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Abstract

Selection is an integral component in plant breeding, which ensures the progressive 
values of the breeding material, in terms of yield and quality. However, selection is 
influenced by the environment in any given growing season. The observed phenotype 
is a product of the genotype (G), the environment (E), and/or genotype × environment 
(G×E). Therefore, phenotypic selection is not always the best predirector of the genotype. 
Therefore, an environment-independent method is preferred by the breeder. The develop-
ment of molecular markers in plants has facilitated marker-assisted selection (MAS). MAS 
requires the establishment of correlation between a desired trait such as disease resistance 
and molecular marker(s). This can be obtained, e.g., by phenotyping a genetic mapping 
population followed by QTL analysis. Initially, this process was slow due to the labori-
ous nature of the first DNA molecular marker system, such as restriction fragment length 
polymorphism (RFLP). Later, with the discovery of various marker systems amenable to 
automation and the development of genotyping techniques and instruments, MAS has 
become a standard procedure in plant breeding. In wheat breeding, MAS helped to accel-
erate the introgression of many genes that contribute to improve quality and resistance.

Keywords: wheat, marker-assisted breeding, molecular markers, wheat diseases,  
wheat quality

1. Introduction

Wheat is one of the most important sources of food worldwide. Data from FAOSTAT indicate 
that the need is still growing, indicated by the steadily increasing yield since 1961 (Figure 1). 

The need for an enhanced wheat production combined with stagnation in the area cultivated 
(Figure 1) leads to a demand for a more effective and higher yielding wheat production.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Marker-assisted selection (MAS) or molecular breeding offers an opportunity to accelerate 
the traditional breeding. Traditional breeding is based on phenotypic selection of genotypes 
obtained from crosses. Genotype × environment (G×E) interaction is a common problem 

including time-consuming and costly procedures of phenotyping. By employing molecular 
markers, desirable genes can be fixated in early generations of the breeding program. In addi-
tion, molecular markers are unaffected by environmental conditions and are detectable in 
all stages of the plant growth. Scientists and breeders across the world implement MAS in 
breeding programs [1].

2. Linkage and molecular markers

MAS is based on the concept of genetic linkage between loci. This describes the tendency 
of loci located closely together on the same chromosome being more likely to be inherited 

together in a recombination event during meiosis. Thus, two alleles located very close on the 
chromosome will almost always be inherited together.

Molecular markers are used in MAS to highlight a place on the chromosome close to or in a 
specific gene of interest. The technique is based on detecting different alleles (polymorphisms) 
between several individuals. Due to genetic linkage, the molecular marker will reveal if the 
linked allele is present or not in a line. Several types of molecular markers exist, depending on 
the type of polymorphism. In today’s MAS, markers detecting single nucleotide differences 
are usually employed.

Figure 1. Development in wheat cultivation in the years 1961–2016. The primary y-axis displays the area harvested in 
Mha (red line) and the secondary y-axis displays the yield in tones pr. ha (blue line). Data from FAOSTAT.
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3. Application of MAS in breeding for disease resistance in wheat 

diseases

Plant diseases are a major constraint in wheat production and significant resources are allocated 
to control various diseases. The relatively long growing season of winter wheat renders it vul-
nerable to a range of diseases and breeding for disease resistance is generally thought to be the 

first line of defence [2]. Disease resistance is generally separated into quantitative and qualitative 
resistance. Qualitative resistance is most often controlled by a single gene and follows the gene-
for-gene hypothesis. Thus, an R gene in the host can specifically interact with an Avr gene in the 

pathogen to induce a defence reaction in the host. Qualitative resistance often mediates a com-
plete resistance response, whereas quantitative resistance is regarded as an incomplete or partial 

resistance. This type of resistance is usually mediated by several minor genes, which are desig-
nated as a quantitative trait locus (QTL) [3]. Following the development of MAS, targeted pyra-
miding of several resistance genes in single lines is now possible. In the following sections, three 
severe diseases of wheat and correlated resistance genes are described. Common to these diseases 

is that fungicides are becoming less efficient. Hence, more effective approaches are desired.

3.1. Septoria tritici blotch

One of the most important foliar diseases in wheat is Septoria tritici blotch (STB), caused by the 
fungus Zymoseptoria tritici formally known as Septoria tritici (anamorph) and Mycosphaerella 

graminicola L (teleomorph) [4]. STB is a devastating disease causing massive yield losses 
worldwide every year in wheat. Severe epidemics can reduce wheat yield by 35–50% [5]. 

Symptoms of the disease are chlorotic lesions on the leaf with black fruiting bodies contain-
ing fungal spores. Breeding strategies over the years have primarily focused on breeding for 
higher yield, in turn increasing the susceptibility towards STB [6]. Disease control can be 
performed by delaying sowing time, probably due to less time in the autumn for Z. tritici 

to infect seedlings and produce inoculum. Furthermore, the application of fungicides and 

implementation of resistant cultivars in breeding programs are widely used [5]. In previous 
years, several studies have identified STB resistance genes using molecular techniques.

Stb1, Stb2 and Stb3 were the first qualitative genes for STB resistance to be named [7]. Prior 
to that, STB resistance was thought of as a quantitative, polygenic trait. Stb1 was mapped to 

the long arm of chromosome 5B in the cultivar Bulgaria88 [8]. Stb2 was mapped to the short 

arm of chromosome 1B in the cultivar Veranopolis [9]. Additionally, Stb11 was mapped to the 

short arm of 1B [10]. However, no studies have included an allelism test of Stb2 and Stb11. 

Stb3 was mapped to the short arm of 7A in Israel493 [11]. Stb6 was mapped to the short arm of 

chromosome 3A in the cultivar Flame [12]. This gene is the only STB-resistant gene found to 
possess a gene-for-gene relationship, in which a specific R gene in the host interacts with an 
Avr gene in the pathogen. This was demonstrated in a study where Flame was found to confer 
specific resistance towards the Z. tritici isolate IPO323 [12]. This study conforms to the origi-
nal gene-for-gene model proposed by Flor [13]. Stb6 was subsequently found to be one of the 

most abundant STB-resistant genes in European wheat [14]. In total, 18 Stb genes have been 
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identified and mapped using various molecular markers. Additionally, several QTL have 
been identified conferring STB resistance [7, 15]. Table 1 summarises major STB-resistance 

genes together with linked markers suitable for MAS. Additionally, several QTL have been 
identified conferring STB resistance [7, 15].

One of the more promising resistance genes identified in recent years is Stb16. This gene was 
identified in synthetic hexaploid wheat lines, which represent a rich source of variation [23]. 

Stb16 explained a high proportion of STB disease resistance and conferred resistance at the 
seedling stage to all tested Z. tritici isolates. Moreover, 20 tested isolates were all avirulent 
to this gene, indicating that Stb16 confers broad-spectrum resistance. If this is the case, Stb16 

holds promise for future breeding of efficient and durable STB resistance.

In order to obtain the most resistant wheat variety, breeders should take a number of things 
into account. Since qualitative resistance genes often conform to the gene-for-gene hypothesis, 
they are readily overcome by the pathogen. Due to the high frequency of genetic recombination 
of Z. tritici, the specific recognition of R proteins by the host is lost [26]. Furthermore, the strong 

Resistance gene Marker type Marker name Location Reference

Stb1 SSR Xbarc74, Xgwm335 5BL [8]

Stb2 SSR Xwmc406, Xbarc008 1BS [9]

Stb3 SSR Xwmc83 7AS [11]

Stb4 SSR Xgwm111, Xgwm44 7DS [16]

Stb5 SSR Xgwm44 7DS [17]

Stb6 SSR Xgwm369 3AS [12]

Stb7 SSR Xgwm160, Xwmc219, Xwmc319 4AL [18]

Stb8 SSR Xgwm146, Xgwm577 7BL [19]

Stb9 SSR Xfbb226, XksuF1b 2BL [20]

Stb10 SSR Xgwm848 1D [21]

Stb11 SSR Xbarc008 1BS [22]

Stb12 SSR Xwmc219, Xgw313 4AL [21]

Stb13 SSR Xwmc396 7BL Wheat gene catalogue

Stb14 SSR Xwmc500, Xwmc632 3BS Wheat gene catalogue

Stb16 SSR Xgwm494 3DL [23]

Stb17 SSR Xhbg247 5AL [23]

Stb18 SSR Xgpw5176, Xgpw3087 6DS [24]

StbWW SSR Xbarc119b 1BS [25]

The name of the resistance gene, marker type, marker name, the location on the genome and the reference are indicated.

Table 1. An overview of the named and mapped genes for STB resistance.
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selection pressure placed on the pathogens by one major resistance gene promotes the rise of 
new adapted races in the pathogen population [27]. An earlier study has proved that commer-
cial cultivation of a highly resistant cultivar can result in loss of resistance towards STB. The 
intensive cultivation of the variety Gene in the 1990s in Oregon, US, resulted in resistance 
breakdown. Gene was found to be resistant to two specific isolates, which were avirulent to 
Stb6 and Stb10 [28]. Gradually, an adaptation of Z. tritici to one of the resistance genes occurred 

and the resistance was lost [26]. In general, it appears that most Z. tritici isolates used in earlier 

studies are virulent to almost all Stb genes [7]. This may indicate that Z. tritici easily can over-
come single qualitative resistance genes. In contrast, the quantitative resistance is regarded as 
more durable. This is due to a lower selection pressure on the pathogen as a result of smaller 
resistance effects of individual QTL [3]. Furthermore, since quantitative resistance is often poly-
genic, the mutation of one gene does not necessarily break down disease resistance completely.

3.2. Fusarium head blight

Fusarium head blight (FHB) is an important disease in all wheat growing countries. 
Epidemics occur frequently, especially under seasons with regular rainfall [29]. The United 
States Department of Agriculture (USDA) has stated that FHB is the most devastating plant 
disease since the rust epidemics in the 1950s. FHB contaminates the grain with mycotoxins, 
in turn restricting its use for both animal and human consumption [30]. The disease is caused 
by several species of Fusarium; however, the predominant causal agent is the fungus Fusarium 

graminearum (teleomorph Gibberella zeae). The first symptoms of FHB on wheat plants occur 
shortly after flowering as diseased spikelets display premature bleaching. The bleaching usu-
ally spreads to the whole spike as the pathogen grows. When conditions are optimal for the 

pathogen, i.e., in a warm and moist environment, light pink coloured spores, called sporo-
dochia, appear on individual spikelets. Later during the season, black fruiting bodies will 
appear. These are the sexual structures of the fungus, called perithecia. Disease progression 
results in shrinking and wrinkling of the grain inside the spike. As with the pathogen causing 
STB, F. graminearum produces both sexual and asexual spores: ascospores and macroconidia, 
respectively [30]. The major toxin produced by FHB in wheat is deoxynivalenol (DON). DON 
is a protein synthesis inhibitor also known as vomitoxin due to its negative impact on the 
digestive system of pigs. Several recommendations and restrictions have been made in order 

to keep DON levels sufficiently low in wheat for both animal and human consumption [31].

Chemical control and crop management are not sufficient to control FHB; thus, breeding 
resistant varieties plays a key role. Conventional breeding involves repeated testing of breed-
ing lines under natural or artificial inoculations. This process is time-consuming, costly, and 
prone to influence by environment. Thus, it is relevant to supplement phenotypic selection 
with MAS for FHB resistance. [32]. FHB resistance is generally divided into three types: 
resistance to initial infection (type I), resistance to spreading of the pathogen in infected tis-
sue (type II) and resistance to DON accumulation (type III) [33]. Several studies have dem-
onstrated that FHB resistance is of quantitative nature [29]. Furthermore, the expression of 
resistance is highly dependent on the pathogen, the environment and the host [34], in turn 

complicating phenotypic selection. Several QTL for FHB resistance have been identified and 

Marker-Assisted Breeding in Wheat
http://dx.doi.org/10.5772/intechopen.74724

7



located during recent years [29]. The first QTL for type II resistance was identified in the 
spring wheat ‘Sumai 3’ on chromosome 3BS. This QTL was named Fhb1 and characterised 

by molecular markers [35–37]. Recently, Fhb1 was cloned from Sumai 3 and a pore-forming 
toxin-like (PFT) gene was found to confer FHB resistance [38]. Fhb1 has been found to reduce 

FHB disease severity tremendously and MAS is employed to incorporate the resistance in 
breeding programs [29]. A QTL, named Fhb2, on chromosome 6BS was found to confer type II 
FHB resistance [39, 40]. Additionally, Fhb4 was identified and located on chromosome 4B [41]. 

Table 2 lists all FHB-resistant genes identified by molecular markers. Currently, breeders are 
pyramiding Fhb1, Fhb2 and Fhb4 in single breeding lines to obtain optimal FHB resistance [34]. 

Several additional QTL have been identified and located in numerous studies [29].

3.3. Wheat stripe rust (yellow rust)

Wheat stripe rust, mostly designated as ‘yellow rust’ (YR), causes major yield losses every 
year. The disease is caused by Puccinia striiformis, which belongs to the family Pucciniaceae 

of rust fungi. The most devastating epidemics occur in temperate areas with cool and humid 
summers or in warmer areas with cool nights. The fungus is heteroecious, i.e., it requires at 
least two hosts in order to proliferate. P. striiformis uses cereals as a primary host and Berberis 

spp. as a secondary host for sexual recombination. Typical, yellow stripes develop on the leaf 
in lesions. Spores continue to be produced as stripes spread longitudinally on the leaf. After 
the onset of senescence, P. striiformis will produce teliospores. Teliospores can infect the sec-
ondary host, Berberis spp., and initiate onset of pycnia infection of the Berberis leaf [46].

Breeding for YR resistance was initiated in 1905 by Biffen [47]. To date, more than 70 genes (Yr 

genes) conferring YR resistance have been identified [48]. Most of the catalogued genes confer 
seedling resistance, while relatively few confer adult plant resistance. In general, studies have 
shown that seedling resistance is conferred by single genes and the resistance is therefore easily 

overcome by the pathogen by mutations in virulence genes. Adult plant resistance is generally 
thought to be more durable [49]. High-temperature adult plant (HTAP) genes are expressed as 
the plants grow older and the weather becomes warmer [50]. HTAP genes confer a non-specific, 
quantitative resistance. Studies have proven that varieties with HTAP genes display resistance 

Resistance gene Marker type Marker name Location Reference

Fhb1 SSR Xgwm493, Xgwm533 3BS [42]

Fhb2 SSR Xgwm133, Xgwm644 6BS [40]

Fhb4 SSR Xhbg226, Xgwm149 4B [41]

Fhb5 SSR Xgwm304, Xgwm415 5A [43]

Fhb6 KASP Wg1s_snp1 1AS [44]

Fhb7 SSR XsdauK66, Xcfa2240 7DS [45]

Table 2. Overview of the FHB-resistant genes identified in wheat using molecular markers.
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to YR even after having been cultivated for 60 years [51]. Additionally, several studies have 
mapped QTL to all wheat chromosomes except chromosome 1D and 3A [49]. Commonly used 

resistance genes employed in wheat breeding programs include Yr18, Yr29 and Yr36 [52–54]. 

Yr36 is tightly linked to Gpc-B1, a high-protein gene, rendering varieties with Yr36 and Gpc-B1 

useful in breeding for YR resistance and improved quality. Table 3 lists a selection of Yr genes 

that have been characterised and mapped with molecular markers suitable for MAS.

Several incidences have been reported where Yr genes have been classified as ineffective. 
Some of the most widely used resistance genes including Yr17 [62], Yr27 [63] and Yr31 [64] 

have recently lost resistance towards YR.

4. Marker-assisted wheat breeding for improving quality traits

Wheat is grown in large parts of the world and is used for animal feed or for a wide range of 

products such as pasta, biscuits, cakes and bread. The end-use quality differs greatly between 
wheat cultivars and is influenced by several traits, e.g., grain hardness, grain protein content, 
gluten content and composition and starch properties. Quality should therefore be an impor-
tant focus in wheat breeding programs. However, wheat quality cannot be easily determined 

phenotypically, and different methods are preferred in different countries and industries. 
Methods for testing quality are typically time-consuming and costly and require relatively 
large amounts of grain, which is typically not available until late stages of breeding programs. 

Thus, markers for wheat quality traits can be very useful, as they enable screening of a high 
number of lines and can be used early in breeding programs [65, 66].

4.1. Grain hardness

Grain hardness influences milling, flour and end-use properties of wheat. Flour from grain with 
hard endosperm texture has higher water absorption than flour from soft grain and is there-
fore preferred for bread-making. A soft endosperm texture leads to less starch granule damage 

Resistance gene Marker type Marker name Location Reference

Yr5 SSR Xgwm501 2BL [55]

Yr7 SSR Xgwm526 2BL [56]

Yr15 SSR Xbarc8, Xgwm493 1BS [57]

Yr18 CAPS Cssfr6 7D [58]

Yr36 SSR Xgwm508, Xbarc136 6BS [54]

Yr60 SSR Xwmc776 4AL [59]

Yr76 SSR Xwmc11, Xwmc532 [60]

Yr78 SNP IWA7257 6BS [61]

Table 3. A selection of the genes conferring YR resistance identified by molecular markers.
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during the milling and consequently to lower water absorption, which is preferred in the pro-
duction of biscuits and cakes. Grain hardness is primarily controlled by the Hardness locus on 

chromosome 5DS. This locus consists of three small genes: Pina-D1, Pinb-D1 (Puroindoline a/b) 

and grain softness protein-1 (Gsp-1). Wheat varieties with the wild-type alleles Pina-D1a and Pinb-

D1a normally have soft grain, while deletions or other loss-of-function mutations in one or both 
Pin genes cause harder grain (Table 4) [67, 68]. Pinb-D1 mutations are positively associated with 

many quality traits, but the alleles are not equally useful in breeding for improved quality. Pinb-

D1d has been reported to have a lower effect on gluten quality and loaf volume than the b- or 

c-allele [69]. Alleles of Pinb-D1 can be detected using PCR primers that target a specific mutation 
(Pinb-D1b), using a restriction enzyme on the amplified Pinb-D1 gene (Pinb-D1c), or by sequenc-
ing the amplified gene (Pinb-D1d-g) [67, 70, 71].

Allele Change in 

protein

Primer sequences, 5′–3′ PCR product References

Pina-

D1a

Wild-type F: ATGAAGGCCCTCTTCCTCA

R: TCACCAGTAATAGCCAATAGTG

448 bp [73, 74]

Pina-

D1b

Large 
deletion

F: ATGAAGGCCCTCTTCCTCA

R: TCACCAGTAATAGCCAATAGTG

Null (0 bp) [73, 74]

Pinb-

D1a

Wild-type F: ATGAAGACCTTATTCCTCCTA

R: CTCATGCTCACAGCCGCC

240 bp [70, 73]

Pinb-

D1b

Gly to Ser

pos. 46

F: ATGAAGACCTTATTCCTCCTA

R: CTCATGCTCACAGCCGCT

240 bp [70, 73]

Pinb-

D1c

Leu to Pro 
pos. 60

F: ATGAAGACCTTATTCCTCCTA

R: TCACCAGTAATAGCCACTAGGGAA

448 bp* [67, 73]

Pinb-

D1d

Trp to Arg 
pos. 44

F: TGCAAGGATTACGTGATGGA

R: TCACCAGTAATAGCCACTAGGGAA

300 bp for 
pyrosequencing

[67, 71]

Pinb-

D1e

Trp to 
stop 

codon 

pos. 39

F: TGCAAGGATTACGTGATGGA

R: TCACCAGTAATAGCCACTAGGGAA

300 bp for 
pyrosequencing

[71, 75]

Pinb-

D1f

Trp to 
stop 

codon 

pos. 44

F: TGCAAGGATTACGTGATGGA

R: TCACCAGTAATAGCCACTAGGGAA

300 bp for 
pyrosequencing

[71, 75]

Pinb-

D1g

Cys to 

stop 

codon 

pos. 56

F: TGCAAGGATTACGTGATGGA

R: TCACCAGTAATAGCCACTAGGGAA

300 bp for 
pyrosequencing

[71, 75]

Wild type alleles confer soft endosperm; mutations confer hard endosperm. For additional alleles, see reviews [68, 

72].*Digest with restriction enzyme PvuII to cut other alleles into 264 bp and 184 bp. Pinb-D1c is not cut.

Table 4. Alleles of Pina-D1 and Pinb-D1 and the change in amino acid sequence of the encoded protein.
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4.2. Gluten

The characteristic viscoelastic properties of wheat dough are due to a network of gluten proteins 
that is formed when flour is mixed with water. Thus, gluten is a major factor contributing to 
wheat quality. High grain protein content is typically associated with high quality, since roughly 

80% of the grain protein is gluten [76]. However, both the amount and the composition of gluten 

affect wheat quality. Gluten consists of two types of proteins: polymeric glutenins and mono-
meric gliadins. Glutenins can be classified as low or high molecular weight (LMW or HMW) 
subunits, while gliadins can be classified as α, β, γ or ω types [77, 78]. The most important HMW 
glutenins, LMW glutenins, and gliadins are encoded by the Glu-1, Glu-3 and Gli-1 loci, respec-
tively (Table 5). HMW glutenins generally have the largest impact on wheat quality. Each of the 
three Glu-1 loci comprises two genes that can encode an x- or a y-type HMW subunit. In hexa-
ploid wheat, only three to five of the HMW subunits are expressed (zero to two from Glu-A1, one 

to two from Glu-B1, and two from Glu-D1) [79]. The Glu-1 alleles with the largest positive effect 
on baking quality are Glu-D1d, Glu-A1a or Glu-A1b and Glu-B1al [80, 81]. SDS-PAGE electropho-
resis can be used to screen varieties for their HMW glutenin proteins. DNA markers have also 
been developed to discriminate between different alleles of Glu-1, Glu-3 and Gli-1 loci [82, 83]. For 

Glu-A1 and Glu-D1, KASP markers are available that can be used to select varieties with the opti-
mal alleles [84]. Each of the Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3) contains several linked genes, 

and many alleles have been found for all three loci [85–89]. Markers are available for individual 
alleles of Glu-A3 and Glu-B3, and multiplex PCR can be used to screen for certain combinations 
of alleles simultaneously [87]. However, the alleles of Glu-3 loci with the largest effects are not 
consistent across studies [90–92]. The exact effects of the individual alleles on wheat quality traits 
are challenging to determine, since they can be influenced by genetic background, environment 
and G×E interactions [91, 93]. Furthermore, the alleles can have both additive effects and epistatic 
interactions [94, 95]. Ref. [93] showed that the d-allele of Glu-B3 might increase the positive effects 
of the HMW loci Glu-B1i and Glu-D1d. The Glu-A3b or d-allele and Glu-B3b, d- or g-allele can pos-
sibly be used for improving dough strength and extensibility [90–92]. Glu-B3i has been reported 

to be positively associated with wheat quality in some lines and negatively associated in other 

lines. This discrepancy is possibly due to linkage with different Gli-B1 alleles [90]. The Gli-1 loci 

encode γ and ω gliadins and are linked to the Glu-3 loci [96], while Gli-2 loci encode α and β 
gliadins and are located on chromosome 6AS, 6BS and 6DS [78]. Overview of markers (including 
primer sequences) for more alleles of Glu loci and other quality genes can be found in [82].

4.3. Wheat-rye translocation and falling number

The wheat-rye translocation 1BL.1RS has been employed in many breeding programs as it 

carries resistance genes against powdery mildew and rusts. Markers for the resistance genes 
can be used to test for the absence or presence of the translocation in wheat varieties [100]. 

Alternatively, markers for Glu-B3 or Gli-B1 might be used (Table 6), since many wheat varieties 

with the 1BL.1RS translocation do not have these two loci, but instead can have the rye secalin 
locus Sec-1 [96]. Therefore, wheat quality can be negatively affected by the translocation [101]. 

Additionally, the 1BL.1RS translocation can have a negative effect on falling number. Falling 
number is an indirect measure of α-amylase enzyme activity. The α-amylases are encoded by 
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Locus Primer sequences, 5′–3′ PCR product References

Gli-B1

(1BL.1RS)

F: TGATCTGGCCACAAAGGGA

R: CATTGGCCACCAATTCCTGT

Gli-B1.1: 369 bp

Gli-B1.2 or 1BL.1RS: 0 bp

[96]

F: TGATCTGGCCACAAAGGGC

R: CATTGGCCACCAATTCCTGT

Gli-B1.2: 397 bp

Gli-B1.1 or 1BL.1RS: 0 bp

Rht-D1 F: GGTAGGGAGGCGAGAGGCGAG

R: CATCCCCATGGCCATCTCGAGCTA

Rht-D1b: 237 bp

Rht-D1a: 0 bp

[106]

wbm F: CCGTCACAAGATTTACAGGGTTG

R: TTATGGATCTCTTTATGTCTGTGT

High wbm expression: 
961 bp

Others: 0 bp

[103]

Gpc-B1 F: TCTCCAAGAGGGGAGAGACA

R: TTCCTCTACCCATGAATCTAGCA

Gpc-B1: 122 bp

No Gpc-B1: 126 bp

[105]

Favourable alleles are marked in bold.

Table 6. Additional loci influencing wheat quality traits.

Locus Chr. 

arm

Primer sequences, 5′–3′ PCR product References

Glu-A1 1AL FAM: AAGTGTAACTTCTCCGCAACA

VIC: AAGTGTAACTTCTCCGCAACG

Common: GGCCTGGATAGTATGAAACC

FAM: Glu-A1a or 

Glu-A1b

VIC: Glu-A1c

[84, 97]

Glu-B1 1BL F: ACGTGTCCAAGCTTTGGTTC

R: GATTGGTGGGTGGATACAGG

Glu-B1al: 447 bp

Others: 0 bp

[98]

Glu-D1 1DL FAM: ATAGTATGAAACCTGCTGCGGAG

VIC: ATAGTATGAAACCTGCTGCGGAC

Common: TACTAAAAAGGTATTACCCAAGTGTAACTT

FAM: Glu-D1a or 

others

VIC: Glu-D1d

[84, 99]

Glu-A3 1AS F: TTCAGATGCAGCCAAACAA

R: GCTGTGCTTGGATGATACTCTA

Glu-A3b: 894 bp

Others: 0 bp

[86, 87]

F: TTCAGATGCAGCCAAACAA

R: TGGGGTTGGGAGACACATA

Glu-A3d: 967 bp

Others: 0 bp

Glu-B3 1BS F: ATCAGGTGTAAAAGTGATAG

R: TGCTACATCGACATATCCA

Glu-B3b: 1549 bp

Others: 0 bp

[88]

F: CACCATGAAGACCTTCCTCA

R: CACCATGAAGACCTTCCTCA

Glu-B3d: 662 bp

Others: 0 bp

F: CCAAGAAATACTAGTTAACACTAGTC

R: GTTGGGGTTGGGAAACA

Glu-B3g: 853 bp

Others: 0 bp

Favourable alleles are marked in bold.

Table 5. Important HWM and LMW glutenin loci, their chromosomal location and primer sequences for detection of 
alleles with positive effects on wheat quality.
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the loci α-Amy-1, α-Amy-2 and α-Amy-3 located on the homoeologous chromosome groups 6, 

7 and 5, respectively. High falling number reduces the risk of pre-harvest sprouting, which 
has a considerable negative impact on quality. Environmental conditions around the time of 

harvest influence falling number, but it is also influenced genetically. The b-allele of the Rht-

D1 (reduced height) gene on chromosome 4D is correlated with increased falling number [102].

4.4. Other genes for improving quality

Ref. [103] identified a gene, wheat bread making (wbm), that was highly expressed in developing 
seeds of wheat varieties with good bread-making quality. Polymorphisms in the promoter 
region sequence were identified between good- and poor-quality varieties. The allele identified 
in the good quality varieties was positively associated with gluten and bread-making quality in 
CIMMYT (The International Maize and Wheat Improvement Center) germplasm [104].

Genes from wild wheat relatives might also be used for improving quality in modern cultivars. 

Backcrossing can be used to transfer the genes into breeding material. In this case, MAS is use-
ful since offspring containing the desired genes easily can be detected, and linkage drag can 
be reduced. One example of such a gene is Gpc-B1 (grain protein content), which was found in 

wild emmer (Triticum turgidum L. ssp. dicoccoides). This gene has been used for increasing grain 
protein content in both durum and common wheat [105]. Markers tightly linked to Gpc-B1 

were identified, but require digestion with restriction enzymes. Therefore, [105] recommends 

the use of the marker shown in Table 6 for MAS, although it is not completely linked to Gpc-B1.

5. Conclusion and perspectives

Trait-linked DNA markers have been identified for numerous traits in wheat, including dis-
ease resistance and grain quality. Employing such markers in MAS offers several advantages 
to wheat breeding compared to conventional phenotypic selection and laborious analysis of 

grain quality. These advantages include the fixation of desirable traits at an early stage of 
the breeding program and marker-assisted backcrossing in order to transfer agronomically 
important genes from wild relatives to cultivated wheat.

In addition, DNA markers are neutral to both environment and tissue type. Thus, they can 
be employed at any plant developmental stage and independent on environmental condi-
tions during selection. This is particularly relevant for selection for disease resistance. DNA 
markers further offer the possibility for targeted pyramiding of several resistance genes, a 
task impossible by phenotypic selection due to complex host-pathogen interactions. To secure 
durable resistance, it is important to combine qualitative and quantitative resistance in a given 

line. Here, molecular markers can be used to combine both resistances.

As DNA markers have been correlated to numerous traits, they can be employed to combine, 
e.g., resistance and grain quality in the early generations. Consequently, DNA markers are 
being employed in early generations to select for several traits, in turn reducing the number 

of lines entering replicated, multi-location trials. Similarly, the number of samples for labora-
tory analysis of grain quality can be reduced. In effect, the application of MAS can lead to an 
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optimisation of resources demanded by any given breeding program, allowing the breeder to 

focus phenotypic selection on highly multi-genic traits, difficult to handle with MAS, e.g., yield.

Following developments in technologies and statistical genetics, the application of DNA 
markers in breeding is rapidly changing. While MAS has been employed to select for traits 
controlled by one/few genes, genomic selection will allow accurate selection for traits affected 
by numerous genes.

Once genomic selection has been validated in breeding programs, it can be implemented in 
combination with MAS. This will further improve selection efficiency and accuracy for dis-
ease resistance and quality parameters as well as for multi-genic traits such as yield.
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