the tumor microenvironment [20, 52].

In ovarian cancer, lncRNAs have been shown to regulate several cancer processes such as 

development, metastasis, and relapse. Gao et al. [53] showed that a lncRNA named HOST1 
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(human ovarian cancer-specific transcript 1) plays a role in key biological pathways of EOC 
through the stimulation of tumor cell migration, invasion, and proliferation by inhibiting let-7b 

which is one of the most important miRNA involved in EOC [54]. In another study, Tong et al. 

showed that a lncRNA named RP11-190D6.2 regulates the WW domain-containing oxidore-

ductase (WWOX) expression by acting like an antisense transcript of this gene [55]. WWOX is 

linked with poor prognosis in several cancers, including EOC [56]. In addition, RP11-190D6.2 

appears to play a role in the regulation of tumor metastasis, thus it can be counted as a potential 

biomarker and therapeutic target for EOC [55]. Zhou et al. compared several lncRNA expres-

sion profiles in a large number of OvCa patients from TCGA and found an eight-lncRNA 
signature predictive of overall survival [57]. Moreover, using lncRNA expression profiles, they 
could separate similarly aged patient into high-risk and low-risk groups, identify good or poor 
survival potential of patients, the eight-lncRNA signature maintained independent prognostic 

value, and was significantly correlated with the response to chemotherapy [57]. In a separate 

study [51], examining the expression profiles of lncRNAs and mRNAs in the high-throughput 
molecular profiles of OV patients; they found a correlation between lncRNA and malignant 
OV progression. Therefore; they suggest that two specific lncRNAs (RP11-284 N8.3.1 and 
AC104699.1.1) as may be candidate biomarkers for prognosis [51]. Clearly further study is 

required to understand their clinical application as a biomarker in EOC.

3.3.3. Circulating Piwi RNAs(piRNA)

Piwi RNAs (PiRNAs) are single-stranded, 26–31 nucleotide long RNAs which may inhibit 

transposons and target mRNAs through the formation of the miRNA silencer complex (RISC). 

Post-transcriptional regulation of piRNA (piRISC) happens in the cytoplasm [58]. The piRISC 

protects the integrity of the genome from alterations made by transposable elements (TE)—by 

silencing them; mRNA and lncRNA are other targets of piRNA complexes [58, 59]. piRNAs 

pathways play an important role to regulate some cancer-related pathways such as DNA 

hypomethylation and transposable element (TE) derepression. L1 is a piRNA pathway gene 

that regulates these pathways, also overexpression of these genes (PIWIL1 and 2), have been 

shown in several tumor tissues [60]. Lim et al. showed that overexpression piRNA pathway 

genes and L1 elements may have a role in EOC [60]. They compared the EOC tissues and cell 

lines to benign and normal ovaries and found overexpression of PIWIL1 and MAEL, known 
as a cancer/testis gene [61] which are two genes of piRNA pathway which is a germ-line-

specific RNA silencing mechanism. In situ analysis indicated that L1, PIWIL1, PIWIL2, and 
MAEL are up-regulated in cancerous cells, while MAEL and PIWIL2 genes are expressed in 

the stromal cells lining tumor tissues as well. PIWI, MAEL genes are essential for Drosophila 

and other vertebrates’ germ-line stem-cell differentiation [60, 62]. These gene changes may 

promote a change in cell composition or identity in the tissue surrounding the cancer cells 

[60]. Also cancer stem cells may have potential as a biomarker for stem-cell definition [60, 63].

In addition, synthetic piRNAs may offer a new therapeutic approach through their use in 
silencing the expression of cancer-related genes. This approach has an advantage over other 

miRNA-based blocking methods because it does not require extra components for processing 
such as Dicer [59].
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3.4. Exosomes and circulating microvesicles

Exosomes are multivesicular endosomal-derived extracellular vesicles (EVs) which are 

30–120 nm size [64–67]. Exosomes can be distinguished from microvesicles which are hetero-

geneous in size (50–1500 nm) and result from the plasma membrane directly via a budding 

mechanism [68, 69]. Exosomes include several molecules such as proteins, metabolites, RNAs 

(mRNA, miRNA, long non-coding RNA), DNAs (mtDNA, ssDNA, dsDNA), and lipids and 

are used in cell communication [64, 70, 71]. Similar to circulating microvesicles, exosomes 

have also been shown to have specific functions and play an important role in coagulation, 
intercellular signaling, and the management of debris. Both circulating parts of the cell are 

found in different body and interstitial fluids [72, 73].

Tumor-derived exosomes are different from circulating healthy exosomes in terms of number 
of exosomes, content, and also cell-surface proteins [74]. Exosomes can be detected and isolated 

with several markers especially cell-surface proteins including those found only in the primary 
tissue. TGF β1, MAGE 3/6 proteins have a cell-surface biomarker feature special for ovarian 
cancer. These markers can be detected by filtration and ultracentrifugation methods in ovar-

ian cancer plasma samples and can be used for prognosis/therapy monitoring of disease [74, 

77]. Exosome contents are variable for cancer types as well. Taylor et al. indicated that several 

ovarian cancer specific exosomal miRNAs, (miR-21, miR-141, miR-200a, miR-200c, miR-200b, 
miR-203, miR-205, miR-214), have been differentiated in serum samples by magnetic-activated 
cell- sorting (MACs) using anti-EpCAM array for diagnosis and screening of stage [40]. Exosomes 

are informative about tumor-specific features such as metastatic or benign form, stage, response 
to chemotherapies, and other drugs at that point in time via a possible blood sample [64].

Microvesicles have several common features with the primary cell such as membrane lipids, 

receptors, and diverse types of nucleic acids and proteins [75]. As in exosomes, microves-

icles also have a potential to be biomarkers in several malignancies. Galindo-Hernandez 
et al. demonstrated that there were an increased number of microvesicles in breast cancer 

serum compared to healthy control samples [76]. It is also revealed that microvesicles derived 

from renal cancer stem cells include different miRNAs and mRNAs and these appear to play 
a function in tumor vascularization [75, 77, 78]. Microvesicles originated from tumor cells 

have been found in biological fluids in ovarian cancer. It has been shown that the number of 
microvesicles in malignant ovarian tumors is higher when compared to benign and nonma-

lignant pathologies (e.g., ovarian serous cysts, mucinous cystoadenomas, and fibromas) [79]. 

Ovarian cancer-induced ascites contains high levels of proteolytic enzymes such as matrix 

metalloproteinase (MMP-2, MMP-9) and urokinase-type plasminogen activator (uPA), which 
are the enzymes carried inside microvesicles [80–82]. Microvesicles may represent an ideal 

biomarker for ovarian cancer diagnosis and prognosis.

4. Biomarker detection technologies for ovarian cancer

High-throughput techniques of cellular transcriptome analysis mean that gene expression 

can be correlated with various aspects of disease in a variety of cancer types. This technology 
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used today in ovarian cancer research, such as expression microarrays and CGH, Real-time 

PCR, and Next-Generation Sequencing (NGS) allow genome-wide scanning and the discov-

ery of altered genes involved in cancer.

4.1. Real-time PCR

Cell-free nucleic acids reflect both normal and tumor-derived nucleic acids released into the 
circulation through cellular necrosis and apoptosis. Stroun et al. have demonstrated with 

Reverse Transcription Quantitative PCR (RT-qPCR) that there is a consistent correlation 

between tumor load and quantity of cell-free DNA detected in a wide range of malignan-

cies including ovarian cancer [83]. Several studies in OC with free DNA have also shown 

that miRNAs are abnormally expressed. Initial studies identifying tumor-derived miRNAs 

in the circulation of OC patients was published by Taylor et al. [40]. Zou et al. identified nine 
differentially expressed microRNAs (microRNA199a-5p, microRNA199a-3p, microRNA199-
b3p, microRNA-645, microRNA-335, microR-NA-18b, and microRNA-141) through qRT-PCR 

expression analysis in SKOV3/DDP and A2780/DDP cells and these agreed with microRNA 

chip results [84].

4.2. Microarray

Microarrays together with clustering analysis have allowed genome-wide expression patterns 
in a lot of cancer types to be deciphered and compared. Wong et al. studied a group of genes 

(CLDN7, EPHA1, FOXM1, and FGF7), for the validation of the microarray findings; these 
were selected as these genes were associated with the alteration of crucial pathways involved 

in the regulation of cell cycle and cell proliferation [85]. Liu et al. [86] using the bioinformat-

ics analyses of mRNA expression profiles retrieved from the Oncomine and Gene Expression 
Omnibus (GEO) Profiles online databases, they enriched two biological processes (cell cycle- 
and microtubule-related) and identified six genes (ALDH1A2, ADH1B, NELL2, HBB, ABCA8, 
and HBA1) that all were associated with ovarian cancer progression.

4.3. Next-generation sequencing

Clinical cancer next-generation sequencing (NGS) assays are dependent on many software 

subsystems and databases to deliver their results. The building of software systems for clinical 

use is a mandatory requirement of reliability and reproducibility imposed by diagnostic labo-

ratory accreditation bodies such as Clinical Laboratory Improvement Amendments (CLIA), 

National Association of Testing Authorities (NATA), and the International Organization for 

Standardization (ISO 15189).

Pinto et al. [87] validated the use of next-generation sequencing (NGS) for the detection of 

BRCA1/BRCA2 point mutations in a diagnostic setting and also investigated the role of other 
genes associated with hereditary breast and ovarian cancer in Portuguese families. They 

obtained 100% sensitivity and specificity (total of 506 variants) for the detection of BRCA1/
BRCA2 point mutations with their bioinformatics pipeline using a targeted enrichment 

approach when compared to the gold standard Sanger sequencing.
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5. Conclusion

Ovarian cancer is one of the most significant and fatal gynecological cancer types worldwide. 
The earlier this disease can be detected, the better the success of treating it. There are several 
detection methods for ovarian cancer, but molecular diagnosis methods are more accurate, 

faster, and suitable for early detection. Recent developments have focused on identifying 

biological material with newer technological devices and these have become more precise, 

reliable, and more widely available over a short period of time. Although molecular markers, 
which are specific for ovarian cancer, have been extensively studied, they are still not used 
in a clinical setting. Clearly a greater understanding of their mechanisms and specificities are 
needed before they can be applied to early detection of OC.

Liquid biopsy using body fluids (e.g. blood, urine, saliva, and ascites) to isolate and character-

ize CTCs, exosomes, circulating tumor DNA, RNAs, and circulating free small RNAs is a new 

technique used in the detection and treatment of several diseases. Clearly further investiga-

tion is required but it is hoped that this may become a very important tool for early detection 

of ovarian cancer. In addition, these biomarkers may become an important part of the clinical 
strategies used in cancer diagnosis, treatment, and imaging. In this chapter, their roles in the 

early detection and management of ovarian cancer have been discussed. It is hoped that as 

our understanding of these markers increases, we will see an improvement in the rate of early 
cancer detection and ultimately increased survival.
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