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Abstract

Climate change impact on livestock, especially due to impact on agriculture and ensu-
ing shortage of feed resources and its quality, will have a profound effect on growth, 
milk production, reproduction, metabolic activity and disease occurrence. Small rumi-
nant feeding and nutrition research should therefore be tailored in line with climate 
resilient agriculture and farming systems. Seasonal feed scarcity is a concurrent prob-
lem that farmers usually face besides natural calamities like drought, flood, cyclone, 
earthquake, etc., and it has a significant impact on small ruminant productivity. Silage 
making is an effective and common method of forage preservation and also a form of 
treatment to occasionally retrieve the underutilized pastures for better acceptability, 
degradability and utilization. Demand for conventional crop (principally maize) out-
paces its production, which stresses upon to find suitable, or even better, alternatives 
for silage making. This chapter deals with silage making from legumes, mixed forages, 
alternate forages and by-products from fruits and vegetable sector, TMR silage, phyto-
chemicals role in silage making and livestock production, use of inoculants/additives 
in silages, the concept of therapeutic silage, novel microbial approaches to solving the 
problem of silage aerobic deterioration during the feed-out phase, animal and human 
health concern of deteriorated silages and production of designer animal produce from 
innovative silages.

Keywords: silage, small ruminant, feed scarcity, nutrition, productivity

1. Introduction

Seasonal shortages in feed supply are major constraints to increasing ruminant productivity 

in developing countries. Small ruminant feeding and nutrition research should therefore 

be tailored in line with climate resilient agriculture and farming systems. The calamity of 
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 climate change should be converted into an opportunity for developing and spreading cli-

mate resilient small ruminant farming and production systems. Natural pastures, crop resi-

dues and indigenous fodder trees are the main feed resources for ruminant livestock. But, 

due to seasonal fluctuations in the availability and quality of these feed resources, intake of 
energy, protein and some essential minerals by most ruminant species fall below their main-

tenance requirements resulting in ‘under-nutrition’ and low productivity in most animal 

production systems [1]. The leftover natural pastures, particularly the abundantly grown 

monsoon grasses/herbages that get matured (lignified) and dried have limited intake and 
characterized by low nutritive value, digestibility and utilization. In dealing with the rainy 

season crop harvest, and due to the difficulties in hay storage, ensiling is considered as one 
of the preferable preservation techniques especially with the greatest potential for protein-

rich foliage.

Silage making is an effective and common method of forage preservation and also a form of 
treatment to occasionally retrieve the underutilized pastures for better acceptability, degrad-

ability and utilization. It is universally agreed that silage making is one of the principal 

approaches if feed and nutrition is to be ensured round the year. In the rainy season, there 

is an abundance of grass, while it becomes scarce in the dry season, and therefore, silage 

production in the tropics has been established as a sustainable means of supplementing feed 

for ruminants in the dry scarcity periods. Maize is observed to be the major crop for silage 

making, but as the demand for maize/corn outpaces its production due to current changes 

in global energy system for the production of biodiesel, coupled with increasing competi-

tion between animals and humans for this major food/feed item; it has become imperative to 

research into suitable, or even better, alternatives to this conventional crop for silage making. 
Low cost unconventional plant biomass offering promising nutrients may serve as an alter-

native, because of changing climatic conditions and lack of opportunity to cultivate fodder 

due to shortage of water resources. Hence, the perennial forage surplus obtained when the 

weather is favorable is recommended for storage as silage in order to meet the animal require-

ments throughout the year [2]. Alternate forage resources (browses and tree forages, field 
and crop wastes), succulent plant biomass (roots and tubers, cactus, fruits and vegetables 

co-products/wastes) and conceptualization of legume silage, mixed silage, total mixed ration 

(TMR) silage and their application would certainly expand the forage resource base and feed 

banking for ensuring nutritional input.

2. Climate resilient small ruminant production

Climate change leading to adverse changes in temperature, precipitation and sea level will 

disturb the food, water and livelihood security systems. The impacts of climate change on 

livestock are on its growth, milk production, reproduction, metabolic activity and disease 

occurrences. The indirect impacts include (i) scarce availability of water, pasture and other 

feed resources, (ii) health anomalies associated with modified/unknown vector-borne and 
parasitic diseases, (iii) competing environmental interaction with other livestock species. It is 

important to understand the small ruminant vis-à-vis other livestock responses to the changed 
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climatic environment and to analyze them in order to design modifications of nutritional and 
environmental management, thereby improving animal comfort and performance. In many 

countries, there is a scarcity of forage for ruminants feeding because of climatic conditions 

and shortage of water resources. The success of small ruminant rearing mostly depends on 

congenial macro- and micro-environments and the effectiveness of the ameliorating measures 
taken to reduce the stress factors. Adapting to climate change and reducing greenhouse gas 

(GHG) emissions may require significant changes in production technology and farming 
systems that could affect productivity. Globally, livestock contribute to 18% of the human-
generated greenhouse gases, and the main components include methane (CH

4
) produced by 

the belching of animals (25%), carbon dioxide (CO
2
) by uses of land due to decomposition 

of organic substances (32%) and nitrous oxide (N
2
O) due to spreading of manure and slurry 

over land (31%) [3]. One of the best ways of mitigating enteric methane emission could be 
improvement of the feed and forage of the ruminant animals to enhance the feed-conversion 

efficiencies in the production of a unit of milk or meat.

3. Silage making

Ensilage of forage crops has been practiced in one form or another for more than 3000 years. 

Several technical advances in silage making, such as multiple application of forage harvester, 

rapid and efficient silo packing, effective exclusion of air from silos, control of undesirable 
bacteria and use of silage additives (e.g. formaldehyde, glutaraldehyde, sodium hydroxide, 

sodium acrylate, urea, formic acid, etc.), and their application have expanded production 

and application of silage in livestock feeding. Emphasis has also been given on its qualita-

tive enhancement due to increase in its usage in dairy and other ruminants. Ensiling forage 

enables preservation of succulent nature besides converting it to a form considered more uti-

lizable by the ruminant livestock. Good silage is light brown in color, has a sour taste and 

pleasant acidic smell due to its lactic acid content, which make the product stable and can be 

kept for 6 months to 1 year, if required. This technology can be practiced round the year as 

and when any surplus plant biomass is available and yield better quality conserved forage to 
feed during scarcity.

Ideally, crops for silage are harvested at right stage, i.e. at 50% flowering, and then chopped 
into 2–5 cm pieces and left for wilting if needed to have moisture content not more than 60%. 
It is important to note that the influence of forage characteristics (epiphytic lactic acid bacte-

ria (LAB), buffer capacity and sugar: buffer capacity ratio) on treatment effectiveness varied 
with DM content. Any additives (molasses, probiotic culture, etc.) can be added and mixed 

uniformly by spreading the chopped materials on a pucca (concrete) floor or polythene (plas-

tic) sheet and then transferred to polythene lined silo pit (Figure 1) or plastic bags (Figure 2)/ 

drums (Figure 3) and compressed tightly in order to make it air free. It is kept anaerobically 

away from direct sunlight under the shade for 55–60 days under anaerobic condition. To make 

good quality silage, one must have quality assessment of the plant, microbial and environ-

mental factors that influence the fermentation process and, ultimately, the nutrient value of 
the silage. It is essential to harvest forage at the right time, from the point of view of nutritional 
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quality, quantity available and climatic conditions, and then to store it properly to reduce 

losses. Silage made from grasses and cereals is dark yellowish green in color, while it is black-

ish green when made of legumes. A good silage is friable, non-sticky and free from mold/ 

fungal growth and should have an acceptable and pleasant aroma (fruity odor) and mild 

acidic taste. It should have a pH < 4.5; the lactic acid should be higher than other acids with a 

low butyric acid content (0.2–0.5%) and ammoniacal N not higher than 9–15% of total N.

Farmers’ friendly ensiling process has been developed in many countries for its wider adapta-

tion, which is relatively simple, can be performed manually, is flexible in handling and feed-

out according to needs and does not require much input. Dry tree forages, less palatable fallen 

tree leaves, less preferable stovers and mature crop residues can be mixed with high moisture 

Figure 1. Silage pits lined with plastic sheet to prevent seepage.

Figure 2. Packing of fodder in plastic bag for silage making.
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containing cactus, azola, residual/leftover vegetables and fruits to prepare mixed silage of 

desired quality with proper balancing for appropriate moisture, degradable and water soluble 

carbohydrates (WSC) and N-fractions. The preservation of forage crops as silage depends 

principally on the production of sufficient acid to inhibit activity of undesirable microorgan-

isms under anaerobic conditions [4].

3.1. Suitable crops for making silage

Forage crops should be harvested for silage making from flowering to milk stage of the crop. 
Forage characteristics, viz. type of forage, maturity, DM and WSC content, at the time of ensil-

ing influence the ease of ensiling and ultimately the quality of silage. Cereals, in general, are 
easier to ensile than legumes or grasses, because of their lower buffering capacity and high 
WSC content. As forage matures from the vegetative stage into reproductive stage (i.e. heading 

for cereals; flowering for legumes), stems and leaves become more lignified, and the digest-
ibility of these plant components declines. Several factors influence the rate of maturation of a 
crop including variety, moisture level, temperature, nutrient stress and time of season. Thus, 

optimal timing of harvest usually encompasses a compromise between DM and nutrient yield. 

DM content of forage tends to increase with advancing maturity, but silage DM can also be 

increased by wilting a less mature forage in the field prior to ensiling. Grass family crops are 
more suitable for making silage because of higher sugar and WSC, e.g. jowar (Sorghum bicolor), 

bajra (Pennisetum glaucum), maize (Zea mays), guinea grass (Panicum maximum), cenchrus grass 

(Cenchrus ciliaris, C. setigerus), sudan grass (Sorghum sudanense), oats (Avena sativa), barley 

(Hordeum vulgare), napier (Pennisetum purpureum), etc. [5]. Making silage only from legumi-

nous crops like berseem (Trifolium alexandrinum), Lucerne (Medicago sativa), soybean (Glycine 

max), lobia/cowpea (Vigna unguiculata) is not advisable since they contain high moisture and 

less carbohydrate. Hence, they are mixed with grasses for making quality silage.

3.2. Ensiling legume crops/fodder

Current restrictions on the use of animal-based protein supplements coupled with increasing 

demand for soya protein concentrates put pressure on the livestock farmers and researchers to 

Figure 3. Silage making in plastic drums.
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consider alternative home-grown protein-rich forage crops as supplements to grass silage for 

sustaining production. Ensiling legumes is a good way of providing a cheaper, non-animal-

based and traceable home-grown protein that may improve the efficiency of production sys-

tem in any livestock farms. Also, legume silages with low DM and WSC contents are generally 

more resistant to aerobic deterioration than cereal silages [6]. There are also some unidentified 
microbial inhibitors that prevent the growth of spoilage microorganisms [7]. But, most legumes 

undergo butyric acid fermentation when ensiled without additives at low DM content due to 

low WSC and high buffering capacity [8]. Furthermore, severe degradation of proteins may 

devalue the protein quality due to inefficient N utilization.

Besides, stage of maturity and DM content of the crop at ensiling, wilting and rate of dry-

ing markedly reduce proteolysis in the silo [9]. Rapid and extensive wilting (DM > 500 g/kg) 

improved protein value and reduced CP degradability. Moreover, due to the reversible protein-

binding properties of tannin, species containing tannin have shown to undergo less protein 

degradation during ensiling than that do not contain tannin. Since protein degradation in the 

silo is widely recognized to be the most limiting factor in legume silage, intrinsic protein pro-

tection by mixing tannin-containing forages may contribute to reducing the rate and the extent 

of NPN formation in silages, thereby improving N usage. Fraser et al. [10] compared the nutri-

tive value of a range of ensiled forage legumes from late second-cut lotus (Lotus corniculatus), 

first-cut sainfoin (Onobrychis viciifolia) and both early and late second-cut red clover (Trifolium 

pratense) and lucerne and found high intake potential of all the legume silages. The taniferous 

lotus silage recorded higher intake and N utilization compared to less/non-tannin legumes, 

clover and lucerne, while low N digestibility appears to limit the nutritional value of sainfoin. 

In silages made from the beginning of ripening stage, where most of the protein was localized 

in the seed, the level of proteolysis was reduced and a good fermentation was observed in peas 

ensiled after a short wilting period [11]. Possible approaches include the adoption of harvesting 

techniques that reduce field wilting time, the use of protein protection agents during ensiling 
such as tannins or the choice of natural tannin-containing legume species.

3.3. Alternate plant biomass for silage making

Industrialization of food production has produced large quantities of food wastes, viz. (i) 

crop waste and residues, (ii) grain and legume by-products; (iii) distillery and brewery by-

products; (iv) fruit and vegetables by-products; (v) sugar, starch and confectionary industry 

by-products and (vi) oil industry by-products. Fruit and vegetable processing by-products/

co-products are promising sources of valuables such as phytochemicals (carotenoids, phe-

nolics, flavonoids), antioxidants, antimicrobials, vitamins or dietary fats that have favorable 
technological activities or nutritional properties and have traditionally been used as feed 

ingredients, and their effect on animal performance has been extensively studied [12–14].

Key determinants while selecting unconventional resources: Moisture content is the most 

important factor in silage making, with a recommendation at 65–75% [15] depending on the 

means of storage, the degree of compression and the amount of water that will be lost in stor-

age. Effluent is produced when moisture is above 75%, with the amount of effluent increasing 
with increasing silo height due to increasing pressure. In general, forage with high moisture 
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content makes sour silage. Additionally, the critical pH value for clostridial growth varies 

directly with the moisture content of the plant material, and unless WSC levels are exception-

ally high, ensiling wet crops encourages clostridial fermentation, resulting in high losses and 

reduced nutritive value. Moreover, many high CP legume foliages can be difficult to ensile 
successfully, because they tend to have low WSC, high buffering capacity and low DM con-

tent when directly harvested [8].

The characteristics of good silage should have pH values of 4.2 or less, NH
3
-N contents <100 g/kg  

DM and high lactic acid contents. Legumes that have low WSC and high buffer capacity do 
not produce good quality silage [8]. High N-containing leguminous fodder also includes tree 

forages and browses that are rich in plant secondary metabolites (PSM). Many times these 

phytochemicals may become adverse to fermentation process (e.g. antimicrobial effects of 
alkaloids, essential oils, etc.) and put forth additional challenges to step up microbial fer-

mentative activity. Further, degradation of protein during ensiling process produces volatile 

organic acids with higher pKa values, and thus, the silages may have higher pH, unfavorable 

aroma, less aerobic stability and greater spoilage. Further, the relationship between weekly 

growth rate and change in quality parameters is differed among species and functional 
groups, i.e., grasses and legumes, and therefore, quantifying the impact of delaying the har-

vest date of grass-legume mixtures and assessing the relationships between productivity and 

components of feed quality are important.

3.3.1. Phytochemical-rich forages

Tannins in ruminants can induce beneficial effects attributable to tannin-protein complexes, 
which lead to increased rumen escape of dietary protein and increase in microbial protein out-

flow. High N fertilized grasses are more degradable, which are hydrolyzed extensively during 
ensiling and are rapidly degraded in rumen resulting in more excretory loss. Decreased pro-

teolysis and slower fermentation of proteins and NPN are particularly important in silages for 

uniform N availability to ruminal microbial synthesis and thus optimizing its usage. Forage 

legumes with PSM are considered to be less susceptible to proteolysis than other legumes, 

which improve silage quality. The legume sainfoin has been shown to contain tannins of par-

ticularly beneficial composition for ruminant nutrition. Adding tannins during ensiling holds 
key both at ensiling and at rumen level to check N degradation and decrease its excretion.

Plant phenolic compounds and flavonoids are the largest and best-studied natural phenols 
that possess a series of biological properties and act on biological systems, such as antioxi-

dants, antimicrobials and immunostimulants, which in turn, are associated with a reduction 

in the incidence of various human diseases. The shift in research to feedstuff endogenous 
factors, which influence proteolysis and lipolysis, may have a significant contribution on 
ruminant products (meat, milk) and their transmission to human food chain. Any qualita-

tive variation in ruminant food products with naturally rich conjugated linoleic/linolenic acid 

(CLA) and other ω3 fatty acids (FA) can thus be influenced by animal’s diet. Ruminal biohy-

drogenation is heavily influenced by PSM, which includes polyphenol oxidase (PPO), FA 
oxidation and tannins, and the effect is a complex set of mechanisms directly affected by PPO 
or indirectly by passage rate, lipid encapsulation, shift in the ruminal microbial population, 
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modulation of protein and fiber degradation and interactive effect of other PSM [16]. The 

animal performance with silages from PSM-rich forages attributed not only to differences in 
their nutritive value but also to interactive effects impacting differently on feeding motivation 
and digestive efficiency [17].

Usefulness:

• Reducing nutrient drainage: Decrease in protein and N compound degradation during 
ensiling and rumen fermentation.

• Improving nutrient use efficiency and enhancing P:E ratio: Efficient use of N in grasses 
by ruminants decreases its excretion, reduces requirements in diet and increased net return 

per cow.

• Protecting environment: Reduces environmental pollution thereby promoting environ-

ment-friendly livestock production.

• Improving livestock products quality: Alters ruminal biohydrogenation process and im-

proves FA profile of milk and meat.

Possible outcome: Research outcome will help identify tannins and other phytochemicals 

which can be used as silage additives. Tannins shift N excretion from urine to feces and from 

soluble to insoluble N forms in feces. This undigested form of N from plant residues min-

eralizes more slowly than microbial and endogenous N, and these shifts in N forms could 

reduce ammonia and nitrate losses from ruminant production system and thus contribute to 

reducing the protein and NPN supplements in the animal feed. Besides improving N usage 

and aerobic stability of silages, the ingested phytochemicals also have significant role on 
improving ruminant livestock products and their shelf life [18]. This will augment “Green 

Consumerism” and the naturally improved products could be placed on the market at higher 

prices with the brand name of “environment-friendly products.” Ultimately, farmers will feel 

encouraged to adopt bioactive forage-enriched feed for livestock feeding.

3.3.2. Use of phytochemical-rich plants and nutrient usage

The use of phytochemicals in ruminants can induce beneficial effects, most-importantly, the 
role of condensed tannins on retention of dietary N (reduced urinary output) and its overall 

usage vis-à-vis efficiency of energy utilization. Ensiling of N-rich forages (e.g. alfalfa/lucerne, 
berseem, cowpea, etc.) transformed majority of protein N into non-protein N (NPN), which can 

be inhibited to some degree by accelerating the rate of pH decline during silage fermentation, 

but compared to cereal forages, structural difference in leaf: stem ratio and its physicochemical 
characteristics, low WSC content and high buffering capacity make it difficult to ensile result-
ing in proteolysis. Forages containing condensed tannins (CT) undergo less proteolysis during 

ensiling, and transformation of their plant protein N into NPN is inhibited compared to for-

ages without CT [10, 19, 20]. Therefore, adding tannins during ensiling holds key both at ensil-

ing and at ruminal level to check N degradation and decrease its excretion to the environment. 

High level of tannins may adversely affect the activities of silage bacteria [21]. Co-ensiling 
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sainfoin and alfalfa improves fermentation in silos and increases total tract digestibility, sug-

gesting positive associative effects of the two forages [20]. The optimal ensiling and ruminal 

fermentation for alfalfa and sainfoin were observed at approximately 60:40 ratio (DM basis). 
It also reduces proteolysis and preserves the nutritive value with sainfoin relative to alfalfa 

alone. Both total phenol and total tannin contents contributed to the decrease in lactic acid pro-

duction. Fasuyi et al. [22] found 4% molasses and 14 to 21 days ensiling period optimum and 
most suitable for effective ensiling of Tithonia diversifolia leaves. They also observed a gradual 

decrease in major anti-nutrients (phytin, tannins, oxalates, alkaloids, flavonoids) with length-

ening duration of ensiling. However, there are reports that tannins suppress the production of 

lactic acid during ensilage [23]. A number of additives that include chemical inhibitors, such 

as acids, formaldehydes, and various salts, and biological stimulants (LAB and other bacteria) 

expedite lactic acid production to support ensiling process [24]. The resistance mechanisms 

of L. plantarum include the ability to degrade phenolic compounds [25] such as tannin, by the 

action of novel tannin acylhydrolase [26] and gallate decarboxylase enzymes [27].

3.4. Concept of mixed silage

The concept of mixed silage has widen the scope of incorporating grains, protein concentrates, 

leguminous forage crops, tree forages and other conventional and unconventional tanninifer-

ous forage crops with the conventional one for silage making. Making of mixed silage involv-

ing seasonal availability of feed resources allows the farmers to opt for a variety of forages, for 

example monsoon herbages, tree forages and browses, including that of conventional grasses 

and cultivated fodder. It also widens the scope of incorporating non-conventional fodder 

resources like cactus, thorny non-toxic plants/weeds and phytochemical-rich plant resources. 

Corn and legume silages are commonly fed together in rations for dairy cattle, one comple-

menting the other for the deficit N and energy sources, respectively. Thus, the fermentable 
carbohydrates in corn silage may complement the rumen degradable N (RDN) in legume 

silage, which may decrease ruminal N losses. Above all, the N intake affects the amount of N 
excreted via manure, whereas types of carbohydrate (starch in corn silage vs. sugars in grass 

silage) and forage species (legume vs. grasses) have greater impacts on the route (fecal or 

urinary) of excretion. Besides agronomic benefits of grass-legume mixtures, there are positive 
associative effects contributing to voluntary intake due to a greater motivation of animals 
to eat mixtures along with decreased urinary N excretion and increased N retention [28]. 

Thirumurugan et al. [29] evaluated cereal-legume mixed silage to combat feed and water 

scarcity and sustaining production during hot summer in semi-arid regions of India. Total 

mixed ration (TMR) silage is a way forward in this direction.

3.4.1. Why mixed silage?

Monotonous use of a single fodder (e.g. maize) in silage making limits the farmers to adopt 

the technologies, particularly in unfavorable geographical and climatic regions (semi-arid and 

arid regions). Therefore, combination of grasses and legumes is an alternative solution to the 

success of the ensiling process. The purpose of the addition of legumes to silage is to sup-

ply N/protein for microbial protein synthesis, reduce protein degradation in the rumen and 
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increase amino acid absorption in the intestinal tract. The combination of grasses and legumes 

in ruminant feed is very effective for a highly nutritious diet. This allows the farmers to use its 
surplus or seasonal plenty or available at hand plant biomass resources to preserve as silage to 

feed during scarce or unavailability. Successful ensiling can be evaluated by determining the 

relationships between fermentation characteristics and microbial diversity in silages. Reducing 

the moisture content of the crops through substitution with other high DM forages could be 

another approach. Moreover, nutrient composition analysis following up with palatability 

study can very well evaluate the combinations of different silages involving local grasses, tree 
forages, browses and monsoon-favored less/non-tested abundantly grown plant biomass. This 

versatility allows the farmers to use their wisdom to choose and harvest the available forage 

biomass at hand for preserving as silage. Above all, year-round feed and nutrient supply to the 

livestock can certainly enhance per animal/whole farm productivity, thereby enabling the live-

stock husbandry sustainable and profitable. Some of the questions that continue to be answered 
for harnessing possible beneficial effects of plants rich in phytochemicals as a part of silage are

• Can mixed silage concept is more versatile, if at all, the effect of high N containing feed-

stuffs on silage quality and preservation process?

• Tannins/polyphenols that are suitable for adding during ensiling need to be identified 
based on their chemical characteristics, affinity to form complexes during ensiling and ru-

men fermentation and release of tannin-protein complexes at different pH of stomach and 
intestine, and also keeping in view their toxic and anti-nutritional effects.

• Comparing results from simulated rumen in vitro system studies for stability of complexes 

and release of bound N from rumen of silage with tannins added during ensiling, can 

help evaluate efficacy of tannins for utilization of N in grasses and leguminous forages by 
ruminants.

• Feeding trials in different ruminant species fed on grass silages with or without tannins 
and the effects of supplemental tannins pre- and post-feeding on excretion of N and N-
metabolites for evaluating efficacy of tannins on overall N economy.

• Effect of other plant phytochemicals on ensiling process and post-consumption effect on 
ruminal N and energy use efficiency both in vitro and in vivo.

3.4.2. Competing conventional silage

The plant, microbial and environmental factors that influence the fermentation process deter-

mine the nutrient value of the mixed silage. These factors must be considered as an integrated 

package to facilitate optimum forage preservation process. Moreover, it is now observed that 

the use of ensiled alternative forages have positive influence on voluntary feed intake (VFI), 
nutrient use efficiency and productivity of livestock systems [2, 30]. This would encourage the 

livestock farmers to preserve nutrients for future use and sustain whole farm productivity. A 

list of mixed silage evaluated in various countries in the feeding of native ruminant livestock 

is detailed in Table 1.
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Silage types DM OM CP NDF ADF Citation

Local name Region/Country Botanical name*

Cholai* (100) India Amaranthus sps 22.8 87.2 8.80 55.5 49.6 [30]

Bajra* (100) India Pennisetum typhoides 36.9 87.8 8.18 65.8 46.7

Cholai + Bajra (50:50) India – 28.6 87.5 8.54 60.3 47.8

Cholai + Cenchrus* 

(50:50)
India Cenchrus sps 26.9 86.2 7.32 55.2 41.5

Jojhru* + Cholai (50:50) India Crotalaria medicaginea 30.6 87.4 10.28 52.2 38.5

Jojhru + Cenchrus 

(50:50)
India – 27.8 87.0 8.76 58.8 42.5 [2]

Jojhru + Bajra (50:50) India – 32.7 87.0 9.88 59.2 41.5

Cactus* + Ardu1,* (80:20) India Opuntia sps + Ailanthus 

excelsa

25.8 85.1 8.70 51.7 35.0 [30, 31]

Cactus + Gram straw* 

(80:20)
India Cicer arictinum 28.6 82.9 8.36 54.5 38.6

Cholai + Moringa1,* 

(80:20)
India Moringa oleifera 32.2 86.1 12.22 52.5 34.2 [2]

Moringa + Bajra1 (70:30) India – 37.2 88.3 12.56 55.4 38.2

Cholai + Ardu1 (80:20) India – 30.8 86.8 9.28 53.8 41.5

Oat* + Ardu1 (75:25) India Avena sativa 35.8 88.2 8.22 58.6 44.8

Barley* + Ardu1 (75:25) India Hordeum vulgare 36.2 87.9 8.02 59.5 44.2

Oat + Lucerne* (75:25) India Medicago sativa 32.6 87.3 10.51 52.8 39.5 [29]

Oat + Lucerne + Ardu1 

(75:12.5:12.5)
India – 36.0 87.8 10.24 53.6 39.2

Cactus + Acacia* (67:37) Zimbabwe Acacia angusitissima 38.0 81.6 25.0 63.4 57.4 [32]

Cactus + Leucaena* 

(67:37)
Zimbabwe Leucaena leucocephala 44.0 82.4 20.0 57.3 52.3

Cactus + Calliandra* 

(67:37)
Zimbabwe Calliandra calothyrsus 41.0 84.1 21.9 72.2 55.4

Cactus + Siratro* (67:37) Zimbabwe Macroptilium 

atropurpureum

42.0 85.3 12.5 65.7 58.8

Pennisetum* (100) Indonesia Pennisetum purpureum 31.2 87.5 5.6 66.6 34.4 [23]

Pennisetum + 

Calliandra (75:25)
Indonesia – 33.6 89.7 10.6 59.7 25.4

Pennisetum + 

Calliandra (50:50)
Indonesia – 37.0 90.9 14.2 56.0 26.1

Pennisetum + 

Calliandra (25:75)
Indonesia – 40.7 92.4 17.3 54.4 17.5

Calliandra (100) Indonesia – 46.5 93.4 20.2 53.8 13.4
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Silage types DM OM CP NDF ADF Citation

Local name Region/Country Botanical name*

Aruana grass* (100) Brazil Panicum maximum 28.2 – 8.95 67.1 41.3 [33]

Aruana grass + 

Gliricidia (75:25)
Brazil – 28.3 – 10.07 60.9 40.1

Aruana grass + 

Gliricidia (50:50)
Brazil – 28.1 – 11.06 53.7 37.2

Aruana grass + 

Gliricidia (25:75)
Brazil – 27.5 – 12.0 46.5 30.4

Gliricidia* (100) Brazil Gliricidia sepium 27.6 – 12.83 39.5 25.6

Gliricidia (100) Vietnam – 21.7 92.9 20.3 52.7 35.4 [34]

Mexican sunflower Nigeria Tithonia diversifolia 17.6 – 17.00 – – [22]

Moringa (100) Nigeria – 31.9 97.9 18.45 11.2 11.1 [35]

Moringa + Wheat* offal 
(50:50)

Nigeria – 36.2 90.9 14.35 12.1 9.95

Moringa + Guinea* 

grass (50:50)
Nigeria Panicum maximum 32.1 97.9 8.25 12.3 11.1

Moringa + Guinea* 

grass + Wheat offal 
(50:10:40)

Nigeria – 32.1 97.5 10.48 11.2 9.16

Moringa + Guinea* 

grass + Wheat offal 
(50:20:30)

Nigeria – 32.3 97.6 12.27 11.0 9.16

Moringa + Guinea* 

grass + Wheat offal 
(50:30:20)

Nigeria – 33.5 97.5 13.13 10.9 8.90

Moringa + Guinea* 

grass + Wheat offal 
(50:40:10)

Nigeria – 35.9 97.6 13.40 10.7 8.54

Amaranth Iran A. hypochondriacus 48.8 91.8 14.70 30.0 17.2 [36]

Fruit* byproduct silage Greece Punica granatum 29.2 95.9 12.00 21.8 16.9 [37]

Cassava Vietnam Manihot esculenta 26.7 92.8 21.70 51.4 37.2 [34]

Cassava leaf Indonesia – 30.7 92.9 16.20 [38]

Cassava leaf Nigeria – 30.4 97.8 15.46 – – [39]

Cassava peel Nigeria – 29.2 97.8 5.72 – –

*Forages used in silage display botanical names.
1Forages in dry form.

DM, dry matter; OM, organic matter; CP, crude protein; EE, ether extract; TCHO, total carbohydrates; NDF, neutral 
detergent fiber and ADF, acid detergent fiber.

Table 1. Dry matter and nutrient composition (% DM basis) of different types of unconventional silages.
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3.5. Silage from alternate forages

3.5.1. Amaranthus silage

Amaranth is a dicotyledonous species and commonly considered as a pseudo-cereal, which 

has a good yield performance up to 86.4 t fresh forage/ha [40] with promising nutritive value 

[30, 41–43] and CP up to 285 g/kg DM with useful minerals including Ca, Fe, Zn, Mg and P. It 
is adaptable to varying climatic and agronomic conditions, tolerance to drought as well as a 

low water requirement [44]. The use of Amaranthus silage in the diet of fattening Moghani 
lambs up to 300 g/kg of dietary DM improved total gain and carcass weight without any 

adverse effect on lean-to-fat ratio and animal health and demonstrated its replacement value 
for maize silage [36]. A small bag ensiling technology is being promoted as a useful and low 

cost tool to improve production in smallholder livestock farms [45].

3.5.2. Moringa silage

Moringa oleifera has attracted the attention of researchers in recent times, and its intensive cul-
tivation with the application of fertilizer and water supply gives a DM yield up to 120 tonnes/

ha, with 7–8 cuttings in a year [46]. Moringa leaves are high in CP and phytochemicals that 

reported to have a positive influence on lactation performance [47, 48]. Sole Moringa silage, 

or in combination with fresh Panicum maximum in equal proportion, may not be promising 

dry season feed conservation strategies for ruminants, while silage mixtures of 50% Moringa 
+10–30% Guinea grass and 20–40% wheat offals showed great potentials [35]. It should prefer-

ably be ensiled in mixtures with conventional and/or unconventional forages to increase the 

VFI and nutritive value of the silage. This is often considered as a perennial forage surplus to 
preserve as silage to meet round the year feed requirements.

3.5.3. Cactus silage

Cactus, particularly the Opuntia species, is grown in semi-arid regions of many tropical coun-

tries and is often fed to livestock during summer to provide both feed and water [31]. However, 

the excess biomass during other season can be preserved suitable as silage for feeding during 

scarcity [30]. It was observed that mixing cactus and browse in silage making improved both 

DM and N content in the product. Similarly, it can be mixed with legume forages and hays 

by supplying a degradable source of organic matter. The cactus + browse or cactus + legume 
silages improve microbial protein flow to the lower gut for digestion and supply of amino acid 
for maintenance, growth and production. These silages could be used in livestock feeding to 

improve livelihoods in drier and resource constrained farming communities by providing 

opportunities for conservation of forage and maintaining their animals in periods of feed scar-

city. The nutritive value of silage from cactus cladodes was evaluated and found acceptable 

quality silage based on pH, organic acids contents and voluntary intake. It might be advanta-

geous to ensile cactus mixed with other ingredients and improving utilization of poor quality 

roughages with the addition of cactus-browse silages as supplements [31]. Abidi et al. [49] 

ensiled fresh cactus cladodes with olive cake and wheat bran and found no adverse effect on 
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digestible nutrient intakes by replacing with oaten hay. In addition to feed shortage, water 

scarcity compromises livestock performances in dry areas. Because of its succulence, cactus 

could overcome this constraint as ruminants do not need to drink water when receiving cactus 

cladodes (35 g DM/kgW0.75) [50]. It is reported that ensiled mixture of spineless cactus, olive 

cake and wheat bran could be used to replace totally or partially oaten hay without affecting 
lamb performances and meat quality [49]. It is thus advocated to go for mixed silage with 

cactus and protein-rich dry forages (e.g. Ardu leaves, gram straw, pea crop residues), so as to 

balance the minimum moisture content (i.e. 35–40%) in making of good quality silage [31]. A 

reasonable intake of 3–4 kg cactus silage in adult sheep was recorded that meet 900–1200 g DM 
and enough nutrients to support minimum production during scarcity.

3.6. Silage from by-products

3.6.1. Silage from fruit and vegetable co-products

Utilization of fruit and vegetable co-products, such as grape, tomato, olive or citrus pomace 

that are voluminously produced and have an important impact on the environment, in the 

animal feed holds promise in expanding the forage biomass, thereby meeting the increas-

ing demands of feeds and fodder. Besides the fact that fruit and vegetable co-products are 

good sources of phenolic constituents [12, 51] that act as natural antioxidants, and research 

emphasis has now been directed at use of these co-products in improving products’ quality 

[14]. They evaluated pomegranate byproduct silage supplementation to growing lambs and 

found improved nutritional and functional qualities as indicated by the increase in essential 

FA, intramuscular fat, total phenolic content and antioxidant activity.

3.6.2. Pineapple fruit residue silage

National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru (India), has devel-

oped a silage technology to preserve pineapple fruit residue (PFR) and use it as fodder for live-

stock [52]. More than 70% of pineapple fruit is wasted during processing in industry, and there 
is potential availability of PFR to the tune of 1.35 million tonnes per year in India. PFR is high 

in moisture and sugars and thus can suitably preserved in the form of silage, which otherwise 

become a waste in processing industries. Nutritionally, PFR silage is demonstrated as a valu-

able fodder resource comparable to maize green fodder and increases milk yield and quality.

3.6.3. Cassava silage

Cassava (Manihot esculenta) is known as a highly productive tropical crop that is traditionally 

cultivated to produce roots for human consumption or for starch production. The yield of cas-

sava leaves is recorded as much as 4.6 thousand tonnes of DM/ha when taken as a by-product 

at root harvesting. Cassava leaf silage was successfully introduced to small holder farmers 

in Indonesia [38]. The chemical and microbiological composition, silage preparation and the 

effects of LAB inoculants on silage fermentation of cassava residues including cassava leaves, 
peel and pulp were studied to effectively use in livestock diets [53, 54]. They found improved 

fermentation quality with lower pH, butyric acid and higher lactic acid when the residues 

were ensiled with LAB inoculants.
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3.7. Ensiling on nutrient composition and utilization

Differences in WSC and protein (particularly, the A and B fractions) contents and fermentative 
characteristics between plant parts and plant species contribute to the differences in ensiling 
process, be it lactic acid production, pH reduction and modification/reduction in the phyto-

chemical constituents. The use of molasses has been in practice for stepping up the initial fer-

mentation process during ensiling. It is suggested that a critical WSC concentration in herbage 

for successful preservation as silage without additives is 30 g/kg DM. Sugars, such as fructo-

sans, starch, pectins and soluble fiber content, greatly decline during the fermentation process 
[55]. A part of the OM gets lost in the initial phase owing to respiration of plants and during 
fermentation to CO

2
 and other fermentation products and storage of silage by microbial activ-

ity. Total DM losses for optimal lactic acid fermentation are relatively low and should range 

between 2 and 6%. The proteolytic activities are restricted when the pH of the silage is ≤4.3 [56], 

and in good silage, the process will stop earlier and limit the loss of protein. Tannin might limit 

the proteolytic activities and reduce the loss of silage CP (soluble NPN) [19]. Different ratios of 
grass to red clover silage in TMR demonstrated improved performance when they were offered 
as a mixture than when fed alone [57]. Red clover contains PPO, which binds protein and it 
tended to reduce whole body N balance at higher inclusion levels due to increased partitioning 

of N into urine and feces. Legumes that contain CT also have the potential to reduce the deg-

radation of plant protein to NH
3
-N in the rumen, thereby releasing proteins in the abomasum, 

leading to improvements in feed efficiency and reduction of N excretion. Research emphasis 
should therefore be needed to explore the interactions of CT-containing legume feeds with 

other dietary components, fiber digestion and the consequential N partitioning effects, thereby 
reducing N excretion and improving efficiency and environmental quality.

3.8. Ensiling effect on phytochemicals/anti-nutritive factors

Phytochemical determination showed that ensiling reduces the presence of some anti-nutri-

tional factors such as tannins, phytic acid and trypsin inhibitors [58]. A low pH, which is 

critical to make good silages from wet crops, also dissociates tannin-protein complexes and 

may compromise formation of rumen escape protein that can improve protein utilization. 

Invariably, ensiling of tannin-rich, legume, cereal or mixed forages shows a pH decline not 

beyond 4.0, and hence, any possibility of dissociation of tannin-protein binding complex does 

not arise, which requires pH of 2–3 [59]. Increase in ensiling duration also reduces tannin 

concentration. At pH range 3.5–5.5, insoluble tannin and plant leaf protein complex was estab-

lished [60]. A reduction of 25 and 42% in the tannin content of fresh cassava and Gliricidia 
tops, respectively, was found after ensiling [34]. This phenomenon can be correlated to hydro-

lysis of hydrolysable tannins. Moreover, diets containing 2–4% of CT reduce proteolysis dur-

ing ensiling and rumen fermentation by up to 50% [61]. Similarly, a continuous decline in 

HCN to the tune of 68 and 43 % was found in ensiled cassava and Gliricidia tops, respectively 
after 2 months of ensiling [60]. Handling and ensiling process and the initial environment of 

the aerobic phase created favorable environment for reducing the HCN. A rapid reduction 

in pH restricts the enzyme activities that reduce the speed of HCN elimination during stor-

age. Pyrrolizidine alkaloids remain unaltered in silage and are not toxic [62]. The PPO activ-

ity, associated predominately with the detrimental effect of browning fruit and vegetables, 
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showed potential to inhibit proteolysis that draws interest to improve animal forage quality 

through greater N utilization [63]. The mechanism for PPO protection of plant protein in the 
rumen is a consequence of complexing plant protein, rather than protease deactivation, and 

these complexed proteins reduce protein digestibility in the rumen and subsequently increase 

undegraded dietary protein flow to the intestine. It catalyzes the conversion of phenols to qui-
nones, which are extremely reactive and bind with cellular nucleophiles such as proteins to 

form protein-bound phenols. Red clover and cocks foot (Dactylis glomerata) showed high PPO 
activity compared to other forages [64]. There are several reports on the positive effect of PPO 
on preserving polyunsaturated FA (PUFA) within rumen simulation models [17] and limiting 

post-harvest proteolysis [64, 65]. The effect of PPO on inhibition of ruminal proteolysis and 
biohydrogenation is reported at 25 and 11%, respectively [66]. Thus, the benefit of red clover 
silage is attributed to a reduction in lipolysis in silo and an increase in beneficial C18 PUFA in 
animal products. A number of factors, e.g. cultivar, growing season, stage of maturity, sward 

management including forage conservation method and cell damage, play a role in the extent 

of enzyme activity.

3.9. Total mixed ration (TMR) silage

Ensiling TMR allows preservation and saves labor at the farm as it saves daily preparation cost 

of TMR with succulent fodder. This concept of silage making is aimed at ascertaining nutri-

tional adequacy to livestock for maintenance and/or production. Production of TMR silage 

and feeding to production stock in a livestock farm are gaining rapid acceptability. However, 

the fermentation process of the substrates during ensiling may influence various nutritional 
components, and therefore, the loss should be kept minimum for easy adoption and maximize 

nutrient utilization efficiency. Balancing CP and total carbohydrates content with respect to 
concentration of fermentable N and sugars would provide a desired reducing environment 

for anaerobic degradation to lactic acid and rapid drop in pH. Brewer’s grains are found to 

be a suitable by-product for ensiling as it improved aerobic stability when ensiled with vari-

ous feeds as a TMR [67]. Five different silage types with cassava by-products (peel and pulp 
at different ratio) (40%) with corn husk (42%), Brewer’s grain (14%) and molasses (3%) were 
evaluated and recommended as a useful energy source in Thailand during the dry period [54].

3.10. Aerobic stability of silage

It is a key factor in ensuring that silage provides well-preserved nutrients to the animal with 

minimal amounts of mold spores and toxins. When silage is exposed to air on opening the 

silo, fermentation acids and other substrates are oxidized by aerobic bacteria, yeasts and 

molds, and the stability is thus dependent principally on following factors [68]:

i. Biochemical and microbiological factors: Development of yeasts and molds during 
plant growth and during field wilting or storage and concentration of undissociated ace-

tic acid in silage.

ii. Physical and management factors: Silage density and porosity are key physical factors 
that affect the rate of ingress of O

2
 into the silage mass during the feed-out period. A tar-

get for potential silage aerobic stability is generally 7 days including the time in the feed 
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trough. Speed of harvest needs to be coordinated with packing to achieve a minimum 

silage density of 210 kg DM/m3 by the time of feed out and a rate of silage removal to 

match or exceed the depth of air penetration into the silo.

iii. Type of additives: Use of additives is advisable when there is risk of meeting these 
objectives.

iv. Silo sealing: Post-exposure sealing of silage pit/bags/drums helps prevent aerobic expo-

sure and infestation of bacteria, molds and yeast/fungal growth.

3.11. Spoilage and fungal contamination

The epiphytic microbial populations are the starter culture and the survival and activity of 

these populations are also among the factors influenced by the characteristics of the crop 
at the time of ensiling and often contribute to spoilage and could be a potential health risk. 

Therefore, the types of LAB rather than the total numbers of bacteria present in the epiphytic 

populations may be more important in determining the efficiency of the fermentation pro-

cess. Manuring onto forage prior to ensiling increases numbers of epiphytic enterobacteria 

(e.g. Bacillus and Clostridium spp.) and contact of the forage with soil can also increase yeast 

and mold counts in the silage [69]. Although these microorganisms are usually inactivated 

during ensiling, they can become active and contribute to accelerated spoilage when the 

silage is exposed to air upon feeding. Well-preserved silages are dependent on appropriate 

fermentation after storage, which results in low pH and production of sufficient acid to inhibit 
the growth of undesirable microorganisms. Lactate-oxidizing yeasts are generally respon-

sible for the initiation of aerobic spoilage, and the secondary aerobic spoilage flora consists 
of molds, bacilli, listeria and enterobacteria [70]. The activity of harmful microorganisms not 

only reduces the silage quality (e.g. formation of butyric acid) but also increases the losses of 

energy and DM [71]. Hexoses are fermented to carbon dioxide and hydrogen, and subsequent 

decarboxylation and deamination of amino acids by these bacteria contribute to a decrease in 

the quality and quantity of forage. Yeasts also ferment sugars to ethanol and carbon dioxide 

with higher fermentation losses. Spoilage after opening the silage pit or bags seems to be con-

current problems faced by many farmers because LAB typically reduces the concentration of 

acetate, which is strongly antifungal, and increases concentration of lactate, which is a growth 

substrate for spoilage yeasts [6]. When silage is exposed to air during storage or at feeding, 

aerobic spoilage leads to increase in pH and losses of DM and nutrients [72] due to lactic acid 

degradation by mainly the lactic acid-utilizing yeasts (e.g. Pichia, Candida) [73]. Difference 
in anaerobic degradation of cereal and legume forages during silage making leaves more 

residual WSC than do legume silages, which is a readily available source of energy for the 

animal. But, upon exposure to air, these WSC are readily utilized by spoilage microorganisms 

and often become more prone to aerobic deterioration than legume silage.

Growth of spoilage fungi in baled silage is not of random occurrence but is facilitated where 

in-bale environments allow the fungi to survive, colonize and reproduce. Visible fungal 
growth was observed on baled grass silage during the winter feeding season [74]. The factors 

analyzed are the concentrations of ethanol and lactic acid, DM content, bale tying, month of 

bale feed-out, age of bales, polythene film damage, ryegrass dominance, bale storage location 
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and volatile FA concentrations. Besides, the environmental factors inside the silo, e.g. mois-

ture content, pH, acid and gas composition, are likely to influence the species composition 
of the fungal population and the extent to which mold colonization occurs. Oxygen ingress 
causes excessive moisture or dryness, condensation, heating, leakage of rainwater and insect 

infestation of the silo, leading to undesirable growth of microaerobic acid-tolerant fungi, 

which may lead to mycotoxins production in this substrate [75]. Mycotoxin-producing molds, 

Bacillus sps and Listeria monocytogenes in aerobically deteriorated silage form a serious risk to 

the quality and safety of milk and to animal health. An average of 32% positive cases observed 
with most frequent fungal species from Aspergillus, Penicillium and Fusarium in pre- and post-

fermented sorghum silage samples [76]. Thus, periodic monitoring is essential to prevent the 

occurrence of mycotoxicosis particularly in countries with hot and humid climates.

3.11.1. Controlling spoilage

Addition of high levels of propionic acid is effective against aerobic spoilage, but its use has 
been restricted because of its corrosive nature, relative expensiveness, involvement in VFI 
depression and variable sensitivities of yeast [77]. Control of silage fermentation by micro-

organisms seems to be a safe and inexpensive alternative, and in this line, LAB inocula-

tion has been recommended to improve the aerobic stability of silage [8]. Killer yeasts (e.g. 

Kluyveromyces lactis) are known to secrete a killer protein that is lethal to specific yeasts (e.g. 
Saccharomyces cerevisiae) in a model of silage fermentation [78]. Genetically modified killer 
strain of K. lactis constructed to avoid dependence on substrates of lactose/lactic acid, a prin-

cipal product of silage fermentation, which reduced aerobic spoilage.

3.11.2. Microbial inoculants

The mechanisms by which the inoculants alter silage fermentation and potentially improve ani-

mal performance are numerous. It supports accelerated post-ensiling decline in pH enabling 

quality silage production, improves stability and DM preservation, conserves nutrients, 

enhances aerobic stability and improves voluntary intake, nutrient utilization and efficiency of 
production. There may be increase in lactic/acetic acid ratio and reduction in proteolysis and 

protein deamination, thereby allowing better utilization of WSC and increase in DM recovery 
[79]. The problem of aerobic instability could be prevented by the use of microbial inoculant 

L. buchneri, a heterofermentative LAB, which could improve the aerobic stability of silages 

through the production of acetic acid from lactic acid during the anaerobic phase of silage 

conservation [71, 80, 81]. The natural populations of LAB in fresh crops are often heterofer-

mentative and low in number, and thus homofermentative bacteria are used as inoculants to 

improve silage preservation. This accelerates the initial phase of the fermentation process via 

anaerobic degradation of WSC into lactic acid with a rapid decrease in pH and thereby pre-

venting growth of spoilage microbes, molds and other contaminants and supporting preserva-

tion and storage without further deterioration in quality. Usually, selected homofermentative 

LAB have been used to improve the efficiency of the fermentation process to minimize DM 
and nutrient losses over conservation [82]. To prevent the aerobic deterioration of silage, het-

erofermentative LAB species, such as L. brevis and L. buchneri, have been developed as silage 
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additives [6, 83–85]. Dual-purpose inoculants containing both homo and heterofermentative 

LAB have recently been developed and the beneficial effects on aerobic stability have been 
reported [86]. Some isolates of L. buchneri, besides producing acetic acid can produce ferulate-

esterase enzyme, which hydrolyses feruloyl ester linkages between lignin and hemicellulose, 

and thus advocated to potentially improve fiber digestibility of forages during ensiling [87]. 

The diversity of LAB species inhabiting silages stabilizes its fermentation quality and sup-

ports preservation. LAB inoculants (viz. L. plantarum, L. rhamnosus, L. acidophilus, Pediococcus 

acidilactici, P. pentosaceus, Enterococcus faecium, Lactococcus lactis, etc.) are safe and easy to apply, 

non-corrosive, do not pollute the environment and are regarded as natural products.

3.12. Therapeutic silage

Phytochemicals have antimicrobial properties against E. coli. The use of a high-quality PSM-

containing forage may have the dual benefit of being a good-quality forage and reducing 
E. coli shedding [88]. Significant potential to use plants rich in bioactive compounds (sapo-

nin and tannin) for enhancing animal health and productivity that include reproductive 

efficiency, milk and meat quality improvement, foam production/bloat control, methane pro-

duction [89] and Nematode control [90] has now been realized. The physicochemical struc-

ture and concentration of the phenolic compounds in the diet modulate the beneficial effects, 
and therefore, conceptualization of producing “therapeutic silage” involving forages rich in 

desired bioactive components would harness clinical and health benefits, besides modifying 
the yield and quality of meat and milk.

4. Protecting environment: green livestock production

Rapid breakdown of herbage proteins in the rumen and inefficient incorporation of herbage N 
by the rumen microbial population are major determinants of N (and C) loss and pollution in 

pasture-based livestock production system. Thus, when livestock are given fresh forages, they 

can waste 25–40% of the forage protein-N during ruminal fermentation. An increase from 23 to 
34% in rumen N use efficiency through feeding higher WSC containing grasses could result in a 
30% reduction in N

2
O and NH

3
 emissions [91]. Similarly, increasing the digestibility of cell walls 

in forages has been practiced to lower CH
4
 losses, but in fresh grass and grass silage, the scope 

of this approach seems limited. CH
4
 production in ruminants tends to increase with maturity of 

forage fed, and CH
4
 yield from the ruminal fermentation of legume forages is generally lower 

than the yield from grass forages [92]. Shifting the animals from grass to legume plant species 

tends to decrease the enteric emission due to lower proportion structural carbohydrates and 

faster rate of passage which shifts the fermentation pattern towards higher propionate produc-

tion. Further, enhancing N use efficiency in the rumen may also contribute to a reduction in the 
amount of C (both as CO

2
 and CH

4
) excreted. The concept of mixed or TMR silage may certainly 

address these concerns and enable eco-friendly livestock production. The impact of the form of 

C relative to N and the effect at different C:N ratios in terms of rumen function and conversion 
efficiency is an area of considerable promise that requires further detailed research.
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4.1. Eco-friendly silage

The use of home-grown protein-rich feeds (e.g. forage legumes) with multiple positive effects 
associated with their role in N

2
-fixation and lower protein degradation emanated from tan-

nin-protein interaction, thus contributing to nutrition and the environment. The PSM in for-

age silage can have positive effects on animal nutrition in terms of (i) improved N utilization; 
(ii) animal health (e.g. tannin-parasite interaction) and (iii) the environment through reduc-

tion of CH
4
 and N emission. Enhanced in vitro DM digestibility and low methane production 

observed in vegetable residue silage inoculated with L. plantarum [92]. Inclusion of red clover 

in silages is found to be a promising strategy to bring in combined effect of improved animal 
performance with reduced environmental pressure [17] due to the presence of active POP in 
chaffed forages that act on exposed plant cell contents [63]. There is thus a need to go for selec-

tive plant breeding to develop tropical forages with decreased plant fiber and lignin content, 
increased WSC, increased content of S-amino acids, desired phytochemicals, etc.

4.2. Managing silage effluent

In some intensive agricultural areas, silage effluent may be one of the commonest forms of 
agricultural pollution contaminating water bodies. Sealing of silos with cement or lining with 

plastic sheets, and use of plastic bags/drums preserves the leachate that usually contains high 

amounts of nitrates. Harvesting forage for silage making at the correct moisture content and 

proper storage will reduce the volume of leachate from the silo. Silos and trenches should be 

located away from wells/water bodies to reduce the possibility of effluent polluting ground-

water sources. A vegetated area between the trenches will be of greater usage to utilize the 

N-rich leachate or it can be applied to land as a source of crop nutrients.

5. Forage banking and meeting feed scarcity

Preservation of forage as hay and silage is intended at banking during surplus to meet the 

scarcity during unavailability or natural calamities. In other words, these technologies would 

evenly and adequately supply the bulk of feeding to livestock, thereby insulating any drop in 

production. Feeding hay or silage to livestock helps reduce the amount of concentrate feed-

ing and thereby the cost of feeding. The concept of haylage, mixed silage and TMR silage has 

widen the scope of feed banking and nutritional optimization for higher productivity. Silage 

making is not only a process of feed preservation but it also preserve nutrients, phytogenic 

substances, succulence and completeness of a ration, thereby further the scope of feed and 

nutrient banking.

6. Conclusion

Seasonal feed scarcity is a concurrent problem that farmers usually face besides natural calami-

ties like drought, flood, cyclone, earthquake, etc., which has a significant impact on sustain-

ing animal agriculture and guaranteeing profitability. Ensiling of surplus forage biomass will 
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ensure round-the-year feed supply and safeguard production decline in times of feed scarcity 

and also could able to make ready the animal for the next production year, thereby enhancing 

per animal productivity/whole farm output. Some of the inherent problems associated with 

ensiling are decline in the feeding value due to protein and amino acid breakdown and concom-

itant accumulation of ammonia. Assessment of the likely importance of microbial inocula and 

enzyme additives for stimulating various stages of ensiling process (e.g. separation of lingo-cel-

lulose), likely impact of microbial origin formic acid vs. petrochemical sources and interactive 

function of microbial communities in ensilage are some of the areas of concurrent and ongoing 

research. Newer research areas include silage with herbal additives, phytochemical-rich plant 

biomass, therapeutic silage that promises veterinary health care (e.g. parasite control, control 

of bloat, acidosis), antioxidant-rich silage, high-moisture silage, etc. There is always animal and 

human health concern pertaining to consumption of deteriorated silages due to secondary aero-

bic spoilage by molds, bacilli, listeria and enterobacteria. Novel microbial approaches to solving 

the problem of aerobic deterioration during the feed-out period are needed. Silage inoculants 

can facilitate the ensiling process, but they can never be a substitute to the fundamental factors 

(plant maturity, DM content, oxygen exclusion) that are keys to making good quality silage. 

Utilization of agroindustrial by-products/co-products, including fruit and vegetable process-

ing co-products, can be effectively used in mixed silage or TMR silage, which seems to be an 
underexploited source of dietary supplementation to farm animals with functional compounds 

and the production of value-added products. A challenge in the future is to complete studies on 

plant lipid fractions in conjunction with PSM and PPO in order to discriminate between effects 
of plant lipids on FA biohydrogenate intermediates. This may become the basis for achieving 

more sustainable, less expansive and healthier ruminant-derived human food.
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