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Abstract

Electric pulse based technology has been developed and studied as a non-thermal ablation
method for local control of pancreatic cancer. Irreversible electroporation (IRE) has shown
a significant survival benefit for local advanced pancreatic cancer in clinical trials. How-
ever, incomplete ablation with local recurrence and major complications limit the poten-
tial of this new technology. We have developed an integrated moderate heating electric
pulse delivery system which consists of controllable tumor heating, multi-parameter
monitoring and electric pulse delivery. The impedance of tumor is greatly decreased after
moderate heating at 42�C for 1–2 min, which does not cause any cell death. Moderate
heating significantly enlarges the ablation zone of tumor treated with IRE. In contrast to
IRE alone, moderate heating assisted IRE results in a high rate of complete tumor regres-
sion and a significant longer median survival. Another electric pulse technology, nanosec-
ond electric pulses, has been assessed for the treatment of pancreatic cancer as well.
Nanosecond electric pulse treatment achieves more survival benefit in animals with par-
tial tumor ablation than those treated with IRE and leads to a vaccine-like protective effect
in animals with complete local ablation. More studies are needed to demonstrate the
advantages and translational feasibility of the enhanced electric pulse technologies.

Keywords: electric pulses, tumor ablation, pancreatic cancer, irreversible electroporation,
moderate heating, nanosecond electric pulses

1. Introduction

The incidence of pancreatic cancer is relatively low. It only counts for 2% of all cancers [1, 2].

However, pancreatic cancer is a serious global health issue due to its extremely high mortality

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



and poor prognosis. The overall 5-year survival rate is 5–8% [2–4]. In contrast to other major

cancers with decreasing mortality rates, the mortality rate of pancreatic cancer has been gradu-

ally increasing in the past 50 years [2]. It is predicted to be the second leading cause of cancer-

related deaths in the United States and Europe by 2030 [5]. There are several reasons for the

dismal outcome of pancreatic cancer. There are no early signs and symptoms for pancreatic

cancer. There is no screening tests or early diagnostic methods. Pancreatic cancer is often diag-

nosed at a late stage with a large tumor burden. It is notoriously resistant to chemotherapy and

radiotherapy [6–8]. Surgery is the only way to potentially achieve complete cure of early stage

pancreatic cancer, which counts for approximately 15–20% of the patients [9]. Nevertheless, the

5-year survival rates of surgical resection are only 13.6–17.5% [10]. The poor prognosis after

surgery is due to a high incidence of local recurrence and distant metastases [11, 12].

In the last decade, much effort has been made to develop ablative technologies for local pancre-

atic tumor control and the improvement of quality of life and survival. An electric pulse technol-

ogy, irreversible electroporation (IRE) as a non-thermal ablation method has been investigated in

animal models for tumor ablation [13, 14]. Recently IRE has been studied in clinical trials for liver

[15], renal [16], prostate [17] and pancreatic cancers [18–21]. Martin et al. reported that overall

survival increased 6–8 months in patients with local advanced pancreatic adenocarcinoma

treated with IRE [22]. A systematic review demonstrated significant survival benefits with

reducing the risk of injury to vessels and ducts after treating advanced pancreatic cancer with

IRE [23]. IRE has been demonstrated some advantages in contrast to thermal ablation technolo-

gies, which are associated with high morbidity and mortality due to thermal damage to adjacent

structures. However, local recurrence [22, 24–26] and various rates of major complications [18,

22, 25] are two major issues that restrict the benefit of IRE treatment. Thus, the enhancement

technologies for IRE or novel non-thermal electric pulse technologies, which can increase com-

plete tumor ablation and/or decrease adverse effects, are needed to further improve the quality of

life and long term survival.

Here we introduce two promising electric pulse technologies, moderate heating (MH) enhanced

IRE and nanosecond electric pulses (nsEPs) for the treatment of pancreatic cancer, and present our

preclinical findings demonstrating their potential advantages in contrast to current IRE technology.

2. Moderate heating enhances the therapeutic efficacy of irreversible

electroporation for pancreatic cancer

2.1. Background

The impedance change of biological tissues at various temperatures has been investigated for

over three decades [27, 28]. A decrease of impedance means the increase of tissue conductivity,

which is equal to an elevated current and a large electrical energy delivery to the tissue or

tumor under a certain electric field. We found that tumor ablation zone could be significantly
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enlarged when preheating with moderate temperature increase was applied. This result led to

our hypothesis that a moderate increase in the temperature of the target tumor could decrease

tumor impedance, thereby sensitizing the target tumor for IRE tumor ablation. To test this

hypothesis, we first developed a controllable tumor heating unit and an impedance monitor-

ing unit, then integrated these two units into an electric pulse supplier. In additional to treating

tumor with IRE, this integrated electric pulse delivery system has the capacity to heat the

targeting tumor, maintain at a set temperature and monitor impedance changes of the treated

tissue in real time.

2.2. Experimental design

Ex vivo IRE tumor ablation was assessed in a 3D agarose cell culture model, which was described

in the literature [29]. Pan02 mouse pancreatic cancer cells were used to make the 3D tumor

model. The IRE parameters were pulse duration 100 μs, frequency 1 Hz, 80 pulses, and electric

fields 750 V/cm. The four-needle electrode was utilized to deliver this electric pulse protocol. A

thermopile was integrated into the electrode for a real-time temperature monitoring and a fiber

optic laser located at the center of the electrode was used for tumor heating. After IRE treatment,

tumor was stained with propidium iodide (PI, 4 μg/ml) for 30 minutes. Images were taken using

a Leica MZFLIII fluorescence stereomicroscope equipped with a Leica DFC420 C CCD camera.

Cell death or ablation zone was quantified with ImageJ software (imagej.nih.gov/ij/).

A syngeneic mouse Pan02 pancreatic cancer model was established for the evaluation of this

moderate heating enhanced IRE (MHIRE) system. Female C57BL/6 mice (6–8 weeks of age) were

injected with 1 � 106 Pan02 cells in 50 μL Dulbecco’s phosphate buffered saline on the left flank.

The size of primary tumor was assessed by digital calipers twice a week. Tumor volume was

determined as described in the literature [30]. Tumors were treated when it reached 8–10 mm in

diameter with an average tumor volume of 250–300 mm3. The IRE parameters were pulse

duration 100 μs, frequency 1 Hz, 90–120 pulses, and electric fields 1500–2500 V/cm. A four-

needle electrode arranged in an array of 7 � 5 mm spacing was used to treat pancreatic tumor.

MH was defined at 42�C within 2 min, which is below the threshold of pain sensation [31] and

does not cause cell death [32]. A calibration of MH protocol was done prior to the MHIRE

treatment. A thin thermocouple was inserted in the bottom part of tumor and the time it took

the reading to reach 42�C was recorded. It took 20–60 s for the internal tumor temperature to

reach 42�C when the surface target temperature was set to 45�C by laser heating. So, based on

the calibration results, we decided that pre-heating tumor for 60 s would allow the inside of the

tumor to be at the correct internal temperature before IRE was performed.

2.3. Results and discussion

2.3.1. Moderate heating decreased the impedance of tumor

The change of impedance during the IRE or MHIRE treatment is shown is Figure 1. The

baseline impedance of each tumor was different; however, preheating tumor with a moderate
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temperature increase could reduce all of them by 200–300 Ω or 15–38% of the baseline imped-

ance, which occurred prior to the IRE treatment. Consistent to the other group’s report [33],

IRE could result in the decease of tumor impedance as well. It appears that the reduction of the

impedance was associated with the strength of the electric field. The higher electric field, the

more the impedance was reduced by the end of the treatment. Additionally, MH also reduced

the fluctuation of impedance changes, which may indicate that MH improves homogeneity of

the tumor physical property. The average drop of impedance was 39.1 to 46.6% for MHIRE

with 2000 to 2500 V/cm and 22.4 to 30.5% for IRE with the same electric field.

The impedance decrease of tumor was likely correlated to the complete tumor ablation of IRE

[33]. Given an approximate 40% decrease of tumor impedance, theoretically IRE at 2500 V/cm

should be equivalent to MHIRE at 1500 V/cm. It means MHIRE could reduce the electric field

of IRE and achieve the same level of efficacy for tumor ablation. Interestingly, MH was

observed to decrease the impedance fluctuation of the tumor as well. Tumor is not a homoge-

nous structure but with multiple types of cells and extracellular matrix [34, 35]. A heteroge-

neous impedance map of tumor tissue [36] is expected and may contribute to the incomplete

ablation of IRE. This feature of MH might also contribute to more complete tumor ablation.

2.3.2. Controllable MH enlarged ex vivo tumor ablation and enhanced the therapeutic efficacy of IRE

for pancreatic cancer

More cell death was observed after Pan02 tumor cells in a 3D agarose gel were treated with

MHIRE with a four-needle electrode, while tumor cells treated with MH alone did not result in

any cell death (Figure 2). The ablation zone or total cell death increased 1.4-fold with MHIRE

at an electric field of 750 V/cm (p < 0.05) comparing to those treated with IRE at the same

electric field.

Tumor bearing animals were treated with either IRE or MHIRE at 1500 V/cm. The IRE treat-

ments alone had no significant influence on the tumor growth. However, a synergistic effect

was seen in the IRE treatment when the tumor was preheated to 42�C (Figure 3). Tumors

treated with MHIRE were all significantly smaller than those in the control group or those in

IRE-alone group on post-treatment days 4, 7, 11, 13 and 14. However, no long-term complete

tumor regression was obtained under either IRE or MHIRE protocols. In order to obtain

Figure 1. Tumor impedance change during IRE or MHIRE treatment. Each data point represents an average impedance

reading of 4–5 tumors. IRE parameters: 100 μs pulse width, 90 pulses, frequency of 1 Hz and applied electric fields of

1.5 kV/cm (left), 2 kV/cm (middle) and 2.5 kV/cm (right).
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complete tumor regression, IRE or MHIRE with elevated electric fields were adopted to treat

tumor. At the electric field of 2000–2500 V/cm, MHIRE significantly prolonged median sur-

vival by roughly two times with 84 days in contrast to the control mice (p < 0.001) (Figure 4).

Despite the higher electric fields, IRE treatment alone could not achieve long-term complete

tumor regression. It only extended medial survival for 3 days. Median survival was 43 days for

the control tumor animals and 46 days for the IRE treated animals. More importantly, 55.6% (5/9)

of the tumor-bearing animals treated with MHIRE were long term tumor-free.

It was noticed that IRE alone was unable to achieve complete tumor ablation in this mouse

Pan02 tumor model though the IRE protocol was similar to those used in other animal studies

and clinical trials. Jose et al. reported that IRE treatment resulted in 25% of complete tumor

ablation [37]. In that study, a comparable IRE protocol (100 μs, 1 Hz, 2500 V/cm and pulse

number 90) was used to treat xenograft human BxPC-3-luc pancreatic tumors in athymic nude

mice. Local recurrence was reported relatively low in clinical trials, 11% by Kluger’s group [25]

or 27.8% byMartin’s group [22]. Though multiple factors including the tissue type of tumor, its

size, the IRE protocol and electrode configuration could contribute to the incomplete ablation,

the physical properties of the target tumors especially to the impedance likely play a critical

role. The 750–800Ω impedance of mouse Pan02 tumor (Figure 1) is much higher than the 100–

120 Ω impedance of human pancreatic cancer reported by Dr. Martin’s group [33]. Such a big

difference of impedance may explain why the mouse Pan02 tumor is difficult to be successfully

ablated by the IRE treatment.

Though MH alone did not result in any cell death (Figure 2) and had no impact on tumor

regression and animal survival (Figure 3), it was demonstrated to synergize with IRE on tumor

ablation zone in vitro (Figure 2), to diminish tumor growth (Figure 3) and to improve long-

term survival in vivo (Figure 4). Together with the impedance changes of tumors (Figure 1), we

have validated a novel technology and concept that the therapeutic efficacy of IRE can be

enhanced by MH with a consequent decrease of tumor impedance. Is it feasible to translate this

technology into an effective therapy for pancreatic cancer? The MHIRE system developed in this

study has been utilized to successfully treat tumor with relative small size (less than 1 cm).

Figure 2. Enlargement of ex vivo tumor ablation zone with MHIRE. A 3D agarose gel Pan02 tumor model was treated by

IRE or MHIRE. Area with red color was zone of dead cells indicated by propidium iodide (PI) staining. RT: room

temperature; MH: samples preheated with laser. Corrected total cell fluorescence (CTCF) was analyzed by ImageJ

software. n = 3–4. *: p < 0.05 (t-test).
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However, as is known, most tumors in patients are larger than 1 cm, especially for later stage

cancers, which are the targets of the IRE treatment. This limitation of treatable size can be

addressed with the adjustment of the electrode configuration, to cover a larger area. Meanwhile,

the depth of laser heating and its thermal distribution needs to be profiled, and the refined

MHIRE system will be calibrated/reprogrammed and optimized in an in vivo pancreatic cancer

Figure 3. Pancreatic tumor growth after IRE or MHIRE treatment. Pan02 pancreatic tumors with the size of 8–10 mm

were treated with IRE or MHIRE at day 31 indicated by black arrow. IRE parameters: pulse duration 100 μs, frequency

1 Hz, pulse number 90 and applied electric fields 1500 V/cm. Ctr: no treatment (n = 4); MH: tumor heated with laser at

42�C for 2 min; 1500 V: IRE at 1500 V/cm (n = 4 mice); 1500 V + MH: Tumor preheated with laser at 42�C with IRE at

1500 V/cm (n = 8). *: p < 0.05, or p < 0.01 or p < 0.001 for MHIRE vs. IRE or Ctr (one way ANOVA).

Figure 4. Kaplan-Meier survival curves of mice treated with IRE or MHIRE. Pan02 pancreatic tumors with the size of 8–

10 mm were treated with IRE or MHIRE at day 31 indicated by arrow. IRE parameters: pulse duration 100 μs, frequency

1 Hz, pulse number 90 and applied electric fields 2000-2500 V/cm. Ctr: No treatment (n = 8 mice per treatment group);

IRE: Treated with IRE (n = 8); MHIRE: Tumor preheated with laser at 42�C with IRE (n = 9). ***: p < 0.001 (LogRank test).
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model with tumor size relevant to the clinical settings. The extension of heating area can be

resolved by the integration of multiple infrared laser beams and/or additional optic lens, increase

of needle gap and length. To heat large and deep tumors, different laser sources [38] can be

adopted. Moreover, other heating methods, including focused ultrasound [39], microwave [40]

or radiofrequency [41], could be employed for the purpose of MH.

3. Nanosecond electric pulses for the treatment of pancreatic cancer

3.1. Background

An electrical engineering technology, nanosecond electric pulses (nsEPs), has been devel-

oped and studied by Dr. Schoenbach’s [42] and other groups [43]. NsEPs are assumed non-

thermal if the appropriate parameters especially the low frequencies are selected. Similar

to IRE, nsEPs have been utilized to treat cancer in animal models for local tumor ablation

[44–46]. Beyond the local tumor ablation, a vaccine-like protective effect has been observed

by two groups [44, 47]. The vaccine like-protection effect has been demonstrated by our

group [48] in a poorly immunogenic breast cancer model as well. We have demonstrated

that local nsEP tumor ablation elicits an anti-tumor immunity to prevent distant metastases,

reject established distant tumors and protect animals from secondary tumor challenge.

Thus, nsEP therapy shows additional advantages, in addition to local tumor eradication.

NsEPs have been reported for the treatment of pancreatic cancer in two studies [36, 49]. However,

whether immune protection is induced by the nsEP treatment is unknown because xenograft

tumors in immune deficient animals have been used in both studies. To assess if nsEP ablation

could induce antitumor immunity and achieve additional benefits beyond local ablation for

pancreatic cancer, a syngeneic mouse Pan02 pancreatic cancer model was utilized in this study.

3.2. Experimental design

A syngeneic mouse Pan02 pancreatic cancer model was established as above mentioned.

Tumors were treated when it reached 5–7 mm or 8–10 mm in diameter with an average

tumor volume of 40–120 mm3 (small) or 250–300 mm3 (large). The nsEP parameters were

pulse duration 100 or 200 ns, frequency 1–3 Hz, pulse number 600–1200, and electric fields

30–50 kV/cm. Pancreatic tumors were treated with either a four-needle electrode with gaps

of 5 � 7 mm or a pitch electrode, which was selected from three configurations including

2 mm gap with 6 mm in diameter, 3 mm gap with 8 mm in diameter and 4 mm gap with

10 mm in diameter. In comparison, pancreatic tumors were also treated with IRE. The IRE

parameters and the choice of electrode were described in the previous section.

To assess if a vaccine-like protection occurred after pancreatic cancer was treated with nsEPs,

tumor free mice were challenged with 0.5 million live Pan02 tumor cells on the right flank.

Tumor growth was monitored as above mentioned.
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3.3. Results and discussion

3.3.1. NsEP treatment resulted in complete tumor regression or extension of survival for animals with

incomplete tumor regression

As shown in Figure 5, a single nsEP treatment achieved 50–100% complete tumor regression

dependent on the doses of nsEPs. In contrast to the IRE treatment, muscle contraction was

greatly reduced with the nsEP treatment. Both pitch electrode and two-plate suction electrodes

were safe and no mortality was found. A minor issue was that scab was formed after the nsEP

treatment. It usually shedwithin 2–3 weeks and left a small scar or no visual changes on the skin.

Extension of survival was achieved even with partial tumor ablation regardless of whether

pancreatic cancer with small size (5–7 mm) or big size (8–10 mm) was treated, and median

survival was extended to 63 days (Figure 6A) if small tumors were treated, or to 68 days

(Figure 6B) if large tumors were treated, in contrast to 45 days for the control animals.

However, the survival benefit was only present in large tumors treated with IRE but not in

small tumors if the tumors were partially ablated. Median survival was extended to 50 days if

large tumor was treated, in contrast to 45 days for the control animals (Figure 6B). Actually,

the median survival was shortened to 40 days if the small tumors were not completely ablated

with IRE. Obviously, tumor growth was accelerated and lost heterogeneous pattern after

partial IRE ablation (Figure 7). The same phenomenon was reported in literature and

explained as cancer stem cell activation [50]. Nevertheless, this was not seen in the animals

treated with nsEPs. It suggests different cell death mechanisms or possible inhibition of

immune responses may occur.

3.3.2. A vaccine-like protective effect was resulted from the nsEP treatment

As shown in Figure 8, tumor free mice after the nsEP treatment were able to impede or prevent

the growth of challenging tumors. Noticeably, there was a significant difference between the

two nsEP protocols. Majority of tumor free mice (66.7%) after the 100 nsEP treatment were

successfully protected from the second live tumor challenge whereas no protection but only

growth inhibition of tumor was observed in animals treated with the 200 nsEPs. Nevertheless,

neither protection nor growth inhibition was seen in the animals treated with IRE.

Figure 5. Pancreatic tumor growth after the nsEP treatment. Pan02 pancreatic tumors with the size of 5–7 mm were

treated with nsEPs at day 11 indicated by black arrow. nsEP parameters: 200 ns, 2 Hz, 30 kV/cm, and pulse numbers 600,

800, 1000 or 1200, indicated by 600p, 800p, 1000p or 1200p, separately. Number of tumor free mice vs. total number of

treated mice was indicated.
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Figure 6. Survival extension in animals with incomplete tumor regression after the nsEP treatment. Pan02 pancreatic

cancer was treated with IRE or nsEP. Only animals with incomplete tumor regression were included here. A, tumor size

with 5–7 mmwas treated (n = 13, 12 or 4 for Ctr, IRE or nsEP). Tx: Treatment at day 7 (IRE) or 11 (nsEP). B, tumor size with

8–10 mmwas treated. Ctr: No treatment; IRE: Treatment with IRE; nsEP: Treatment with 200 ns, 2 Hz, 30 kV/cm and 600–

1200 pulses (n = 13, 6 or 7 for Ctr, IRE or nsEP). Tx: treatment at day 31.

Figure 7. Pancreatic cancer growth after treatment with IRE or nsEP*. Control (n = 13): no treatment. IRE (n = 12): treated

with IRE. Tx: treatment day 7. nsEP (n = 7): treated with nsEP (200 ns, 30 kV/cm, 2 Hz with 800–1000 pulses), Tx:

treatment day 31. *: Only animals with partial tumor regression were included to assess the effect of treatment on tumor

regrowth.
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Surprisingly, the protective rates between two sets of nsEP parameters are very different. A high

rate of protection from the second live tumor challenge, 100%, has been observed in both mouse

breast cancer [48] and rat hepatocellular cancer models [44] after the same 100 nsEP treatment.

Does this mean 100 nsEPs are more favorable to induce immune protection than 200 nsEPs? The

answer is not clear because 100 nsEPs has eradicated local mouse lung squamous cell cancer

(KLN205) but has failed to result in any vaccine-like protection (0/19 protection in our

unpublished data). It’s very likely that cancer cell types and distinctive tumor microenviron-

ments play a critical role on the induction of immunity following the nsEP tumor ablation.

The growth inhibition of local recurring tumors and the second challenging tumors suggests that

underlying common immune responses are induced after the nsEP treatment. It’s critical to under-

stand the mechanisms causing the differential responses and outcomes between IRE and nsEPs or

amongvariousnsEPparameters, so it is possible for researchers todesignmoreeffective therapeutic

strategies, such as further optimization of the system or a combination therapy with other immu-

nomodulators. Currently, we are investigating cell death mechanisms, local and systemic immune

responses, and the changes of tumormicroenvironments following the nsEP tumor ablation.

4. Conclusion

Two electric pulse-based technologies have been studied to treat pancreatic cancer in a synge-

neic mouse pancreatic cancer model. A novel MHIRE system has been developed. This MHIRE

system has three functions including controllable tumor heating, impedance monitoring and

electric pulse delivery. MH has been demonstrated to decrease the impedance of tumor, to

enlarge the tumor ablation zone of IRE ex vivo and to enhance the complete tumor ablation of

the IRE treatment in vivo. The MHIRE treatment significantly improves the therapeutic efficacy

of the IRE treatment. In contrast to the IRE treatment, nsEP tumor ablation showed distinctive

outcomes and potential advantages. If partial ablation occurred after either the IRE or the nsEP

treatment, animals treated with nsEPs received survival benefit. If complete local ablation was

achieved, animals treated with nsEPs but not with IRE were able to reject secondary tumor

Figure 8. A vaccine-like protection effect after the nsEP treatment. Growth curves of second challenge pancreatic tumors

in tumor-free animals after IRE or nsEPs. Primary pancreatic tumors were treated with IRE (IRE), nsEPs with 200 ns, 2 Hz,

30 kV/cm and 600 -1200 pulses (nsEP-200 ns), or nsEPs with 100 ns, 2 Hz, 50 kV/cm and 800 -1200 pulses (nsEP-100 ns).

Number of protective mice vs. total number of challenged mice was indicated. p < 0.05 for nsEP-200 ns vs. IRE and

p = 0.001 for nsEP-200 ns vs. nsEP-100 ns (Chi Square test).
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challenge or to diminish its growth. An induction of antitumor immunity following the nsEP

treatment is highly suggested to account for this vaccine-like protective effect. For both MHIRE

and nsEPs for the treatment of pancreatic cancer, our data are preliminary and more studies

are needed to further optimize these technologies, elucidate the underlying mechanisms and

evaluate their translational feasibility.
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