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Abstract

Monitoring of effluent quality remains a challenge to the wastewater treatment process
(WWTP). In order to provide a reliable tool for the online monitoring of effluent quality,
an intelligent modeling approach, which consists of online sensors and an effluent quality
predicting plant, is developed to predict effluent quality in this chapter. The intelligent
modeling approach, based on a self-organizing fuzzy neural network (SOFNN), is able to
enhance the modeling performance by organizing the structure and adjusting the param-
eters simultaneously. The experimental studies of intelligent modeling approach have
been performed on several systems to verify the effectiveness. The comparison with other
existing methods has been made and demonstrated that the intelligent modeling
approach is of better performance.

Keywords: intelligent modeling approach, effluent quality, wastewater treatment process,
fuzzy neural network

1. Introduction

In recent years, due to the increasingly severe situation of the wastewater treatment, more

and more stringent wastewater effluent limits and regulations have been implemented to

reduce the negative impact to the water bodies and the environment [1–3]. Therefore, it is

important and desirable to predict the effluent quality in real time, since infrequent and

inaccurate measurements of the effluent parameters may lead to poor system performances,

large operational cost and wrong management decisions [4–6]. How to design the predictor,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



which can conduct an appropriate action to realize the accurate monitor and adjust to the

dynamic operational stations, is still a challenging work [4, 7].

Conventionally, the measurement of the effluent quality indices can be performed by off-line

or online instruments [8, 9]. However, the measurement time of the off-line or online measure-

ment is long, for it requires several minutes to hours [10, 11]. The dynamic conditions in

biological treatment processes such as the complex activated sludge process make the mea-

surement challenging [12]. Therefore, prediction modeling method based on online sensors

causes great attention. Wen et al. used an equation, derived from the material balance, to

calculate the suspended solid concentration, and then employed to predict the treatment

results through the sludge [13]. Yu et al. proposed two mechanism models, which were based

on linear regression analyses of experimental results from two anaerobic filters, to predict the

effect of recirculation on effluent quality of anaerobic filters [14]. The prediction ability was

verified by several experiments, and superior results were realized. Bhowmick et al. presented

a mathematical model based on the dynamic wave method, to simulate the effluent quality of

the treatment system [15]. The abovementioned methods have realized the online prediction of

the effluent quality. However, considering the complexity and nonlinearity of WWTP, it is

reasonable to design the adaptive prediction model to improve the accuracy of the online

prediction.

To improve the adaptive ability of the online prediction model, intelligent method, based

on data-driven approach, has caused extensive concern [16, 17]. Zhao et al. presented a

partial least-squares-based extreme learning machine to enhance the estimate performance

in terms of accuracy and reliability for effluent quality indices [18]. The experimental results

showed that the proposed prediction model could effectively capture the input-output

relationship with favorable performance. Pai et al. applied five types of gray models to

predict suspended solids, chemical oxygen demand and pH in the effluent from a wastewa-

ter treatment plant [19]. The results revealed that the gray models could predict the indus-

trial effluent variation successfully. To improve the model accuracy, Perendeci et al. used

a neural fuzzy model, based on an adaptive network-based fuzzy inference system, to

estimate the effluent chemical oxygen demand by the related process variables [20]. Accept-

able correlation coefficient (0.8354) and root mean square error (0.1247) were found between

estimated and measured values of the system output variable, effluent chemical oxygen

demand. However, considering the dynamic properties of WWTP, it is difficult to determine

the reasonable fuzzy rules in this adaptive network-based fuzzy inference system. Aimed

at this problem, Han et al. designed a flexible structure radial basis function neural network

(FS-RBFNN) and applied it to estimate the water quality [21]. This FS-RBFNN could

vary its structure dynamically in order to maintain the prediction accuracy, but it had poor

interpretability.

Considering the learning ability of neural network and the interpretability of rule-based

fuzzy systems, an intelligent method, based on self-organizing fuzzy neural network

(SOFNN), is developed to realize the online prediction of the effluent indices. The main

advantages of this prediction model are summarized as follows. First, an efficient second-

order algorithm is designed to adjust the parameters of SOFNN, which enables to improve
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the learning capability. Second, the structure of SOFNN can be self-organized based on the

relative importance index of each rule in the learning process. The fuzzy rules can be

generated or pruned automatically to reduce the computational complexity and improve

the generalization power of SOFNN.

2. Wastewater treatment process

WWTP is a large nonlinear system subject to large perturbations in influent flow rate and

pollutant load, together with uncertainties concerning the composition of the incoming

wastewater. It is also a complex reaction process, which contains biological, physical and

chemical reactions. The most popular technology for wastewater treatment is the activated

sludge process (ASP). The simplified flow chart of ASP is shown in Figure 1, where a

primary sedimentation tank, a biochemical reaction tank and a secondary sedimentation

tank are consisted. First of all, the dynamically changing influent flows into the primary

sedimentation tank to remove the suspended solids. Then, the wastewater gets further

processed in the biochemical reaction unit. In this unit, nitrification and denitrification are

composed to achieve biological nitrogen removal. After that, the standard wastewater is

discharged from the top of the secondary sedimentation tank, and the sludge is returned to

the biochemical reaction unit from the bottom of the secondary sedimentation tank. During

the reaction process, numerous process variables are contained to influence the treatment

performance.

Effluent quality, taken as an important performance evaluation to reflect the treatment results,

can provide a basis for water treatment plant management decisions to minimize the microbial

risks and optimize the treatment operation. Standard effluent quality requires that the effluent

organisms, such as effluent ammonia nitrogen, effluent total nitrogen and effluent suspended

solid, remain in the required limits. Although the effluent quality indices can be measured

directly by laboratory analysis, a significant time delay problem, which may range from a

matter of minutes to a few days, is always unavoidable. This lack of suitable real-time process

variable information limits the effective operation of effluent quality. Therefore, an online

prediction model is essential to support water quality parameters. Since an approach based

on neural networks does not make any assumptions about the functional relationship between

the dependent and independent variables, it is suitable for capturing functional relationships

between bacterial levels and other variables.

Figure 1. Simplified flow chart of ASP.
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3. Intelligent modeling approach based on SOFNN

An intelligent method based on SOFNN is proposed to predict the effluent ammonia nitrogen

(SNH) in urban WWTP. The main challenges are the selection of the principal process variables,

the construction of the model structure and the adjustment of the model parameters.

3.1. Selection of principal process variables

To determine the principal process variables of the effluent SNH, the mechanism analysis is

firstly applied to determine the related process variables, and then principal component anal-

ysis (PCA) is introduced to lower the dimension of the original process variables. This method

has the advantage of extracting the important information from the coupling process variables

and reducing the computational complexity of prediction models.

For the effluent SNH, the mechanism models are described as:

dSNH

dt
¼ v1,NH4

� r1 þ r2 þ r3ð Þ �
1

YA
þ iN,BM

� �

� r16 � v17,NH4
r17, (1)

where

ν1,NH4
¼ � 1� f s1

� �

� iN,SF � f S1 � iN,S1 þ iN,XS
, (2)

v17,NH4
¼ -f X1

� iN,X1
� 1� f X1

� �

� iN,Xs
þ iN,BM, (3)

r1 ¼ Kh � ηk �
kO2

kO2
þ SO2

�
SNO3

KNO3
þ SNO3

�
XS=XH

KX þ XS=XH

� XH , (4)

r2 ¼ Kh � ηNO3
�

kO2

kO2
þ SO2

�
SNO3

KNO3
þ SNO3

�
XS=XH

KX þ XS=XH

� XH, (5)

r3 ¼ Kh �
SO2

KO2
þ SO2

�
XS=XH

KX þ XS=XH

� XH , (6)

r16 ¼ μAUT �
SO2

KO2
þ SO2

�
SPO4

KP þ SPO4

�
SNH4

KNH4
þ SNH4

SNH4

KALK þ SALK
� XAUT , (7)

r17 ¼ bAUT � XAUT : (8)

where YA is the autotrophic bacteria yield coefficient of chemical oxygen demand, iN,BM, iN,S1,

iN,XS and iN,X1 are the parameters of nitrogen content, fs1 is the proportion of inert chemical

oxygen demand in granular matrix, fX1 is the proportion of inert chemical oxygen demand in

oxide, Kh is the water solubility rate function, μAUT is the maximum growth rate, XS is the

slowly biodegradable substrate, KNO3 is the subsaturation coefficient of nitrate, KNH4 is the

autotrophic bacteria subsaturation coefficient of nitrogen, KO2 is the heterotrophic bacteria
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subsaturation coefficient of oxygen, KNO3 is the heterotrophic bacteria subsaturation coefficient

of nitrate, KS is the heterotrophic bacteria subsaturation coefficient of COD, KP is the phospho-

rus storage saturation coefficient, XP is the particulate products arising from biomass decay,

XH is the water solubility, bAUT is the decay rate, KALK is the growth factor of alkalinity, SO2 is

the dissolved oxygen, SNO3 is the nitrate, SPO4 is the total phosphorus, SALK is the alkalinity and

XAUT is the autotrophic concentration.

According to the mechanismmodels in Eqs. (1)–(8), it can be concluded that the related process

variables to the effluent SNH are SNO3, XS, SO2, SPO4, SALK, XAUT and XH. Combining with the

real data collected from urban WWTP, oxidation-reduction potential (ORP), total suspended

solids (TSS), temperature (T), PH, influent ammonia nitrogen (SNH,i) and effluent nitrate

nitrogen (SNO,e) are also considered as the influencing variables of the effluent SNH. Then,

PCA is utilized to select the principal variables from the 13 related variables.

For reducing the dimension of the process variables, the first important thing is to remove the

abnormal data according to the standard deviation calculation formula

σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l

j¼1

uj, i � ui
� �2

v

u

u

t

,

l, (9)

where σi is the standard error and ūi is the average value of the ith column sample data; the error

between the sample and the average value is shown as vi = ui-ūi (i = 1, 2,…, 13), if vi satisfies

vij j > 3σi, (10)

it is considered as abnormal data and then, it is removed. Due to the fact that the 13 columns

of process variables have different magnitudes, data normalization processing should be

conducted

uinorm ¼
ui � uimin

uimax � uimin
, (11)

where uinorm is the value after normalization and uimin and uimax are the minimum and maxi-

mum of the ith column sample data, respectively. After the normalization treatment, all the

sample data are within [0, 1]. It is worth noting that the testing outputs should be anti-

normalized to the original ranges.

Then, the covariance matrix S is calculated and decomposed according to their singular values

into matrices V and Λ

S ¼

r11 r12 ⋯ r1,m

r21 r22 ⋯ r2,m

⋮ ⋮ ⋮ ⋮

rm,1 rm,2 ⋯ rm,m

2

6

6

6

4

3

7

7

7

5

, (12)

S ¼ VΛV
T, (13)
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where rm,m is the correlation coefficient and Λ is a diagonal matrix of the eigenvalues associ-

ated with the eigenvectors contained in the columns of matrix V. The contribution rate of each

component is calculated by Λ, the principal component factor loading matrix P is then calcu-

lated according to Λ and V. The projected matrix T in the new space is defined as

T ¼ XPT þ E, (14)

where matrix E is used to detect misbehavior in the modeling process.

3.2. Self-organizing fuzzy neural network

To predict the effluent SNH through the principal process variables, a multi-input and single-

output SOFNN is developed. The structure of the fuzzy neural network is shown in Figure 2.

The mathematical description of this multi-input and single-output fuzzy neural network is

given below:

bg ¼ Wv, (15)

where ĝ is the output of the output layer, W = [w1, w2,…, wP] are the weights between the

output layer and the normalized layer, P is the number of neurons in the normalized layer and

v is the output of the normalized layer and for a fuzzy model

bg ¼ Wv ¼

PP

l¼1

wle
�
Pk
i¼1

xi�cilð Þ2

2σ2
il

PP

j¼1

e
�
Pk
i¼1

xi�cijð Þ
2

2σ2
ij

, (16)

where vl is the output of the lth normalized neuron and v = [v1, v2,…,vP]
T and

Figure 2. The structure of fuzzy neural network.
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vl ¼
ϕl

P

P

j¼1

ϕj

¼
e
�
P

k

i¼1

xi�cilð Þ2

2σ2
il

P

P

j¼1

e
�
P

k

i¼1

xi�cijð Þ
2

2σ2
ij

, j ¼ 1, 2,…, P; l ¼ 1, 2,…, P, (17)

The number of neurons in the radial basis function (RBF) layer is equal to the number of

neurons in the normalized layer, and ϕj is the output value of the jth RBF neuron

ϕj ¼
Y

k

i¼1

Ai
j xj
� �

¼
Y

k

i¼1

e
�

xi�cijð Þ
2

2σ2
ij ¼ e

�
P

k

i¼1

xi�cijð Þ
2

2σ2
ij , i ¼ 1, 2,…, k; j ¼ 1, 2,…, P, (18)

cj = [c1j,c2j,…,ckj] and σj = [σ1j, σ2j,…,σkj] are the vectors of centers and widths of the jth RBF

neuron, respectively, and

ui ¼ xi, i ¼ 1, 2,…, k, (19)

where x = [x1,x2,…,xk] is the input vector of the input layer and U = [u1,u2,…,uk] is the input of

the RBF layer.

Following the computation procedure in the Levenberg-Marquardt algorithm, the updated

rule of the adaptive second-order algorithm for the parameters in fuzzy neural network is

given by

Θ tþ 1ð Þ ¼ Θ tð Þ þ Ψ tð Þ þ λ tð Þ � Ið Þ�1 �Ω tð Þ, (20)

where Ψ(t) is the quasi-Hessian matrix, Ω(t) is the gradient vector, I is the identity matrix

which is employed to avoid the ill condition in solving inverse matrix and λ(t) is the adaptive

learning rate defined as:

λ tð Þ ¼ μ tð Þλ t� 1ð Þ, (21)

μ tð Þ ¼ τmin tð Þ þ λ t� 1ð Þ
� �

= τmax tð Þ þ 1ð Þ, (22)

where τmax(t) and τmin(t) are the maximum and minimum eigenvalues of Ψ(t), respectively,

(0 < τmin(t) < τmax(t), 0 < λ(t) < 1,) and the variable vector Θ(t) contains three kinds of variables:

the output parameter matrix W, the center vector c and the width vector σ

Θ 1ð Þ ¼ w1 1ð Þ;⋯;w3 1ð Þ;⋯;wP 1ð Þ; c1 1ð Þ;⋯; cj 1ð Þ;⋯; cP 1ð Þ;σ1 1ð Þ;⋯;σj 1ð Þ;⋯;σP 1ð Þ
	 


: (23)

In this adaptive second-order optimization algorithm, the output parameter matrix W, the

center vector c and the width vector σ can be optimized simultaneously. The quasi-Hessian

matrix Ψ(t) and the gradient vector Ω(t) are accumulated as the sum of related submatrices

and vectors.
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Ψ tð Þ ¼ jT tð Þj tð Þ, (24)

Ω tð Þ ¼ jT tð Þe tð Þ, (25)

e tð Þ ¼ y tð Þ � bg tð Þ, (26)

where e(t) is the error between the output layer and the real output at time t, and the Jacobian

vector j(t) is calculated as:

j tð Þ ¼
∂e tð Þ

∂w1 tð Þ
;⋯;

∂e tð Þ

∂w2 tð Þ
;⋯;

∂e tð Þ

∂wP tð Þ
;

∂e tð Þ

∂c1 tð Þ
;⋯;

∂e tð Þ

∂cj tð Þ
;⋯;

∂e tð Þ

∂cP tð Þ
;

∂e tð Þ

∂σ1 tð Þ
;⋯;

∂e tð Þ

∂σj tð Þ
;⋯

∂e tð Þ

∂σP tð Þ

� �
: (27)

The elements of the Jacobian vector j(t) are given as:

∂e tð Þ

∂wp tð Þ
¼ �vp tð Þ, p ¼ 1, 2,⋯, P, (28)

∂e tð Þ

∂cj tð Þ
¼

∂e tð Þ

∂c1j tð Þ
;

∂e tð Þ

∂c2j tð Þ
;⋯;

∂e tð Þ

∂ckj tð Þ

� �
, (29)

∂e tð Þ

∂cij tð Þ
¼ �

2wj tð Þ � vi tð Þ � xi tð Þ � cij tð Þ
	 


σij tð Þ
, i ¼ 1, 2,⋯, k, (30)

∂e tð Þ

∂σj tð Þ
¼

∂e tð Þ

∂σ1j tð Þ
;

∂e tð Þ

∂σ2j tð Þ
;⋯;

∂e tð Þ

∂σkj tð Þ

� �
, (31)

∂e tð Þ

∂σij tð Þ
¼ �

wj tð Þ � vi tð Þ � xi tð Þ � cij tð Þ


 

2

σ
2
ij tð Þ

: (32)

With Eqs. (28)–(32), all the elements of the Jacobian vector j(t) can be calculated. Then, the

quasi-Hessian matrix Ψ(t) and the gradient vector Ω(t) are obtained from Eqs. (24)–(25), so as

to apply the updated rule (20) to parameter adjustment. From the former analysis, some

remarks are emphasized.

To grow or prune the structure of the fuzzy neural network, relative importance index is

utilized. The values of relative importance index can be used to determine the proportion of

output values in a multiple regression equation. The relative importance index of each neuron

in the normalized layer is defined as:

Rk tð Þ ¼

PP

l¼1

akl tð Þ � bl tð Þ

PP

k¼1

PP

l¼1

akl tð Þ � bl tð Þ

, k ¼ 1, 2,⋯, P, (33)

where R k(t) is the relative importance index of the kth normalized neuron at time t;

the regression coefficients B(t) = [q 1(t), b 2(t),…, b P(t)]T and A(t) = [a 1(t), a 2(t),…, a P(t)]

(a l = [a 1 l(t),…, a Pl(t)]T) can be calculated as:
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A tð Þ ¼ Z tð Þð ÞTZ tð Þ
h i-1

Z tð Þð ÞTbI tð Þ ¼ Z tð Þð ÞTbI tð Þ, (34)

B tð Þ ¼ Z tð Þð ÞTZ tð Þ
h i-1

Z tð Þð ÞT bG tð Þ ¼ Z tð Þð ÞT bG tð Þ, (35)

where A(t) is P�P and B(t) is P�1, Ĝ(t) = [ĝ(t), ĝ(t�1), …, ĝ(t-N + 1)]T and

Z tð Þ ¼ S tð ÞbS tð Þ, (36)

bI tð Þ ¼ S tð ÞΔ tð ÞbS tð Þ, (37)

S(t) = [ξ 1, ξ 2,…, ξ P] is the eigenvectors of Î(t)(Î(t))T, Ŝ(t) = [ζ 1, ζ 2,…, ζP] is the eigenvectors

of (Î(t))TÎ(t), Δ(t) is the singular matrix of Î(t), Î l(t) = [w l(t)�vl(x(t)), w l(t)�vl(x(t�1)),…, w l(t)�

vl(x(t–T + 1))]T and T is the preset number of sample. The relative importance index of each

normalized neuron represents the contribution of each normalized neuron to each output

neuron.

Before introducing the self-organizing mechanism, the error of the output is defined as:

E Θ tð Þð Þ ¼
1

2
� y tð Þ-bg tð Þð Þ

2
, (38)

where y(t) and ĝqt) are the desired and real output values.

The procedure of the proposed self-organizing mechanism is given as follows:

1. Growing phase.

If E(Θ(t)) is larger than E(Θ(t�1)), a new neuron will be inserted to the normalized layer.

The parameters of the new normalized neuron are designated by the normalized neuron

with the largest relative importance index

Rm tð Þ ¼ max R tð Þ, (39)

R(t) = [R 1(t), R 2(t), …, RP(t)], Rm(t) is the mth normalized neuron with the largest relative

importance index. The parameters of new normalized neuron are designed as:

cnew tð Þ ¼ cPþ1 tð Þ ¼
1

2
cm tð Þ þ x tð Þð Þ, (40)

σnew tð Þ ¼ σPþ1 tð Þ ¼ σm tð Þ, (41)

wnew tð Þ ¼ y tð Þ � bg tð Þ=e
�
Pk
i¼1

ui tð Þ�cinew tð Þð Þ2

2σ2
inew

tð Þ
, (42)

where cnew(t) and σnew(t) are the center vector and width vector of the new normalized

neuron, respectively, wnew(t) is the weight of new normalized neuron, cm(t) and σm(t) are

the center vector and width vector of the mth normalized neuron, respectively.
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2. Pruning phase.

In the training process, if E(Θ(t)) is less than E(Θ(t�1)) and

Rh tð Þ ≤Rr, (43)

Rr∈(0, E0) is the threshold, where

Rh tð Þ ¼ min R tð Þ: (44)

Then, the hth normalized neuron will be pruned and the parameters of remaining normal-

ized neuron will be updated

c0
h
0 tð Þ ¼ c

h
0 tð Þ, (45)

σ
0
h‘ tð Þ ¼ σh’ tð Þ, (46)

wh‘ tð Þ ¼
wh’ tð Þe

�
P

k

i¼1

ui tð Þ�c
i,h’ tð Þ

� �2

=2σ2
i,h‘

tð Þ

þ w
q
h tð Þe

�
P

k

i¼1

ui tð Þ�ci,h tð Þð Þ
2
=2σ2

i,h tð Þ

e
�
P

k

i¼1

ui tð Þ�c
i,h‘ tð Þ

� �2

=2σ2
i,h’

tð Þ

, (47)

c0h tð Þ ¼ 0, (48)

σ
0
h tð Þ ¼ 0, (49)

w0
h tð Þ ¼ 0, (50)

where the h’th normalized neuron is nearest to the hth normalized neuron with the

smallest Euclidean distance, wh
0(t) and wh’(t) are the hth weight vector and the h’th weight

vector after pruning the hth normalized neuron, respectively, ch
0(t) and σh

0(t) are the center

vector and width vector of the hth normalized neuron after the neuron is pruned, respec-

tively, and c0h’(t) and σ
0
h’(t) are the center vector and width vector of the h’th normalized

neuron after the neuron is pruned, respectively.

4. Simulation results and analysis

In this section, the effectiveness of the proposed intelligent modeling method based on SOFNN is

evaluated. A brief introduction to experimental setup is provided before the experimental results

are detailed.

4.1. Experimental setup

The performance of the online prediction for the effluent SNH depends heavily on the determi-

nation of the input variables. Based on the analysis of PCA and the work experience of the
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experts in urban WWTP, five process variables have been chosen as the input variables to

develop the intelligent method: SPO4, ORP, SO2, TSS and PH, respectively. SPO4 is an important

index of the effluent, ORP reflects the concentration of oxide, SO2 is an important indicator to

the growth of organic matter and the nitrification reaction, TSS stands for the degree of

wastewater treatment and PH stands for the acid-base property of the wastewater. The input

variables determined for the effluent SNH are listed in Table 1. The detailed selection process

and analyzation process are shown in [22]. Meanwhile, the online measurement instruments

used for obtaining the process values are also displayed.

CHM-301 is the SPO4 detector, AODJ-QX6530 is the portable ORP probe, WTW oxi/340i is the

portable SO2 probe, 7110 MTF-FG is the TSS analyzer and pH 700 is the PH detector.

Taking advantage of the abovementioned analysis, an experimental hardware is set up.

Anaerobic-anoxic-oxic (A2/O) treatment process with the online sensors is employed in urban

WWTP (shown in Figure 3). In this experimental hardware, online sensors, effluent SNH

models based on fuzzy neural network are schematically shown.

The online sensors consist of five parts: TP detector, ORP probe, SO probe, TSS analyzer and

PH detector. The output signals from the sensors are integrated and connected to programma-

ble logical controller (PLC, S7-200) for transmitting primary indictors. The PLC system is

interfaced with equipped sensors and collected reliable data in form of 4-20mA electrical

signals with a fast response time. Moreover, the PLC system has been connected through a

serial port (RS 232, Siemens AG) of the host computer, which uses the real-time data to

calculate the values of key variables and also stores the data in form of local file. The sensors

are operated in continuous/online measurement mode, and the historical process data are

routinely acquired and stored in the data acquisition system. The process data are periodically

collected from the reactor to check whether the system is operating as scheduled during the

experiments. Then, after preprocessing, the data are applied to the proposed SOFNN method.

In SOFNN, five neurons are determined in the input layer based on the analyzed related

process variables SPO4, ORP, SO2, TSS and PH. According to the experienced experts, there

are 10 neurons in both RBF layer and normalized layer initially, and then the neurons in

normalized layer are self-organized based on the relative importance index to guarantee the

prediction accuracy. The number of output neuron is one, which represents the predicted

effluent SNH.

Variables Units Main apparatus and instrument

SPO4 (total phosphorus) mg/L CHM-301

ORP (oxidation reduction potential) — AODJ-QX6530

SO2 (dissolved oxygen) mg/L WTWoxi/340i

TSS (total suspended solid) mg/L 7110 MTF-FG

PH — pH 700

Table 1. The principal variables’ measurement with online sensors.
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4.2. Experimental results

An intelligent modeling method based on the proposed SOFNN is proposed to predict

the effluent SNH concentration by the determined principal process variables. All data are

collected on a daily basis and covered all four seasons. The daily frequency of measurements

is considered sufficient because of the long residence times in WWTP. To guarantee the

efficiency in this soft-computing method, all variables are normalized and denormalized by

taking advantage of the maximum and minimum values before and after application. The

input-output water quality data were collected from a real-world wastewater treatment

plant (Beijing, China) over the year 2014. After deleting the abnormal data, 280 samples were

obtained and normalized; 140 samples from 1/5/2014 to 30/9/2014 were taken as the training

data while the remaining 140 samples from 1/10/2014 to 30/11/2014 were employed as testing

data.

The error measures for the effluent NH4 are 0.1 mg/L confidence limits. Both the mean testing

RMSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1

yn tð Þ � bg
n
tð Þ

� �2
=N

s

and the mean predicting accuracy
PDays

t¼1

1� e tð Þ=bg tð Þð Þ=Days

 !

are utilized as the performance indices to assess the modeling performance, where N is the

number of samples.

Figure 3. Experiment diagram of the online modeling.
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The predicting results and the predicting error of the effluent SNH concentration are shown in

Figures 4–6. Additionally, to show the performance of SOFNN clearly,Table 2 shows the network

structure, themean testing RMSE and themean accuracy in comparisonwith othermethods.

The prediction results of the effluent SNH based on SOFNN are displayed in Figures 4–6. The

training RMSE of the effluent SNH is shown in Figure 4; it can be observed that the final value

can reach 0.02. In Figure 5, the predicted results are displayed, both the SOFNN outputs and

real outputs. The predicted outputs based on SOFNN can approximate the real outputs with

little errors. Meanwhile, the errors are displayed in Figure 6, which remain in the range of

Figure 4. The training RMSE.

Figure 5. The testing results of the effluent SNH.
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�0.3. From this figure, it can be observed that the proposed adaptive fuzzy neural network has

the superior prediction ability by using SPO4, ORP, SO2, TSS and PH as the inputs.

In addition, the results of SOFNN are also compared with other modeling methods, SOFNN

with fixed learning rate, the self-organizing fuzzy neural network with adaptive computation

algorithm (SOFNN-ACA)[23], fast and accurate online self-organizing fuzzy neural network

(FAOS-PFNN) [24], growing-and-pruning fuzzy neural network (GP-FNN)[25] and the math-

ematic model [12].

Table 2 indicates that the proposed SOFNN can achieve with compact structure than

other compared methods, the number of the final normalized neurons is 13. Higher mean

accuracy is acquired by this proposed SOFNN with adaptive learning rate (mean accuracy

value is 97.94%), which is higher than the proposed SOFNN-ACA [23], FAOS-PFNN [24],

GP-FNN [25] and the mathematic model [12]. This means that this proposed SOFNN with

Figure 6. The testing errors of the effluent SNH.

Methods No. of final normalized neurons Mean testing RMSE Mean accuracy (%)

SOFNN

(adaptive learning rate)

13 0.103 97.94

SOFNN

(fixed learning rate)

13 0.112 97.76

SOFNN-ACA [23] 19 0.162 96.76

FAOS-PFNN [24] 25 0.221 95.58

GP-FNN [25] 19 0.191 96.18

Mathematic model [12] — 0.772 84.56

Table 2. Performance comparison between different methods.
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adaptive learning rate has the ability to improve the accuracy of approximating the global

optimization parameters during the learning process. The detailed testing samples are

shown in Tables 3–9.

2.18 2.55 2.21 2.73 3.00 2.81 2.75 2.83 2.94 3.17

2.70 3.24 3.13 3.32 3.43 2.74 2.82 2.59 2.47 2.20

2.39 2.32 2.60 2.23 2.53 2.11 2.10 2.73 2.54 2.58

2.70 2.65 2.78 2.67 2.83 2.72 2.99 2.83 2.98 2.73

3.05 3.00 2.76 2.38 2.88 2.95 3.04 2.97 3.36 2.75

3.42 3.03 3.41 3.23 3.08 2.97 3.09 3.03 2.95 3.06

2.76 2.24 2.58 2.60 2.88 2.32 2.55 2.60 2.27 1.92

1.82 1.73 2.51 2.33 2.53 2.21 2.65 2.19 2.85 2.23

2.48 1.94 1.97 1.52 1.67 1.60 1.43 1.53 1.57 1.57

1.54 1.69 1.44 1.21 1.19 1.11 1.00 1.00 0.90 0.80

0.68 0.62 0.54 0.52 0.47 0.44 0.35 0.34 0.30 0.30

0.27 0.29 0.28 0.25 0.25 0.23 0.23 2.24 2.27 0.27

2.18 2.55 2.21 2.73 3.00 2.81 2.75 2.83 2.94 3.17

2.70 3.24 3.13 3.32 3.43 2.74 2.82 2.59 2.47 2.20

Table 3. Testing inputs SPO4.

�17.43 �16.54 �16.79 �15.13 �17.18 �28.20 �35.76 �43.97 �51.53 �57.17

�63.07 �71.01 �76.85 �82.49 �87.81 �91.91 �95.37 �98.19 �101.14 �104.21

�97.80 �89.28 �80.69 �77.49 �71.98 �73.83 �68.64 �67.23 �71.14 �80.82

�97.61 �103.57 �108.32 �112.16 �115.49 �117.99 �120.05 �121.65 �123.12 �122.67

�121.20 �119.79 �120.75 �108.44 �56.21 �49.86 �48.84 �49.22 �46.34 �51.40

�48.01 �54.99 �52.94 �49.67 �47.75 �45.95 �46.21 �45.63 �45.76 �36.40

�11.73 �12.11 �6.09 �39.74 �15.25 �13.01 �11.28 �10.25 �13.33 �22.24

�31.66 �41.28 �51.47 �60.63 �66.27 �62.36 �61.34 �57.11 �60.89 32.05

39.55 37.56 38.33 37.69 37.43 36.66 35.89 34.48 33.07 31.08

30.76 27.62 26.47 33.33 �27.82 �43.26 �55.95 �63.90 �71.85 �78.90

�84.09 �88.90 �94.22 �96.97 �99.28 �102.42 �105.50 �108.64 �112.10 �115.56

�117.99 �121.07 �124.47 �126.84 �129.21 �133.06 �135.43 �137.09 �138.95 �140.94

�142.67 �144.02 �144.85 �146.52 �147.48 �147.99 �149.02 �150.62 �151.90 �153.63

�155.49 �157.28 �159.08 �158.76 �160.87 �163.24 �165.94 �170.17 �172.79 �174.78

Table 4. Testing inputs ORP.
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7.64 6.35 4.34 2.63 1.84 1.54 1.34 1.33 1.41 1.73

1.77 1.86 1.97 2.41 2.77 2.92 2.80 3.76 5.62 6.02

6.11 6.04 5.91 6.12 5.90 5.22 4.02 3.43 2.71 2.30

2.36 2.59 2.77 3.30 3.49 3.77 4.02 4.22 4.16 4.28

5.59 7.49 7.97 7.93 7.64 6.91 6.54 6.35 6.35 6.60

6.57 6.75 6.84 6.83 6.88 7.10 7.17 7.11 7.07 7.84

7.95 7.65 7.36 7.96 7.80 5.98 4.08 2.72 2.04 1.87

2.10 3.20 4.75 5.59 5.95 6.22 6.54 7.12 7.75 5.97

7.67 6.55 6.09 6.09 6.40 6.63 6.92 6.85 6.67 6.78

7.05 7.35 7.63 7.77 0.81 0.81 0.84 0.86 0.89 0.86

0.99 1.14 0.73 0.68 0.65 0.68 0.66 0.56 0.50 0.53

0.55 0.54 0.49 0.49 0.48 0.49 0.48 0.51 0.53 0.50

0.53 0.57 0.54 0.54 0.59 0.62 0.53 0.52 0.49 0.50

0.51 0.52 0.45 0.43 0.46 0.46 0.46 0.48 0.51 0.47

Table 5. Testing inputs SO2.

2.83 2.72 2.83 2.77 2.81 2.82 2.74 2.77 2.78 2.77

2.78 2.78 2.80 2.80 2.75 2.79 2.77 2.83 2.79 2.79

2.78 2.76 2.80 2.81 2.80 2.85 2.80 2.82 2.90 2.81

2.81 2.78 2.90 2.81 3.17 2.80 2.92 2.85 2.80 2.82

2.82 2.89 2.91 2.80 2.79 2.81 2.82 2.88 2.84 2.83

2.82 2.82 2.80 2.82 2.83 2.87 2.77 2.82 2.82 2.82

2.81 2.84 2.83 2.83 2.86 2.77 2.73 2.78 2.80 2.79

2.81 2.80 2.74 2.81 2.81 2.78 2.87 2.83 2.87 2.88

2.86 2.82 2.95 2.89 2.88 2.90 2.89 2.95 2.90 2.92

2.93 2.89 2.93 2.90 2.82 2.82 2.81 2.80 2.77 2.82

2.80 2.84 2.81 2.82 2.79 2.78 2.85 2.78 2.73 2.74

2.78 2.71 2.77 2.84 2.87 2.86 2.90 2.88 2.90 2.84

2.80 2.88 2.85 2.82 2.78 2.78 2.79 2.81 2.78 2.75

2.75 2.71 2.76 2.75 2.77 2.72 2.71 2.71 2.74 2.68

Table 6. Testing inputs TSS.
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7.93 7.93 7.93 7.93 7.92 7.91 7.90 7.89 7.88 7.87

7.86 7.86 7.85 7.85 7.84 7.84 7.84 7.85 7.85 7.85

7.85 7.85 7.86 7.86 7.86 7.86 7.86 7.86 7.87 7.87

7.86 7.86 7.86 7.86 7.86 7.86 7.86 7.86 7.86 7.86

7.87 7.87 7.87 7.88 7.91 7.92 7.92 7.92 7.92 7.92

7.91 7.91 7.91 7.90 7.90 7.90 7.90 7.90 7.90 7.90

7.95 7.95 7.95 7.89 7.90 7.91 7.92 7.92 7.92 7.92

7.91 7.90 7.90 7.90 7.89 7.89 7.89 7.89 7.89 7.93

8.02 8.02 8.02 8.02 8.02 8.01 8.01 8.01 8.01 8.01

8.01 8.00 8.00 7.99 8.02 8.02 8.02 8.01 8.01 8.01

8.00 7.99 7.98 8.00 8.01 8.02 8.02 8.02 8.01 8.00

7.99 8.00 8.00 8.00 8.00 8.01 8.00 8.00 7.99 7.99

7.99 7.99 7.99 7.99 7.99 7.99 8.00 8.01 8.00 8.00

8.00 8.01 8.01 8.01 8.01 8.00 8.00 8.00 7.99 7.99

Table 7. Testing inputs PH.

3.22 3.24 3.25 3.25 3.34 3.33 3.41 3.33 3.38 3.44

3.46 3.44 3.41 3.38 3.47 3.61 3.56 3.95 3.67 3.81

3.82 3.97 3.63 3.52 3.51 3.70 3.61 3.61 3.47 3.67

3.26 3.29 3.26 3.20 3.24 3.37 3.50 3.85 3.75 3.81

3.61 3.66 3.65 3.65 3.66 3.66 3.62 2.98 3.64 4.31

4.90 5.42 5.77 5.95 6.35 6.82 7.27 7.62 8.08 8.20

8.38 8.50 8.78 9.02 9.32 9.26 9.99 10.16 10.54 11.11

11.38 11.71 11.77 11.97 11.76 12.41 12.77 12.52 12.52 12.59

12.65 12.35 12.41 11.95 12.15 12.17 12.24 12.37 12.76 12.89

12.88 13.19 12.93 12.58 12.92 12.65 12.68 12.81 12.68 12.89

12.82 12.43 11.73 11.17 10.87 11.30 11.12 11.16 10.59 10.14

9.11 9.02 8.75 8.95 8.83 8.58 8.64 8.88 8.90 9.07

8.97 9.35 3.22 3.28 3.33 3.32 3.36 3.37 3.30 3.36

3.37 3.45 3.49 3.40 3.44 3.39 3.51 3.58 3.53 3.70

Table 8. Testing outputs SNH.
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5. Conclusion

In this chapter, an intelligent method is designed to realize the online prediction of the effluent

SNH. Based on SOFNN, the proposed model could capture the correlation between the effluent

SNH and the principal process variables and construct the modeling structure automatically. The

effectiveness of the proposed intelligent modeling method is evaluated in a WWTP. Experimen-

tal simulations and results analysis are provided to show the superior prediction performance.
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