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Abstract

A total of 92 genes that confer resistance to MLS antibiotics have been described to date. They 
can be roughly divided into three groups, depending on the mechanisms by which they con-
fer resistance to one or all of these groups of antibiotics. Three main mechanisms of resistance 
to MLS antibiotics have been described: methylation of rRNA (target modification), active 
efflux and inactivation of the antibiotic. Target modification is achieved through the action 
of the protein product of one of more than 42 different erm (erythromycin rRNA methylase) 
genes. They confer cross resistance between macrolides, lincosamides and streptogramin B 
(so-called MLS

B
 resistance) and evoke most concerns. Active efflux and inactivating enzymes 

(M and L) represent two additional mechanisms of resistance that are targeted only to partic-
ular antibiotics or antibiotic classes. Based on the mechanisms of resistance, various resistant 
phenotypes are expressed. The most prevalent phenotypes are ΜLS

B
 (constitutive or induc-

ible), which is associated with the presence mainly of ermA and ermC genes, followed by the 
MS

B
 phenotype due to the presence of msrA gene. In livestock S. aureus strains, such as CC 

398, other genes such as ermT, lnuA, lsaE and mphC genes are detected.

Keywords: staphylococci, MLS
B
, resistance, genes

1. Introduction

Resistance to macrolides-lincosamides and streptogramins B (MLS
B
 antibiotics) is associ-

ated with three main mechanisms: (1) methylation of rRNA (target modification), (2) active 
efflux and (3) enzymatic inactivation. Till date, a total of 92 genes, conferring resistance to 
MLS

B
 antibiotics, have been described. The most common genes are erm, which encode rRNA 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



 methylases, resulting in the target modification of these antimicrobial agents. More than 42 
different erm genes have been described to date; bacteria, that carry erm genes, express cross-
resistance to all these classes of antimicrobial agents. On contrary, genes encoding pumps for 

active efflux (msrA and lsa) or enzymes for drug inactivation (lnu and mphC) confer resistance 
only to particular antibiotics. Based on the mechanisms of resistance, various resistant phe-

notypes are expressed. The most prevalent phenotypes are ΜLS
B
 (constitutive or inducible), 

which, in staphylococci, are associated with the presence mainly of ermA and ermC genes, fol-

lowed by the MS
B
 phenotype due to the presence of msrA gene. In livestock S. aureus strains, 

such as CC 398, other genes such as ermT, lnuA, lsaE and mphC genes are detected [1–4].

The macrolide group of antibiotics includes natural members, prodrugs and semisynthetic 

derivatives. The chemical structure of macrolides is characterized by a large lactone ring con-

taining from 12 to 16 atoms to which are attached, via glycosidic bonds, one or more sugars. 
Erythromycin, whose lactone ring contains 14 atoms, is the oldest molecule (1952), whereas 
all second-generation macrolides, like roxithromycin and clarithromycin, are hemisynthetic 
derivatives of erythromycin. Azithromycin is the only macrolide with 15 carbon atoms. 
Azithromycin, which is produced through the introduction of a nitrogen atom into the macro-

lide nucleus at C10, exhibits (1) improved penetration into macrophages, fibroblasts and poly-

morpho-neutrophils, (2) increased accumulation within acidified vacuoles and (3) extended 
half-life. Additionally, azithromycin shows improved activity against Gram-negative bacteria 
and other pathogens associated with parasitic infections. Spiramycin and josamycin are mac-

rolides with 16 carbon atoms. All chemical modifications of macrolides were made in order 
that their properties and action are optimized.

Although the structure of lincosamides is different from the structure of macrolides, they 
present a similar action spectrum. Lincomycin, which was isolated in 1962, is a fermentation 

product of Streptococcus lincolnensis. Clindamycin (7-chloro-7-deoxy-lincomycin) is a semisyn-

thetic derivative of lincomycin, produced by substitution of the C7 bearing a hydroxyl group 
with a chlorine atom. Clindamycin exhibits higher antibiotic activity and digestive absorption.

Type-A streptogramin includes cyclic-poly-unsaturated macrolactones: virginiamycin M, pris-

tinamycin IIA and dalfopristin. Type-B streptogramin consists of the cyclic hexadepsipeptide 
compounds virginiamycin S, pristinamycin IA and quinupristin. Until now, only three strep-

togramins have been marketed either for treatment or growth promotion: virginiamycin, pris-

tinamycin and quinupristin-dalfopristin. Virginiamycin, a mixture of virginiamycin M (type A 
streptogramin) and virginiamycin S (type B streptogramin), has been used mainly as growth 
promoter feed additive in commercial animal farming in the United States and Europe. In 

contrast, pristinamycin has been used orally and topically in human medicine only in France. 

Qiunupristin-dalfopristin, in a 30:70 mixture (Synercid), was approved in 1999 for the treat-
ment of serious infections caused by multidrug resistant Gram-positive pathogens, including 
vancomycin-resistant Enterococcus faecium and methicillin-resistant staphylococci (MRS).

MLS
B
 antibiotics share a similar mode of action because they inhibit protein synthesis by 

targeting the peptidyl transferase center within the 50S subunit (23 s rRNA) of the bacterial 
ribosome [5]. We note that the bacterial ribosomes are 70S particles comprising of two sub-

units, 30s and 50S, which are made of RNAs enveloped by proteins; 50S is composed of 5S, 

23S rRNAs and 36 proteins (L1-L36) [6, 7].
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Although the peptidyl transferase center is the main target site for many antibiotics, the exact 
mechanism for its activity is still unclear [8]. Overall, the inhibitory action of antibiotics is not 

only determined by their interaction with specific nucleotides. MLS
B
 could also inhibit pepti-

dyl transferase by interfering with the proper positioning and movement of the tRNAs at the 

peptidyl transferase cavity [9, 10].

2. Antibacterial spectrum of MLS
B

Τhe spectrum of MLS
B
 includes mainly Gram-positive microorganisms (streptococci, staphy-

lococci); however, some of them also have activity against Gram-negative microorganisms 
(Bordetella pertussis, Campylobacter, Helicobacter, Legionella, Moraxella catarrhalis), anaerobes, 
intracellular pathogens (Chlamydia and Rickettsia) and Mycobacterium avium [11, 12].

It is known that some Gram-positive species have intrinsic resistance to some of them. 
Enterococcus faecalis, E. avium, E. gallinarum and E. casseliflavus express resistance to lincosamides. 
Among staphylococci, S. cohnii, S. xylosus and S. sciuri are also resistant to lincosamides [11, 12].

3. Mechanisms of acquisition of resistance to MLS
B

Staphylococci resist MLS
B
 antibiotics in three ways: (1) through target-site modification by 

methylation or mutation that prevents the binding of the antibiotic to its ribosomal target, (2) 
through efflux of the antibiotic and (3) by drug inactivation. Modification of the ribosomal 
target confers broad-spectrum resistance to macrolides, lincosamides and streptogramin B, 

whereas efflux and inactivation affect only some of these molecules [12].

3.1. Ribosomal methylation

The most widespread mechanism of resistance to MLS
B
 in Gram-positive bacteria, including 

both Staphylococcus aureus and coagulase-negative staphylococci (CNS), is the methylation of 
ribosomes, which is the target of MLS antibiotics. Methylation of ribosomes leads to resistance 

to macrolides, lincosamides and streptogramins B (MLS
B
 phenotype) [13]. The MLS

B
 pheno-

type is conferred by erythromycin ribosome methylases (Erm), which are encoded by erm 

genes. erm genes have been reported in a large number of microorganisms [14].

Erm proteins, encoded by erm genes, dimethylate the A2058 residue of 23S rRNA [13], which is 

located within the conserved domain V of 23S rRNA in the bacterial ribosome. Domain V of the 

23S rRNA plays a key role in the binding of MLS
B
 antibiotics. Methylation of 23S rRNA impairs 

binding of macrolides, lincosamides and streptogramins B, which accounts for the cross-resis-

tance to these drugs. A wide range of microorganisms, including Gram-positive bacteria, spi-
rochetes and anaerobes, which are targeted for MLS

B
 antibiotics, express Erm methylases.

More than 42 erm genes have been reported so far [14]. In bacteria, erm genes are usually car-

ried by plasmids and transposons that are able to move independently. Four major classes are 

detected in microorganisms: ermA, ermB, ermC and ermF [13, 14]. ermA and ermC typically are 

staphylococcal gene classes.
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3.2. Antibiotic efflux

In Gram-positive organisms, acquisition of macrolide resistance by active efflux is caused by 
two classes of pumps, members of the ATP-binding-cassette (ABC) transporter superfamily 
and of the major facilitator superfamily (MFS). ABC transporters require ATP to function and 
are usually formed by a channel comprising two membrane-spanning domains and two ATP-

binding domains located at the cytosolic surface of the membrane [12].

The first determinant encoding ABC transporter in staphylococci was the plasmid-borne 
msr(A) gene [15]. The msr(A) gene encodes an ABC transporter protein with two ATP-binding 
domains. The nature of the transmembrane component of the MsrA pump remains unknown. 
In nature, a fully operational efflux pump is a multicomponent system that is composed of 
proteins encoded by msr(A) and chromosomal genes. MsrA pump has specificity for 14- and 
15-membered macrolides and type B streptogramins (the MS

B
 phenotype) [15]. MS

B
 resis-

tance phenotype is inducibly expressed by 14- and 15-membered macrolides, whereas strep-

togramins B are not inducers. msrA-positive strains are fully susceptible to clindamycin, since 

this antibiotic is neither an inducer nor a substrate for the pump.

However, latter, the combined resistance to lincosamides, pleuromutilins and streptogramin A 
(S

A
), referred as the PLS

A
 phenotype, was found to be associated with the presence of the ARE 

subfamily of class 2 ATP-binding cassette (ABC) ATPases, a class of ABC proteins made up of 
two homologous ABC ATPase domains separated by a flexible linker without any identifiable 
transmembrane domains [16–18]. The flexible linker between each ATPase domain is presumed 
to be the drug-binding region of the ARE proteins. The vga-, lsa- and sal-like genes, encoding 
ABC transporters of the Vga, Lsa, or Sal families confer the PLS

A
 resistance phenotype. These 

genes have been mainly identified in staphylococci causing food-borne diseases [19–26].

3.3. Enzymatic inactivation

Enzymatic inactivation confers resistance to structurally related antibiotics only. Esterases 
and phosphotransferases, encoded by ere and mphC genes, respectively, confer resistance to 

erythromycin and other 14- and 15-membered macrolides but not to lincosamides [27–30] .

In addition, lincosamide nucleotidyl transferases encoded by lnu(A) (formerly linA) and 
lnu(B) (formerly linB) genes in staphylococci (S. aureus and coagulase-negative staphylococci) 
inactivate lincosamides only [14, 31–33]. In addition, enzymes such as virginiamycin B hydro-

lase and streptogramin B lactonase, encoded by vgbA and vgbB genes, which hydrolyze strep-

togramin B, are rarely found in staphylococci [14, 34, 35].

3.4. Uncommon mechanisms of resistance

Ribosomal mutations (A2058G/U or A2059G) of 23S rRNA gene such as mutations in the rplV 

gene, encoding the L22 ribosomal protein have been reported by Prunier et al. [36]. These 

rare Staphylococcus aureus isolates, recovered from patients with cystic fibrosis after long-term 
treatment with azithromycin, were cross-resistant to azithromycin and erythromycin.
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On the other hand, Staphylococcus epidermidis isolates, which carried the T2504A mutation of 

23S rRNA gene were found to be fully resistant to lincomycin, clindamycin, linezolid and 
pleuromutilins [37].

4. Resistant phenotypes: expression, detection and interpretation

Depending on the mechanism of resistance and on the carriage of respective genes, staphylococci 

can express various MLS
B
 resistant phenotypes. Briefly, these types are described as follows.

4.1. MLS
B
 phenotype (erm genotype)

MLS
B
 phenotype can be expressed as constitutive or inducible [12]. Isolates with a constitutive 

MLS
B
 phenotype express high level cross-resistance to macrolides, lincosamides and strepto-

gramin B. In fact, clinical methicillin-resistant strains that are constitutively resistant to MLS
B
 

antibiotics are widespread.

On the other hand, isolates with an inducible MLS
B
 phenotype express phenotypically only 

resistance to macrolides and susceptibility to lincosamides. This phenomenon is explained 
by the fact that, in constitutive resistance, bacteria produce an active mRNA encoding meth-

ylase, whereas in inducible resistance, bacteria produce an inactive mRNA, which is unable 

to encode ribosome methylases. However, in the presence of a macrolide, which acts like an 
inducer, the mRNA becomes active [38]. The presence of an inducer leads to rearrangements 

of mRNA, which allow ribosomes to translate the methylase coding sequence.

Inducible expression of ermA or ermC genes is characterized by dissociated resistance to MLS
B
 

antibiotics. Dissociated resistance to MLS
B
 antibiotics is due to the differences in the induc-

ing capacity of the antibiotics. For example, 14- and 15-membered ring macrolides, which 
are inducers, are inactive. Thus, ermA- or ermC-positive strains are phenotypically resistant 

to these antibiotics. However, strains remain susceptible to 16-membered ring macrolides, 

lincosamides, and streptogramins B that are not inducers.

The use of antibiotics being noninducers (such as clindamycin) for treatment of an infection 
due to a Staphylococcus aureus that is inducibly resistant to MLS

B
 antibiotics is not devoid 

of risk. In the presence of these antibiotics, constitutive mutants can be selected in vitro at 

frequencies of ∼10−7 cfu. Previous reports have demonstrated the risk of selection of constitu-

tive mutants during the course of clindamycin therapy administered to patients with severe 

infections due to inducibly erythromycin-resistant S. aureus [39, 40]. In addition, the risk for 
selection of a constitutive mutant is higher if, at the site of infection, staphylococcal inoculum 

is higher.

According to the rules of EUCAST, if a staphylococcal isolate with an inducible MLS
B
 phe-

notype is detected, it must be reported as resistant and considered adding this comment to 

the report “Clindamycin may still be used for short-term therapy of less serious skin and soft 
tissue infections as constitutive resistance is unlikely to develop during such therapy.”
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The ermA and ermC are the most common determinants in staphylococci [41]. The ermA genes 

are mostly spread in methicillin-resistant strains and are borne by transposons related to 

Tn554, whereas ermC genes are mostly responsible for erythromycin resistance in methicillin-

susceptible strains and are borne by plasmids. Recently, the ermT gene was found to be pres-

ent in livestock staphylococci [21].

4.2. MS
B
-phenotype (msrA genotype)

MS
B
 phenotype is associated with resistance only to 14- (clarithromycin, erythromycin, rox-

ithromycin) and 15-membered ring macrolides (azithromycin) and streptogramin B, while 
16-membered ring macrolides (josamycin and spiramycin) and lincosamides remain active 
[12, 15]. The msrA resistance determinant was originally detected in Staphylococcus epidermidis, 

and, since then, it has been found in a variety of staphylococcal species, including S. aureus. 

The MS
B
 resistance phenotype is inducibly expressed by 14- and 15-membered macrolides. 

Streptogramins B are not inducers and, therefore, the msrA-positive strains are resistant to 

streptogramins B only after induction. The 16-membered ring macrolides and lincosamides 

are neither inducers nor substrates for the pump. Thus, msrA-positive strains are fully suscep-

tible to these antimicrobials.

Another gene, msrB from Staphylococcus xylosus, which is nearly identical to the 3′ end of msrA, 

has been reclassified as msrA [14]. It contains a single ATP-binding domain but also confers 

an MS
B
 phenotype.

Isolates with this phenotype have probably decreased susceptibility to the combination of 

quinupristin-dalfopristin. Additional tests (see below) are required for its detection.

4.3. M-phenotype (mphC genotype)

M-phenotype is associated with the presence of enzymes which inactivate enzymatically 
only macrolides. Clinical isolates of erythromycin-resistant S. aureus and coagulase-negative 

staphylococci produce phosphotransferases encoded by mphC genes [29, 30]. This phenotype 

must be differentiated from MLS
B
-inducible phenotype and from MS

B
 phenotype. Additional 

tests (see below) are required for its detection.

4.4. PLS
A
-phenotype

PLS
A
-phenotype is associated with resistance to lincosamides, pleuromutilins and strepto-

gramins A, while macrolides and streptogramin B remain active [42] . Various genes such as 

vgaA, vgaC, vgaE, and lsaE have been detected in methicillin-resistant Staphylococcus aureus 

(MRSA) of clonal complex (CC) 398 of swine, cattle and poultry origin and shown to confer 
this resistance phenotype [43, 44].

4.5. L-phenotype (lnuB genotype)

L-phenotype is associated with resistance to lincomycin due to the presence of lincosamide 

nucleotidyl transferases encoded by lnuA and lnuB genes. Both lnu-like genes confer  resistance 
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to lincomycin. Generally, expression of lincosamide nucleotidyl transferases causes increase 
of lincomycin MICs by only 1 or 2 dilutions [45]. However, lnu-like genes do not confer resis-

tance to clindamycin. Indeed, the bactericidal activity of clindamycin, which is already weak 
against susceptible strains, is totally abolished [45], but the impact of this alteration on the 

therapeutic efficacy of clindamycin is unknown. Because of dissociated resistance among lin-

cosamides, the detection of L-phenotype is possible only if lincomycin is used, instead of 

clindamycin.

Although more than 90 genes conferring resistance to macrolides and lincosamides have been 

described till date, their presence has not turned out to be a successful story for Gram-positive 
bacteria. This observation, which is in contrast with the success of emergence of bla genes in 

Gram-negative bacteria, could be explained by: (1) a low-level resistance conferred by these 
genes or (2) a failure of detection.

4.6. S
B
-phenotype

S
B
-phenotype is expressed by resistance to streptogramin B due to the presence of vgbA/B 

encoding lyases that inactivate the drug. It is very difficult to detect this phenotype since 
quinupristin is not used alone but combined with dalfopristin. The isolates might express a 
decreased susceptibility to the combination of quinupristin-dalfopristin .

5. Confirmation methods of resistant phenotypes

Among the different types of resistant phenotypes, the most common are MLS
B
 (constitutive 

or inducible), MS
B
 and M-phenotypes. The clinical microbiology laboratory detects easily and 

reliably the MLS
B
 constitutive phenotype: the isolates are fully resistant to macrolides and 

lincosamides. However, isolates with MLS
B
 inducible, MS

B
 and M-phenotypes share the same 

profile: resistance to macrolides and susceptibility to lincosamides. Therefore, additional test, 
the double disk diffusion test (D test) is required to be applied.

For the detection of MLS
B
 inducible resistance, it is recommended to place the erythromy-

cin and clindamycin disks 12–20 mm apart (edge to edge, D test). In disk-diffusion tests, 
a D-shaped zone, caused by induction of methylase production by erythromycin, can be 
observed (Figure 1). Nowadays, the automated system Vitek II (BoMerieux) has the  possibility 
to detect it.

However, after a negative D test, the differentiation between MS
B
 and M-phenotypes is 

more complicated and could be based on the MIC values of erythromycin. Isolates with 

M-phenotype have often lower MIC values to erythromycin, due to the weak activity of 
hydrolytic enzymes, than isolates with MS

B
-phenotype, which express fully resistance to 

macrolides. In addition, MS
B
-phenotype affects the susceptibility to quinupristin-dalfopris-

tin, decreasing it slowly.

Finally, it is difficult to discriminate isolates with PLS
A
-phenotype from those with L-phenotype; 

both share the same profile, including resistance to lincomycin and susceptibility to erythromycin. 

Resistance of Staphylococci to Macrolides-Lincosamides-Streptogramins B (MLSB): Epidemiology…
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Gene Primers sequence (5′–3′) PCR fragment size (bp)

ermA F: TCTAAAAAGCATGTAAAAGAA 645

R: CTTCGATAGTTTATTAATATTAG

ermB F: GAAAAGTACTCAACCAAATA 639

R: AGTAACGGTACTTAAATTGTTTA

ermC F: TCAAAACATAATATAGATAAA 642

R: GCTAATATTGTTTAAATCGTCAAT

msrA F: GGCACAATAAGAGTGTTTAAAGG 940

R: AAGTTATATCATGAATAGATTGTCCTGTT

msrB F: TATGATATCCATAATAATTATCCAATC 595

R: AAGTTATATCATGAATAGATTGTCCTGTT

lnuA F: GGTGGCTGGGGGGTAGATGTATTAACTGG 323

R: GCTTCTTTTGAAATACATGGTATTTTTCGATC

lnuB F: CCTACCTATTGTTTGTGGAA 925

R: ATAACGTTACTCTCCTATTC

lsaA F: GGCAATCGCTTGTGTTTTAGCG 1200

R: GTGAATCCCATGATGTTGATACC

MLS: macrolides, lincosamides and streptogramins; PCR: polymerase chain reaction.

Table 1. Primer sequences and PCR fragment size of tested MLS resistance genes.

Figure 1. Expression of various resistant-phenotypes: (a) sensitive; (b) MLS
B
-inducible phenotype; (c) MS

B
-phenotype; 

(d) L-phenotype and (e) M-phenotype. ERY: erythromycin; CLIN: clindamycin; LIN: lincomycin.
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On the other hand, pleuromutilins and streptogramins A are not included in the panel of antibiot-

ics proposed for susceptibility testing. Probably, the values of MICs to clindamycin and quinu-

pristin-dalfopristin, which usually are not affected by L-phenotype, can be used as indicators [46].

Molecular detections of the most common genes involved in MLS
B
 resistance are an accurate 

method for phenotype determination (Table 1).

6. Historical background

The first report about the activity of erythromycin was confirmed in 1954 by Derek [47]; in 1964, 

Macleod et al. indicated that lincomycin was effective against S. aureus [48]. Inducible resis-

tance to MLS antibiotics was identified in Gram-positive bacteria by Weaver and Pattee shortly 
after the introduction of erythromycin into clinical practice [49]. One year later, in 1965, Griffith 
et al. described antagonism between lincomycin and erythromycin [50]. During their study, 

the authors observed an antagonistic action between lincomycin and erythromycin, when the 

two drugs were allowed to diffuse into the same area of an agar plate seeded with a strain of 
Staphylococcus which was resistant to erythromycin but sensitive to lincomycin. Since the molec-

ular basis of this mechanism was unknown, the authors explained the phenomenon as the result 
of an altered metabolism stimulated by erythromycin on erythromycin-resistant staphylococci.

In 1971, Lai et al. demonstrated altered methylation of ribosomal RNA in a erythromycin-

resistant S. aureus strain, whereas the same study group in 1973, concluded that modification 
of 23S rRNA, methylation to form dimethyladenine, was responsible for the resistance to lin-

comycin and spiramycin in S. aureus [51]. Subsequently, causation has been attributed to post-
transcriptional methylation of A2058 (Escherichia coli numbering) at the peptidyl transferase 
center in domain V of 23S rRNA [52]. The family of enzymes responsible for A2058 has been 
designed as Erm (erythromycin resistance methylase) with the corresponding genes designed 
as erm. To date, five different methylase genes have been described in staphylococci: ermA, 

ermB, ermC, ermF, ermY and ermT [21, 53–57].

In 1990, Ross et al. identified msrA gene, which encodes an ATP-dependent efflux pump 
[15]. Esterases encoded by ereA and ereB, which inactivate erythromycin by hydrolyzing 
the lactone ring of the macrocyclic nucleus, were identified by Quinissi and Courvalin in 
1985 [27]. On the other hand, the nucleotide sequence of lnuA gene, which confers resis-

tance only to lincosamides, has been determined by Bisson-Noel and Courvalin, in 1986 

[31]. Inactivation of macrolides by phosphotransferases (encoded by mphC genes) has also 
been described by Wondrack et al. in 1996 [29].

To date, a variety of genes (such as vgaA, vgaC, vgaE, lsaE, vgaA, lnuA, lnuB, and mphC), which 

are involved in the MLS-resistance expression, have been described and are disseminated 
among staphylococcal species.

7. Epidemiology of MLSΒ resistant staphylococci: recent data

Staphylococcus aureus and coagulase negative Staphylococci (CONS) are challenging patho-

gens causing a variety of infections (minor skin and soft tissue infections, endocarditis, 
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pneumonia, septicemia, etc.) [58], while the emergence of drug-resistant staphylococci is an 

important public threat [59]. The isolation frequency of methicillin-resistant S. aureus (MRSA) 
has dramatically increased in the recent years [60]. Thus, these factors have led to a renewed 

interest in the use of macrolides, lincosamides and streptogramins B (MLS
B
) antibiotics for 

the treatment of staphylococci-associated infections. From these antibiotics, clindamycin is 

the preferable agent, because of its excellent pharmacokinetic properties [61]. Additionally, 

clindamycin is the preferred agent due to its proven efficacy, low cost, the availability of its 
oral and parenteral forms, tolerability, excellent tissue penetration, its good accumulation in 
abscesses and because no renal dosing adjustments are required. Clindamycin also inhibits the 

production of staphylococcal toxin, and can be used as an alternative of penicillin, in patients 
who are allergic to the latter agent [62]. However, the widespread use of the MLS

B
 antibiotics 

has increased the number of the Staphylococcus isolates which are resistant to them [63].

The rate of MLS
B
-resistant staphylococci varies between countries and species. Unfortunately, 

in the last decade, data concerning the rate of MLS resistance in staphylococci are limited. 

Otsuka et al. reported that 97% of MRSA and 34.6% of MSSA were resistant to one or more 
MLS

B
 agents in a study conducted between 2001 and 2006 [64]. Cetin et al. in a large col-

lection of staphylococci in a Turkish hospital have found that 38.5% were resistant to MLS
B
 

antibiotics, while Uzun et al. reported that during 2011–2012, 79% isolates were found as 
erythromycin-resistant in a tertiary hospital in Ismir [65, 66]. In a tertiary Greek hospital, the 
rate of MLS

B
 S. aureus reached to 44%, whereas in Cyprus 67.61% of S. aureus and 59.4% of the 

coagulase-negative staphylococci were resistant to erythromycin [67, 68]. On the other hand, 

high rate of erythromycin-resistant staphylococci was also observed in veterinary [69].

Regarding the distribution of resistant phenotypes, the most common are MLS
B
 (constitutive 

or inducible) followed by MS
B
. In Japan, Otsuka et al. revealed higher incidence of the MLS

B
-

inducible phenotype than in Europe, Turkey and the USA [41, 64, 70–73]. Such differences in 
the incidence of phenotypes might reflect differences in the drug usage, the gene carriage and 
the clonality of strains.

Totally, 92 genes, which confer resistance to MLS antibiotics, have been described to date. 

They can be roughly divided into three groups, depending on the mechanisms by which 

they confer resistance to one or all of these groups of antibiotics. Data from different studies 
agree that the most prevalent genes are ermA and ermC followed by msrA gene [41, 70–74]. 

Gatermann et al. have demonstrated that in a large collection of coagulase-negative staphy-

lococci ermC gene predominated and was constitutively expressed, whereas in S. aureus the 

ermA predominates [65, 75]. In livestock S. aureus strains, such as CC 398, other genes such as 

ermT, lnuB and lsa are detected [76–78]. In contrast, mphC gene is frequently found in staphy-

lococci isolated from animals [79, 80].

8. Conclusions

Staphylococci and specially S. aureus are considered as important pathogen in a wide variety 

of human and animal infections. The sharp emergence and a spread of methicillin-resistant 

Staphylococcus Aureus126



staphylococci in the community setting and the occurrence of vancomycin-resistant staphylo-

cocci, along with vancomycin-intermediate S. aureus are of concern. This phenomenon has led 

to the development of new antimicrobial compounds. Moreover, traditional antibiotics, such 

as MLS
B
, should be carefully considered for the treatment of infections caused by multiple 

drug-resistant staphylococci.
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