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Abstract

A free radical is a molecular species having an unpaired electron and it is a highly reactive
entity and unstable. A free radical is a molecule with one or more unpaired electrons in its
outer shell. Free radicals can be formed by chemical bond breakage from molecules or by
redox reactions. When cells use oxygen, the oxidative stress occurs. The oxidative stress
causes free radical formation. Free radicals can also be generated from ionizing radiations,
ozone, heavy metal poisoning, cigarette smoking, and chronic alcohol intake. These free
radicals are highly reactive and oxidize biomolecules leading to tissue injury and cell
death. They also cause toxic effects and diseases. Antioxidants neutralize free radicals
resulting from oxidative stress. Antioxidants play an important role in the treatment of
diseases. The most suitable method for the analysis of free radicals is the electron para-
magnetic resonance (EPR) spectroscopy method. The EPR method detects a paramagnetic
center with a single electron. It gives information about the interactions with other nuclei
around one electron. It provides information on the structure and environment of radicals.

Keywords: free radical, radiation damage center, antioxidant, electron paramagnetic
resonance

1. Introduction

Free radicals are an atom or a molecule that bears an unpaired electron and is extremely

reactive, capable of engaging in a rapid change reaction that destabilizes other molecules and

generates many more free radicals. In plants and animals, these free radicals are deactivated

by antioxidants. These antioxidants act as an inhibitor of the process of oxidation, even at

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



relatively small concentrations, and thus have diverse physiological roles in the body.

The body is constantly exposed to the negative and sometimes lethal effects of oxidants during

normal physiological processes. The harmful free radicals such as hydroxyl, peroxyl and

the superoxide anion are constantly being produced as a result of metabolic reactions in living

systems. On a daily basis, up to 5% of inhaled oxygen may be converted to reactive oxygen

species (ROS). These ROS have the ability to bind to cellular structures and have been impli-

cated in a number of pathological processes such as aging, inflammation, reoxygenation

of ischemic tissues, atherosclerosis, cancer and even Parkinson’s disease in men [1].

Two processes, which produce free radicals in vivo, have been identified and named the

Fenton reaction and the Haber-Weiss reaction [2]. Antioxidants play an important role in

animal health. Conventional antioxidants have been shown to improve animal performance

during conditions characterized by increased tissue oxidant levels such as stress, injury and

infections [3].

Free radicals can be classified as reactive oxygen species (ROS), reactive nitrogen species (RNS)

and reactive sulfur species (RSS). Even though free radicals are mainly produced through

regular metabolic routes, there are also some external factors that promote their production,

including smoking, environmental pollutants, radiation and drugs, among others [4]. In

healthy organisms, there is a delicate balance between the production and the removal of free

radicals, which guarantees that they remain in adequate concentrations. However, when this

balance is broken, these reactive species start producing chemical damages to proteins, lipids,

DNA, RNA and sugars generating the so-called oxidative stress of body cells [4]. These

processes have been associated with several diseases including cardiovascular, liver, neurolog-

ical and renal disorders, as well as cancer, auto-immune deficiency and degenerative disorders

associated with aging, diabetes, obesity, autism, Alzheimer’s, Parkinson’s and Huntington’s

diseases [4]. Although humans have developed different endogenous defense mechanisms to

protect cells from the excess of free radicals and to avoid the oxidative stress, often these

mechanisms are not enough. Therefore, to increase protection from oxidative damage, dietary

supplements with antioxidants are recommended as a way to maintain the concentration of

free radicals as low as possible [5].

Antioxidants destroy free radicals. Antioxidants neutralize the radical, and thus the radical-

antioxidant association maintains itself in a stationary state. For all these situations, antioxi-

dants must be in a structure that will quench the radical. Therefore, unpaired electrons in

the structure of antioxidants must be either radical ions or free radicals. So, they must form

a paramagnetic center. Paramagnetic structures are analyzed by electron paramagnetic

resonance (EPR) spectroscopy. Thus, the EPR analysis of antioxidants is as valuable and

important as the investigation of the paramagnetic centers of radicals. There are many studies

done for this purpose. Among these studies, especially the works we have done recently are

noteworthy.

Potassium hydroquinone monosulfonate (PHM), succinic anhydride and 3-nitroacetophenone

compounds are antioxidants. Paramagnetic centers formed by gamma irradiation effect on

single crystals of these materials were analyzed by the EPR method [6–8].
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2. EPR studies of antioxidant compounds

2.1. Gamma-irradiated potassium hydroquinone monosulfonate single crystal

Free radicals or other odd electrons have often been postulated as intermediates in the decom-

position of organic compounds by ionizing radiation. It is still important for formulating

mechanisms in radiation chemistry to identify the radicals that are formed. If several organic

compounds are irradiated and resulting radicals are identified, one may hope that generaliza-

tions can be drawn concerning modes of bond rupture.

The quinone structure is widespread in nature: for example, quinones play an integral role in

many biological electron-transfer processes, particularly respiration and photosynthesis [9, 10].

Quinones have long been considered for their fungicide, antibacterial and anticancer proper-

ties [11]. The quinone derivatives are especially interesting because they have significant

properties due to the ready reversibility of the quinone-semiquinone redox system [12].

The single crystal of PHM was irradiated with gamma rays at room temperature and studied

by the EPR technique at 125 K. The spectra were dependent on the orientation of H in the

planes, which are perpendicular to each other. The paramagnetic centers formed from PHM

are shown in Figure 1 [6].

The experimental spectrum in Figure 2 has 1:1:1:2:1 intensity ratios and exhibits the super-

imposition due to the two PHM anion radicals. Because of the radical A, the spectra exhibit

2-lines with intensity ratios 1:1. Owing to the C6 β-proton, the spectra exhibit a doublet

(1:1). Because of the radical B, the spectra exhibit 3-lines with intensity ratios 1:2:1. Owing

to the C3 and C4 β-protons, the spectra exhibit a triplet (1:2:1). The spectrum in Figure 3

has 1:2:2:1 intensity ratios and exhibits the superimposition due to the two PHM anion

radicals.

The simulation values of the hyperfine coupling constants of the spectra in Figures 2 and 3 are

given in Table 1. The EPR parameters belonging to two semiquinone anion radicals observed

in PHM are included in Tables 2 and 3.

The EPR measurements have shown the existence of two semiquinone anion radicals. The

semiquinone anion radicals were stable. The observed semiquinone anion radicals were

obtained from the oxidation of PHM single crystal.

The angular dependences of EPR spectra were obtained for different orientations of the static

magnetic field with respect to the crystalline axes. For the radical A and radical B, the spectro-

scopic splitting factor and the hyperfine coupling constants are anisotropic. For the radical A,

the average values of the g-factor and the hyperfine coupling constant were obtained as gA =

2.01477 and aCH βð Þ

� �

A
= 0.326 mT, respectively. For the radical B, the average values of the g-

factor and the hyperfine coupling constant were obtained as gB = 2.01054 and aC2H2 βð Þ

� �

B
=

0.568 mT, respectively.
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2.2. Gamma-irradiated succinic anhydride single crystal

Succinate:quinone reductase (SQR) of complex II occupies a unique central point in the mito-

chondrial respiratory system as a major source of electrons driving reactive oxygen species

(ROS) production. It is an ideal pharmaceutical target for modulating ROS levels in normal

cells to prevent oxidative stress-induced damage or alternatively, increase ROS in cancer cells,

inducing cell death [13].

The single crystals of succinic anhydride were irradiated gamma-rays at room temperature

and studied by the EPR technique at 125 K [7]. The spectra were dependent on the orientation

of H in the planes which are perpendicular to each other The paramagnetic centers formed

from succinic anhydride are shown in Figure 4.

For only a few angles, the spectra have 1:2:1:1:2:1:2:4:2:2:4:2:1:2:1:1:2:1 intensity ratios. For

many angles, the spectra have 1:1:1:1:1:1:1:1:2:2:2:2:2:2:2:2:1:1:1:1:1:1:1:1 intensity ratios. The

experimental spectrum in Figure 5 has 1:2:1:1:2:1:2:4:2:2:4:2:1:2:1:1:2:1 intensity ratios and

Figure 1. Structure of two semiquinone anion radicals observed in PHM single crystal.
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exhibits the superimposition due to the two CH2CH2 atom groups. Because of the radical A,

the spectra exhibit 9-lines with intensity ratios 1:2:1:2:4:2:1:2:1. Owing to the β-protons, the

spectra exhibit a triplet (1:2:1). Each of the lines (1:2:1) splits into triplets (1:2:1) due to the two

equivalent γ-protons. Because of the radical B, the spectra exhibit 9-lines with intensity ratios

1:2:1:2:4:2:1:2:1. Owing to the β-protons, the spectra exhibit a triplet (1:2:1). Each of the lines (1:2:1)

splits into triplets (1:2:1) due to the two equivalent γ-protons. Total 18-lines are observed due to

the two anion radicals. The spectrum in Figure 6 has 1:1:1:1:1:1:1:1:2:2:2:2:2:2:2:2:1:1:1:1:1:1:1:1

intensity ratios and exhibits the superimposition due to the two (CH2)βCHγ1Hγ2 atom groups.

Because of the radical A, the spectra exhibit 12-lines with intensity ratios 1:1:1:1:2:2:2:2:1:1:1:1.

Owing to the β-protons, the spectra exhibit a triplet (1:2:1). Each of the lines (1:2:1) splits into

doublets (1:1) due to the γ1-proton. Each of the lines (1:1:2:2:1:1) splits into doublets (1:1) due to

the γ2-proton. The hyperfine structure splittings in the radical A are the same as that of the radical

B. The total 24-lines are observed due to the two anion radicals.

We have obtained the computer simulations of the spectra that give the best agreement with

experimental values. The simulations of the EPR spectra have been carried out using the

Bruker’s WINEPR software.

Figure 2. EPR spectrum of gamma-irradiated PHM single crystal at 125 K when the magnetic field is in the ab plane at an

angle 0� toward the axis.
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Figure 3. EPR spectrum of gamma-irradiated PHM single crystal at 125 K when the magnetic field is in the ac plane at an

angle 70� toward the axis.

Radical A Radical B

Figure 2 aCH βð Þ

� �

A
= 0.328 mT aCH2 βð Þ

� �

B

= aHβ

� �

B

= 0.572 mT

Center field = 335.5 mT Center field = 335.5 mT

ν = 9.38 GHz ν = 9.408 GHz

Line width = 0.2 mT Line width = 0.215 mT

Figure 3 aCH βð Þ

� �

A
= 0.327 mT aCH2 βð Þ

� �

B

= aHβ

� �

B

= 0.55 mT

Center field = 335.5 mT Center field = 335.5 mT

ν = 9.38 GHz ν = 9.401 GHz

Line width = 0.22 mT Line width = 0.22 mT

Table 1. EPR parameters of simulated spectra.
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The simulation values of the hyperfine coupling constants of the spectra in Figures 5 and 6 are

given in Table 4. The EPR parameters belonging to two succinic anhydride anion radicals

observed in succinic anhydride are included in Tables 5 and 6.

Principal values Direction cosines

ACH βð Þ

� �

A
(mT) Axx = 0.347 0.807090

�0.198271

0.556143

0.452748

0.812426

�0.367402

�0.378980

0.548318

0.745467
Ayy = 0.324

Azz = 0.307

aav = 0.326

gA gxx = 2.01690 0.745218

0.353981

0.565109

0.366680

0.490298

�0.790667

�0.556952

0.796643

0.235582
gyy = 2.01479

gzz = 2.01263

gav = 2.01477

Note: The errors are estimated to be �0.00005 and �0.005 mT for all the calculated g- and A-values, respectively.

Table 2. The EPR parameters of radical A observed in PHM at 125 K.

Principal values Direction cosines

AC2H2 βð Þ

� �

B

Axx = 0.662 0.618669

�0.736026

0.274800

0.457813

0.053485

�0.887439

0.638480

0.674838

0.370051
Ayy = 0.56

Azz = 0.483

aav = 0.568

gB gxx = 2.01119 0.506864

0.787949

�0.349608

�0.262535

0.527402

0.808037

0.821075

�0.317780

0.474185
gyy = 2.01056

gzz = 2.00986

gav = 2.01054

Note: The errors are estimated to be �0.00005 and �0.005 mT for all the calculated g- and A-values, respectively.

Table 3. The EPR parameters of radical B observed in PHM at 125 K.

Figure 4. Structure of two succinic anhydride anion radicals observed in succinic anhydride single crystal.
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Figure 5. Experimental and simulated EPR spectra of gamma-irradiated succinic anhydride single crystal at 125 K when

the magnetic field is in the bc plane at an angle 90� toward the axis.

Figure 6. Experimental and simulated EPR spectra of gamma-irradiated succinic anhydride single crystal at 125 K when

the magnetic field is in the ac plane at an angle 110� toward the axis.
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Radical A Radical B

Figure 5 aCH2 βð Þ

� �

A
= aHβ

� �

A
= 3.26 mT aCH2 βð Þ

� �

B
= aHβ

� �

B
= 3.281 mT

a
Hγ1

CHγ1Hγ2

� �

A
= aHγ1

� �

A
= 0.47 mT a

Hγ1

CHγ1Hγ2

� �

B
= aHγ1

� �

B
= 0.505 mT

a
Hγ2

CHγ1Hγ2

� �

A
= aHγ2

� �

A
= 0.43 mT a

Hγ2

CHγ1Hγ2

� �

B
= aHγ2

� �

B
= 0.47 mT

Center field = 335.576 mT Center field = 335.576 mT

ν = 9.368 GHz ν = 9.423 GHz

Line width = 0.4 mT Line width = 0.4 mT

Figure 6 aCH2 βð Þ

� �

A
= aHβ

� �

A
= 3.245 mT aCH2 βð Þ

� �

B
= aHβ

� �

B
= 3.253 mT

a
Hγ1

CHγ1Hγ2

� �

A
= aHγ1

� �

A
= 0.39 mT a

Hγ1

CHγ1Hγ2

� �

B
= aHγ1

� �

B
= 0.44 mT

a
Hγ2

CHγ1Hγ2

� �

A
= aHγ2

� �

A
= 0.52 mT a

Hγ2

CHγ1Hγ2

� �

B
= aHγ2

� �

B
= 0.5 mT

Center field = 335.576 mT Center field = 335.576 mT

ν = 9.368 GHz ν = 9.423 GHz

Line width = 0.3 mT Line width = 0.42 mT

Table 4. EPR parameters of simulated spectra.

EPR parameters Principal values Direction cosines

ACH2 βð Þ

� �

A
= AHβ

� �

A
(mT) Axx = 3.381 0.194135

�0.723568

0.662390

0.945231

�0.042637

�0.323606

0.262393

0.688935

0.675662
Ayy = 3.285

Azz = 3.227

aiso = 3.298

A
Hγ1

CHγ1Hγ2

� �

A
= AHγ1

� �

A
(mT) Axx = 0.492 0.818223

0.016324

0.574669

0.479980

0.530794

�0.698482

�0.316433

0.847344

0.426473
Ayy = 0.44

Azz = 0. 37

aiso = 0.434

A
Hγ2

CHγ1Hγ2

� �

A
= AHγ2

� �

A
(mT) Axx = 0.62 0.325533

0.775337

�0.541185

�0.489384

0.627894

0.605188

0.809031

0.067839

0.583838
Ayy = 0.494

Azz = 0.414

aiso = 0.509

gA gxx = 2.01753 0.998258

�0.054529

�0.022518

0.021593

0.692912

�0.720698

0.054902

0.718957

0.692883
gyy = 2.01513

gzz = 2.01428

giso = 2.01565

Table 5. The EPR parameters of radical A observed in succinic anhydride at 125 K.
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The radical formation mechanism in the present work is the same as that of potassium

hydroquinone monosulfonate [6]. The angular dependences of EPR spectra were obtained for

different orientations of the static magnetic field with respect to the crystalline axes. For the

radical A and radical B, the spectroscopic splitting factor and the hyperfine coupling constants

of the Hβ, Hγ1 and Hγ2 protons are anisotropic. For the radical A, the average values of the g-

factor and the hyperfine coupling constants were obtained as gA = 2.01565, aHβ

� �

A
= 3.298 mT,

aHγ1

� �

A
= 0.434 mT, aHγ2

� �

A
= 0.509 mT, respectively. For the radical B, the average values of

the g-factor and the hyperfine coupling constants were obtained as gB = 2.00457 and aHβ

� �

B
=

3.298 mT, aHγ1

� �

B
= 0.483 mT, aHγ2

� �

B
= 0.455 mT, respectively.

2.3. Gamma-irradiated 3-nitroacetophenone single crystal

Nitroaromatic compounds have widespread actual or potential use in medicine and cancer

therapy [14]. Nitroaromatic compounds have been extensively studied and reviewed mainly

because of their interesting biological activities as well as their extended use in the chemical

industry [15].

The radical in 3NAP identified as 3-nitroacetophenone anion radical is shown in Figure 7. The

spectra were found to be temperature dependent. When we examined the EPR spectra at a

EPR parameters Principal values Direction cosines

ACH2 βð Þ

� �

B
= AHβ

� �

B
(mT) Axx = 3.36 0.021180

0.829840

�0.557599

�0.990260

�0.059355

�0.125949

�0.137614

0.554835

0.820500
Ayy = 3.283

Azz = 3.251

aiso = 3.298

A
Hγ1

CHγ1Hγ2

� �

B
= AHγ1

� �

B
(mT) Axx = 0.586 0.066077

�0.896800

0.437475

0.942855

�0.087383

�0.321541

0.326586

0.433722

0.839778
Ayy = 0.485

Azz = 0.379

aiso = 0.483

A
Hγ2

CHγ1Hγ2

� �

B
= AHγ2

� �

B
(mT) Axx = 0.612 0.759274

�0.632874

�0.151571

�0.102410

0.113810

�0.988210

0.642663

0.765844

0.021600
Ayy = 0.464

Azz = 0.288

aiso = 0.455

gB gxx = 2.00660 0.977193

�0.096452

0.189184

0.210889

0.545205

�0.811343

�0.024888

0.832736

0.553111
gyy = 2.00410

gzz = 2.00300

giso = 2.00457

Table 6. The EPR parameters of the radical B observed in succinic anhydride at 125 K.
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temperature range of 120–360 K, we decided that the radiation damage center in the sample

was due to the break of the pi bond in the carbon-oxygen double bond. It was seen that the

unpaired electron interacted with all the protons in the molecular structure [8].

In the EPR spectra, especially the impact of the methyl protons was felt. The hyperfine

coupling constants of the methyl protons were measured at 300 K. The angular variations of

EPR parameters of the 3NAP only at 300 K could be investigated. The spectra were clear only

in a few angles, at 120 K. Therefore, only the simulations of these spectra were made, at 120 K.

In addition, the simulation was also made for a single angle, at 300 K.

The EPR spectra of irradiated 3-nitroacetophenone single crystals consist of four hyperfine

structure lines with a 1:3:3:1 intensity ratio, which is caused by the interaction of the unpaired

electron with the three equivalent protons of the methyl group, at most orientations of the

crystal in the magnetic field, at 300 K. The H(2) and the H(6) protons are also considered

approximately equivalent.

In Figures 8–11, the experimental spectra of the gamma-irradiated 3NAP single crystals and

their simulation spectra were compared.

The simulation values of the hyperfine coupling constants of the spectra in Figures 8–11 are

given in Table 7. The EPR parameters of the 3-nitroacetophenone anion radical are given in

Table 8.

In the EPR spectra, especially the impact of the methyl protons was felt. Only the hyperfine

coupling constants of the methyl protons could be experimentally measured at 300 K. The EPR

spectra of irradiated 3-nitroacetophenone single crystals consist of four hyperfine structure

lines with a 1:3:3:1 intensity ratio, which is caused by interaction of the unpaired electron with

the three equivalent protons of the methyl group, at most orientations of the crystal in the

magnetic field, at 300 K. The H(2) and the H(6) protons are also considered approximately

equivalent. The hyperfine coupling for the CH3 group is anisotropic and their average values

being aCH3
= 1.402 mT.

Figure 7. Structure of the 3NAP anion radical observed in 3NAP.
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Figure 8. EPR spectra of 60Co-γ irradiated 3NAP single crystal at 300 K when (a) the magnetic field is in the a*b-plane and

is away 20� from the a*-axis and (b) simulation of the spectrum; line width is 0.34 mT.

Figure 9. EPR spectra of 60Co-γ irradiated 3NAP single crystal at 120 K when (a) the magnetic field is in the a*c-plane and

is away 140� from the a*-axis and (b) simulation of the spectrum; line width is 0.38 mT.
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Figure 10. EPR spectra of 60Co-γ irradiated 3NAP single crystal at 120 K when (a) the magnetic field is in the a*c-plane

and is away 150� from the a*-axis and (b) simulation of the spectrum; line width is 0.32 mT.

Figure 11. EPR spectra of 60Co-γ irradiated 3NAP single crystal at 120 K when (a) the magnetic field is in the a*c-plane

and is away 165� from the a*-axis and (b) simulation of the spectrum; line width is 0.34 mT.
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The simulations of the EPR spectra were carried out using the Win-EPR software.

3. Conclusion

There are many factors that trigger the formation of free radicals. One of these is the radiation

effect. The various compounds that undergo radiation effects have the radiation damage

centers as a result of breaking bonds in their structures. The radiation damage center is a

paramagnetic center, and the detection and motion of these centers are investigated in detail

by EPR spectroscopy.

Antioxidants also show paramagnetic structure under radiation effect. EPR analysis of antioxi-

dants is crucial to remove the effect of free radicals that cause many diseases. Potassium hydro-

quinone monosulfonate (PHM), succinic anhydride and 3-nitroacetophenone compounds show

antioxidant properties. When EPR analyses of these materials were made, it was seen that their

radical mechanisms were similar to each other. The anion radicals were observed in all three

compounds. When the resonance structure and the formation mechanisms are carefully exam-

ined, it is seen that the oxygen atom takes an electron and forms a stable anion structure.

Figure 8 Figure 9 Figure 10 Figure 11

a
CH3 βð Þ mT 1.55 1.36 1.68 1.585

aH 2ð Þ ffi aH 6ð Þ ¼ aC2H2 γð Þ mT 0.38 0.43 0.45 0.46

aH 3ð Þ ¼ aH δð Þ mT 0.35 0.68 0.71 0.68

aH 4ð Þ ¼ aH σð Þ mT 0.25 0.39 0.265 0.29

Table 7. Coupling constants values of simulated spectra.

Principal values Direction cosines

a
CH3 βð Þ (mT) Axx = 1.743 0.673208

0.572490

0.468023

�0.717129

0.659816

0.224430

�0.180325

�0.486721

0.854743
Ayy = 1.447

Azz = 1.015

aiso = 1.402

r = 0.52

g gxx = 2.006443 0.732137

0.299886

0.611591

0.415100

0.515457

�0.749664

�0.540063

0.802728

0.252902
gyy = 2.006110

g zz = 2.004067

giso = 2.005540

Table 8. The EPR parameters of the 3-nitroacetophenone anion radical observed in 3-nitroacetophenone at 300 K.
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