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Abstract

To ensure electrical safety and reliability in electric vehicles equipped with a high-voltage
battery pack, an insulation monitoring circuit is indispensable to continuously monitor
the insulation resistance during charging or driving. Existing methods such as injecting
specific signals into the monitoring circuit and earth help to extract the resistance value
from the voltage waveform. However, parasitic or stray capacitances in the monitoring
circuit, which might introduce higher order dynamics into the waveform, are ignored. To
avoid estimation error, the insulation resistance must be known in advance to carry out
parameter calibration. In this chapter, one parasitic capacitance is applied in the circuit
model and a new adaptive algorithm based on Lyapunov stability is employed to estimate
the insulation resistance. This new online monitoring method and circuit are verified
through simulation and experimentation, respectively. The results demonstrate that the
proposed method can quickly react and track variations of insulation resistance on both
positive and negative direct current (DC) lines.

Keywords: insulation resistance, adaptive control, electric vehicle, high-voltage battery
system, reliability

1. Introduction

For improving efficiency, an increasing number of devices are operated at high-voltage levels

to reduce losses in power transmission and power conversion. In the case of energy and power

systems for electrical vehicles (EVs), a high-efficiency electrical device can be achieved using a

high-voltage design. State-of-charge (SoC) and state-of-health (SoH) define the capability and

reliability of a high-voltage battery, respectively. To determine these two parameters instanta-

neously, it is required to develop a simple, training-free, and easily implemented scheme.
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Based on an equivalent-circuit model (ECM), the electrical performance of a battery can be

formulated into a state-space representation. Besides, underdetermined model parameters can

be arranged linearly so that an adaptive control approach can be applied [1]. However, electric

shock may be harmful to passengers if insulation failure occurs. As insulation resistance in EVs

varies with the operation environment and the reliability of the dielectric material [2], an

online insulation-fault detection method is required to ensure that the insulation resistance

stays within safe limits before startup or during the operation of high-voltage systems.

To ensure electrical safety in high insulation resistance, insulation inspection technologies have

been widely applied in distribution networks [3–5] and EVs [6–13]. To analyze the dynamic

insulation signals, the monitoring circuit is conventionally modeled by using two individual

resistors connected with a DC high-voltage line to the earth ground. The basic concept used in

estimating these two resistance values is to connect an additional circuit bridge composed

of resistors and switches to obtain the differential current loops and corresponding voltages

[8–11], but the resistance can only be measured if no current is conducted. As a result, these

methods are barely suitable even for offline detection. A more practical approach for online

detection is to continuously inject an excitation pulse signal into the negative terminal through

a capacitor. The insulation resistance value can be acquired by analyzing the time-constant or

the amplitude of the voltage waveform [12, 13]. However, parasitic or stray capacitance

generally occurs in insulation loops, and causes considerable estimation error if they are

ignored in the circuit model. In this chapter, we employ one typical capacitance in the moni-

toring circuit and propose a new adaptive algorithm for estimating both the resistance and

capacitance values.

2. Topology of insulation monitoring circuit

To follow the process illustrated by Sottile and Tripathi [14], the high-voltage system we

consider in this chapter could be an EV driving system that is powered by a high-voltage

battery or a UPS that stores electricity to provide emergency power. As illustrated in Figure 1,

a high-voltage system consists of a high-voltage battery pack, an inverter, a converter, an AC

load, and an AC source. The DC sides of the inverter and converter are connected in parallel

with the high-voltage battery pack. The AC side of the inverter is connected to a two-phase or

three-phase load. In other cases, the AC side of the converter could be connected to a two-

phase or three-phase source. Here, to consider an EV power system, we assume the AC load to

be a traction motor driven by an inverter, with the converter acting as a charger that converts

AC power from the grid or generator to DC power for charging the battery pack. In a UPS or a

renewable energy system, however, both the AC load and source have the same grid network.

Moreover, the inverter must be properly controlled to deliver power in phase with the grid

power waveform.

The DC power line of the circuit connected to the high-voltage system is electrically isolated

from the enclosure, i.e., the ground or chassis. Thus, we can determine the insulation status by

measuring or estimating the resistance between the node on the positive-voltage line (+) or
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negative-voltage line (�) and the node with the equivalent electric potential to the ground. The

electrical insulation in such a high-voltage system can be simply modeled by a resistor and a

stray capacitor in a parallel connection, as shown in Figure 1, where Rp/Rn and Cp/Cn denote

the positive/negative-line resistance and capacitance of the high-voltage system, respectively.

We note that stray capacitance, which has been essentially ignored in previous studies, may

yield considerable error in the RC circuit of the voltage waveform. In this work, we consider

this higher-order dynamic response in our estimation model, and thus expect a more accurate

result. To address this situation, our proposed insulation monitoring circuit, powered by the

low-voltage battery Vs, has two outputs that are connected to the positive and negative nodes

of the high-voltage system, as shown in Figure 1. In the monitoring circuit, we programmed an

MCU (micro-control unit) to generate a PWM (pulse-width modulation) signal with a random

duty-width sequence d(t), which can be obtained by the PRBS (pseudo random binary

sequence) method, which is widely used in systematic identification processes to fully excite

the system dynamics. One example of a PWM signal is that shown in Figure 2, where d(t)

denotes the time-varying duty of the PWM, T is the time period, and Vw(t) is the PWM output

with ON and OFF voltage levels. The isolated PWM circuit generates random magnitude

voltages in response to the random duty cycle sent from the MCU. Several topologies can

achieve isolation and multiple-voltage generation on demand. For example, a photo-coupler

provides electrical isolation and regulates the time for charging the output capacitor Cf, as

illustrated in Figure 3(a). We use the diode D1 between the Rf and the external R to prevent any

indirect connection to the ground via the Rf when the photo-coupler is turned ON. More

specifically, we impose an R + Rf insulation resistance for the system when the coupler is

Figure 1. Proposed insulation monitoring circuit.
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Figure 2. PWM signal generated using the PRBS method. (a) Photo-coupler circuit for electrical isolation and multiple-

voltage generation. (b) General topology of the isolated DC/DC converter.

Figure 3. Several topologies for implementing the proposed isolation circuit.
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turned ON, without diode D1 as a barrier. The other feasible topology is to isolate the DC/DC

converter, such as a forward converter, a fly back converter, or a push–pull converter, as

shown in Figure 3(b). With this method, Vc is a DC source that can be generated from the

external low-voltage source Vs. Then, the random voltage signal passes through a resistor R

and is injected into a node on the negative line of the DC link. Three voltage measurements are

required in this method, as shown in Figure 1. Vb is the voltage of the high-voltage system. Vn

is the voltage between the high-voltage negative terminal and the ground, and Vg is the output

voltage of the isolation circuit. The MCU continuously reads the instantaneously measured

voltage for the online estimation of the insulation resistance Rp as well as Rn, using the derived

adaptive control algorithm.

3. Equivalent circuit model

This high-voltage system connected to the insulation monitoring circuit can be modeled as an

equivalent circuit, as illustrated in Figure 4, where Vb is the voltage of the high-voltage battery

pack, Va is the voltage of the two- or three-phase AC source or AC machine, the inverter/

converter block is the power electronic circuit used to convert power between the AC and DC

power stages, and Vg is the output voltage of the isolation circuit. Rp/Rn is the insulation

resistor between the ground and the positive/negative terminal of the high-voltage battery

pack. Cp and Cn are stray capacitors connected in parallel with Rp and Rn, respectively. Resistor

R, which connects the positive terminal of the random voltage sources Vg and the negative

terminal of the battery voltage Vb, forms a closed loop between the monitoring circuit and the

high-voltage system. We note that the battery voltage Vb, the ground G, and the other insula-

tion resistors and parallel capacitors form the other loop in the circuit.

Therefore, we estimate the insulation resistances Rn and Rp online by an algorithm that is based

on the adaptive control law. According to Kirchhoff’s circuit laws, the equivalent circuit shown

in Figure 4 can be described as follows:

Figure 4. Equivalent circuit model for the insulation monitoring system.
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IP ¼ CP
_V P þ

VP

RP

(1)

IN � IP ¼ CN
_VN þ

VN

RN

(2)

Substituting Eq. (1) into Eq. (2), together with

VP ¼ VB þ VN,

yields:

IN ¼ CN
_VN þ

VN

RN

þ IP

¼ CN
_VN þ

VN

RN

þ CP
_V P þ

VP

RP

¼ CN
_VN þ

VN

RN

þ
VP

RP

þ CP
_V B þ _VN

� �

¼ CN þ CPð Þ _VN þ CP
_V B þ

VN

RN

þ
VP

RP

,

which can be rewritten as follows:

_VN ¼ �
1

RN CN þ CPð Þ
VN �

1

RP CN þ CPð Þ
VP þ

1

CN þ CP

IN �
CP

CN þ CP

_V B

¼ �
1

RN

þ
1

R
þ

1

RP

� �

1

CN þ CP

VN þ
1

R CN þ CPð Þ
VG �

1

RP CN þ CPð Þ
VB

�
CP

CN þ CP

_V B

(3)

Let us define the parametric vector as follows:

θ
T ¼

1

CN þ CP

1

R
þ

1

RN

þ
1

RP

� �

1

R CN þ CPð Þ

1

RP CN þ CPð Þ

CP

CN þ CP

� �

¼ θ1 θ2 θ3 θ4½ �

(4)

and the variable vector as:

XT ¼ �VN VG �VB � _V B

� 	

(5)

such that the dynamics of the insulation monitoring system are formulated as follows:

_VN ¼ XT
θ, (6)

where the parametric vector includes all the resistance and capacitance values that must be

known and the variable vector is composed of the variables that can be evaluated from all the

measurements in the system, i.e., VG, VN, and VP.
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4. Proof of adaptive algorithm

If we suppose all the actual parameter values and the voltage VN are unknown, we can write

the dynamic model in an estimated formation as follows:

_bVN ¼ �bV N
VG � VB � _V B

h i
bθ þ u, (7)

where bY denotes the estimation of Y, and u is one part of the adaptation law that lets all

the estimated values approach their true values, i.e., lim
t!∞

bVN tð Þ � VN tð Þ








 < δ and lim
t!∞

bθ tð Þ
���

�θk < ε. We define the estimated error for VN and the parametric vector as e ¼ VN � bVN and

eθ ¼ θ� bθ, respectively. If we differentiate the estimated error, we have:

_e ¼ _VN �
_bVN ¼ �bV N

VG � VB � _V B

h i
eθ � θ1e� u: (8)

Invoking the Lyapunov stability criteria shows that the positive-definite function:

S ¼ e2 þ eθT

Σeθ (9)

will approach zero for the negative semi-definite of its derivative; that is:

_S ¼ _eeþ
_eθT
Σeθ ¼ �bV N

VG � VB � _V B

h i
eeθ � θ1e

2 � ue�
_bθ
T

Σeθ

¼ � θ1 þ λð Þe2 þ �bV N
VG � VB � _V B

h i
e�

_bθ
T

Σ
1=2

� �
Σ
1=2eθ

¼ � θ1 þ λð Þe2 < 0,

(10)

provided that the adaptation law is as follows:

_bθ ¼ Σ
�1=2

�bVNe

VGe

�VBe

� _V Be

2
666664

3
777775
, u ¼ λe2, and λ > 0, (11)

where Σ could be a positive diagonal matrix for design simplicity. We can compute the

insulation resistance as follows:

bRP ¼
bθ2

bθ3

R and bRN ¼
1

θ̂1

θ̂2
� 1

� 

1
R
� 1

R̂P

: (12)

Figure 5 shows a calculation flowchart for estimating the insulation resistance. A detailed

description of the process is as follows:
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i. Start the online estimation at time t0. The initial values of the estimated insulation

resistance can be updated with the latest value in memory for faster convergence.

ii. The voltage values are acquired from the measured Vg, Vn, and Vp values.

iii. The estimated voltage error is computed by Eq. (7) together with the updated parameters,

where the initial value of the estimated Vn can be identical to the measurement.

iv. Based on the measured voltage data and estimated Vn, the adaptive algorithm given in

Eq. (11) updates the parameter. The updated parameters are sent to the previous and

following steps.

v. The insulation resistances are calculated by Eq. (12) based on the updated parameters.

The minimum value is used to check whether it is under the predetermined threshold. If

so, it is shown in the indicator.

vi. The waiting time required for the parameters’ convergence is calculated and Tm is empir-

ically set up to avoid misjudgment.

vii. Either the insulation resistance or an alert message is displayed, depending on whether it

is below the mandatory threshold.

viii. For continuous online monitoring, once started, this flow is an infinite loop.

5. Simulation and experimental results

To verify the proposed algorithm, for simplicity, we assumed a scenario in which an electric

vehicle is driven on the road such that the battery and AC line voltages are Vb = 350 V and

Va = 0 V, respectively. We set the initial insulation resistances at the positive and negative

terminals to earth to be within the safety level, i.e., Rp(t = 0 s) = 600 kΩ and Rn(t = 0 s) = 500 kΩ,

respectively. After 60 s, we degraded Rn(t = 60 s) to 100 kΩ, and after 120 s, we did the same for

Rp(t = 120 s). To precisely characterize the electrical behavior of the equivalent circuit shown in

Figure 4, we considered their parallel parasitic capacitances to be invariant at Cp = 0.3 uF and

Cn = 0.2 uF. For the insulation resistance monitor, we selected the resistor R to be 20 kΩ, and we

initially guessed the estimated values for Rp/Rn to be 350 kΩ/100 kΩ.

We constructed the circuit model and the estimation algorithm using Simulink software. The

simulation estimation results for Rp and Rn are depicted in Figures 6 and 7, respectively. These

figures show that the estimated Rp approaches the actual value within 20 s, but the estimated

Rn converges to the actual value after 50 s. The relative error between actual and estimated

values are both less than 1%. With respect to two degradation cases that sequentially occur on

the negative and positive terminals, we found that either of the degradations would yield

some fluctuation in the estimated value on the opposite side, particularly a case in which the

degradation occurs on the positive terminal. As a consequence, it requires more time for

convergence, i.e., 20 and 240 s for the degradations occurring on the negative and positive
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sides, respectively. This is because the proposed circuit is directly connected to the negative

terminal, which makes it more sensitive to voltage variations across the negative terminal and

chassis ground. In other words, the high battery voltage Vb would attenuate the excitation

signal coming from the negative side. Nevertheless, the simulation verifies that the proposed

algorithm can estimate the actual insulation resistance and monitor its variation in the circuit

model, while also considering the parasitic capacitance, as shown in Figure 4. To avoid false

alarms due to ground fault detection when using this method, fault counting is necessary over

a period of time.

Figure 5. Flowchart for online parameter estimation.
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Figure 6. Estimation of Rp.

Figure 7. Estimation of Rn.
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To simply validate the proposed algorithm in the laboratory, we connected a variable resistor

to the proposed circuit to form a left-hand side loop of the circuit shown in Figure 4, in which

the resistance, as represented by Rn, is the value to be estimated. Due to the simplicity of the

single loop circuit, using Kirchhoff’s current law, Rn can be evaluated in a straightforward

manner, as follows:

Figure 8. Experimental results. (a) Estimated parameters bθ1 and bθ2. (b) Estimated resistances of the two models.
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Rn ¼

R
VG

VN
� 1

(13)

On the other hand, we modify the estimated model to yield:

Rn ¼

bθ1

bθ2

R: (14)

The experimental results are shown in Figure 8. In Figure 8(a), the two estimated parameters

converge after 25 s. In Figure 8(b), we depict the online estimated resistances based on the

straight evaluation of Eq. (8) and the proposed method in Eq. (9). It is realized that the

estimated value by using the straight evaluation varies roughly 10% between its maximum

and minimum values. This may be due to either measurement noise or the dynamic uncer-

tainty of the parasitic capacitance. However, the proposed method shows a steadier and more

exact estimation after the convergence of the model parameters.

6. Conclusions

In this chapter, to improve existing techniques for enhancing the safety and reliability of high-

voltage systems, we proposed a new insulation resistance online monitoring method for EV

high-voltage DC lines, which takes into account the parasitic capacitance effect. The estimation

scheme based on an adaptive control algorithm guarantees the asymptotical convergence of

the parameters in the circuit model. Hence, as demonstrated in our simulation and experimen-

tal results, this method can steadily and accurately track the insulation resistance even when

the parasitic capacitance is unknown. Due to the simplicity of the proposed algorithm and

circuit, they can be easily implemented via electronic circuit design in real cases. According to

the results, the estimated Rp and Rn converge to the actual value in 50 s. The relative error

between actual and estimated values are both less than 1%. With respect to two degradation

cases that sequentially occur on the negative and positive terminals, it requires more time for

convergence, i.e., 20 and 240 s for the degradations occurring on the negative and positive

sides, respectively.

Nomenclature

AC alternating current

BMS battery management system

DC direct current

DC/DC conversion of a DC source from one voltage level to another

ECM equivalent-circuit model
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EV electric vehicle

MCU micro-control unit

PRBS pseudo random binary sequence

PWM pulse-width modulation

SoC state of charge

SoH state of health

UPS uninterrupted power supply
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