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Abstract

Recently, several kinds of information systems are developed for purposes and needs of
business and play an important role in business organizations and management opera-
tions. Management information system, or MIS for short, is a kind of information system.
It is a key factor to facilitate and attain efficient decision-making in an organization. Its
performance relates to many other information systems, for instance, DSS or decision
support system, SIS or strategic information system, etc. Methods of testing statistical
hypotheses concerning the performance of MIS are absolutely essential to support man-
agement activities and decision-making.

Keywords: management information systems, information theory, rough set theory,
decision-making process, ANOVA

1. Introduction

A system is a set of interrelated components assembled to accomplish certain objectives or goal.

Basic characteristics of a system are highlighted as boundaries, interfaces, input-outputs, and

methods of making outputs from inputs. The environment of a system includes people,

organizations, and other systems that supply data to or receive data from the system.

Solving problems comes from a system that usually uses the method of systems approach taking

into account the goals, environment, and internal workings of the system. This method involves

the following steps:

i. Define the problem and collect data for the problem.

ii. Identify and evaluate feasible solutions.
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iii. Select the best solution and determine whether the solution is working.

An information system (IS) consists of components such as hardware, software, databases,

personnel, and procedures that managers can use to make better decisions in control business

operations. ISs are also used to document and monitor the operations of some other systems,

called target systems that are prerequisite for the existence of ISs. On side of infrastructure,

information system is an integration of diverse computers, displays and visualizations, data-

base, storage systems, instruments, sensors, etc. via software and networks to share data and

to provide aggregate capabilities.

In business operation, the activities of an organization equipped with IS are usually of three

kinds: operational, tactical, and strategic planning. In this context, a strategy is meant as

determination of the basic long-term goals and objectives of an enterprise and the adoption of

courses of action and the allocation of resources necessary for achieving these goals. Opera-

tional tasks are the daily activities of the firm in consuming and acquiring resources. These daily

transactions produce basis data for the operational systems.

ISs that provide information for allocation of efficient resources to achieve business objectives

are known as tactical systems. Tactical systems provide middle-level managers with the infor-

mation they need to monitor and control operational tasks and to allocate their resources

effectively. The time frame for tactical activities may be monthly, quarterly, or yearly. Alterna-

tively, ISs that support the strategic plans of the business are known as strategic planning

systems. These systems are designed to provide top managers with information that assists

them in making long-term planning decisions.

Both of the strategic planning information systems and tactical information systems may use

the same data source, so the distinction between them is not always clear. For example,

middle-level and top managers use budgeting information to allocate reasonable resources or

to plan the long-term or short-term activities, budgeting becomes a tactical decision activity or

a strategic planning activity, respectively. Hence, the differences between systems are attrib-

uted to whom and what the budgeting data are used.

The top management of the organization carries out strategic planning based on results of

operational tasks, tactical systems, and related external information to decide whether to build

new plants, new products, facilities, or invest in technology. For making these decisions,

strategic planners have to address problems that involve long-range analysis and prediction.

The time frame for strategic activities may be months or years.

Some basic business systems that serve the operational level of the organization are called

transaction processing systems or TPS for short. A TPS that records the daily routine transactions

necessary to the conduct of the business monitor and control system physical processes is

called process control system or PCS. For example, a wastewater treatment plan uses electronic

sensors linked to computers to monitor wastewater processes continually and control the

water quality process [1]. Similarly, a petroleum refinery uses sensors and computers to

monitor chemical processes and make real-time controls to the refinery process. A process

control system comprises the whole range of equipment, computer programs, and operating

procedures [2].
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Knowledge-based IS that supports the creation, organization, and dissemination of business

knowledge to employees and managers throughout a company is named as knowledge manage-

ment system. In such a case, knowledge management is the deployment of a comprehensive

system that enhances the growth of knowledge. Expert systems are the category of artificial

intelligence which has been used most successfully in building commercial applications. An

expert system is also considered as a knowledge-based system that provides expert advice and

act as expert consultants to users.

A decision support system (DSS) is a computer-based system intended for use by a particular

manager or a team of managers at any organizational level in making a decision in the process

of solving a semi-structured decision. Database-based management system and a user inter-

face are major components of a DSS. The database consists of information related to produc-

tion information, market and marketing information, research data, financial transactions, and

so forth.

The decision-maker must have suitable knowledge and skills on mining these systems of DSS to

address the problem arising and make effective decisions. In traditional approaches to decision-

making, usually scientific expertise together with statistical descriptions is needed to support

decision-making. Recently, many innovative facilities have been proposed for decision-making

process in enterprises with huge databases, together with several heuristic models.

Management information systems (MIS) are a kind of computer ISs that could collect and

process information from different sources to make decisions in level of management [3]. This

level contains computer systems that are intended to assist operational management in monitor-

ing and controlling the transaction processing activities that occur at clerical level. MIS provides

information in the form of prespecified formats to support business decision-making. The next

level in the organizational hierarchy is occupied by low-level managers and supervisors. There-

fore, MIS takes internal data from the system and summarized it to meaningful and useful forms

as management reports to use it to support management activities and decision-making.

MISs encompass a complex and broad topic, that is why, MIS boundaries need to be defined to

reduce difficulties in system managing. Firstly, MIS contains a vast number of related activi-

ties, so it is hard to review all of them. It may discuss on a selected sample of activities,

depending on objectives and viewpoint of researcher. Alternatively, it only focuses on farm

levels or on some lesser extent systems enough for researchers addressing problems. Secondly,

MISs can be defined and described in several frameworks. Only a few of these frameworks are

used to discuss important subject matters. Lastly, MISs are developed as a sense of how these

systems have evolved, adapted, and been refined as new technologies have emerged, changing

economic conditions, etc.

To evaluate performance of MIS, its output data must be characterized in a set of basic features

appropriate to functions, objectives, and goals of the system. These output data need to be

observed repetitively to evaluate the extent to which MIS is implemented to make successful

decisions in organization. Using these observations, methods of data mining in rough set point

of view, statistical analysis, etc. can be applied to evaluate the extent to which MISs are used to

make effective decisions in planning purposes [4–7].
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2. Evaluation of features and making decision rules

In mathematical modeling, an IS can be modeled by a sample Ω = {ω1, ω2, …, ωn} of n objects

ωi where i = 1,2,…, n. The ith object ωi is observed by instances of m conditional features f1, f2,…,

fm, valued as fj(ωi) j = 1,2,…, m. Additionally, a feature d characterizes a specific effect of ωi

denoted by d(ωi), the so-called decision feature. In case of having s effects for a decision, d is

represented by values d(ωi) = dk with k∈{1,2,…, s}.

Let F = {f1, f2,…, fm}, then (Ω, F∪{d}) is a decision information table or DIT with n = |Ω| objects,

m = |A| conditional features, and a decision d. Objects ω and ω’ are indiscernible if and only if

the following binary relation RF on Ω with respect to (w.r.t.) F is satisfied:

RA: fj ωð Þ ¼ fj ω
’

� �

j ¼ 1, 2,…,m (1)

This is an equivalence relation. Equivalent class of ω∈Ω with respect to (w.r.t.) F is:

ω½ �F ¼ ω
’
∈Ω j fj ω

’
� �

¼ fj ωð Þ j ¼ 1; 2;…;m
� �

(2)

Assume that there are r such equivalence classes and named by C1, C2,…, Cr. They are disjoint

subsets and form a partition of Ω by RF. Similarly, for the decision feature d, another partition

of Ω is D1, D2,…, Ds defined by the following equivalence relation:

Rd : d ωð Þ ¼ dk, k ¼ 1, 2,…, s (3)

Here, Dk = {ω’∈Ω | d(ω’) = dk} is an equivalence classes called the kth decision class of the DIT. If

f(Dk) = |Dk|/n be frequency of Dk w.r.t Ω, information entropy H(d) of decision feature d is

H dð Þ ¼ �
Xs

k¼1
f Dið Þ log 2 f Dkð Þ (4)

On the other hand, let f(Ci) = |Ci|/n be frequency of Ci and f(Dk| Ci) = |Dk∩Ci|/|Ci| condi-

tional frequency of Dk conditioned Ci. The conditional entropy H(d|F) of the decision feature d

w.r.t condition F is determined by

H djFð Þ ¼ �
Xr

i¼1
f Cið Þ

Xs

k¼1
f DkjCið Þ log 2f DkjCið Þ (5)

From Eqs. (4) and (5), the mutual information I(F, d) between F and d is given by

I F;dð Þ ¼ H dð Þ �H dj Fð Þ (6)

The mutual information is nonnegative and symmetric, i.e. I(F, d) = I(d, F). In this case, the

significance of feature f∈F w.r.t d is defined as

Sgnf f;dð Þ ¼ I F;dð Þ � I F� ff g;dð Þ (7)

The significance of feature a represents the dependency of decision attribute d relative to

condition attribute f. This measure reflects the discrimination ability of condition attributes.
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The larger Sgnf(f, d), the more stronger of dependency relationships between a and decision

attribute d. if Sgnf(f, d) > 0, then f is a core feature of DIT or f satisfies

I F� ff g;dð Þ < I F;dð Þ (8)

Any core feature is significant and may not be eliminated in mining DIT. Let CFs be a set of all

core features, CFs ⊆ F. To find CFs, each feature in F must be verified using Eq. (8) to whether

or not include it to CFs.

Example 1: To analyze some features of a service, Table 1 illustrated a DIT consists of evalua-

tions of nine clients on four features of the service. In which, d is the decision feature, f1:

capacity for innovation; f2: service capability; f3: product technologies; and f4: solution, are

conditional features. Values in Table 1 mean, 0: unpleased, 1: acceptable, and 2: very pleased.

Here, F = {f1, f2, f3, f4}. Using Eq. (1), four equivalence classes w.r.t F are C1 = {ω1,ω8}, C2 = {ω2,ω7},

C3 = {ω3, ω5, ω9}, C4 = {ω4, ω6} and from Eq. (3) two decision classes D0 = {ω2, ω5, ω7, ω9},

D1 = {ω1, ω3, ω4, ω6, ω8}. From Eq. (4), the information entropy of decision feature d is

H(d) = 0.9911 and H(A) = 0.4976. From Eq. (5), the conditional entropy of d is H(d|F) = 0.3061,

so the mutual information between F and d is I(F, d) = 0.6850.

f1 f2 f3 f4 d

(a) Original data table

ω1 1 1 1 0 1

ω2 0 1 1 0 0

ω3 1 0 1 2 1

ω4 1 2 0 1 1

ω5 1 0 1 2 0

ω6 1 2 0 1 1

ω7 0 1 1 0 0

ω8 1 1 1 0 1

ω9 1 0 1 2 0

(b) Sorted data table

ω2 0 1 1 0 0

ω5 1 0 1 2 0

ω7 0 1 1 0 0

ω9 1 0 1 2 0

ω1 1 1 1 0 1

ω3 1 0 1 2 1

ω4 1 2 0 1 1

ω6 1 2 0 1 1

ω8 1 1 1 0 1

Table 1. A decision information system for evaluation service quality.
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If the first feature a1 is eliminated, it is obtained the same H(d), but H(F � {f1}) = 0.5144 and

H(d|F � {f1}) = 0.7505. These imply I(F � {f1}, d) = 0.2405 < I(F, d) and the a1, capacity for

innovation is a core feature. But, Sgnf(f4, d) = Sgnf(F, d)�Sgnf(F � {f4}, d) = 0, so f4 may be

eliminated since it is not significant.

The features F, d can be considered as random quantities with values are represented in rows

of a DIT. In theory of information, the mutual information is a measure of average information

this random quantity receives from that one in all one’s conditions and vice versa. Therefore,

I(F, d) measures quantity of average information that the decision feature d receives from

conditional features w.r.t. decisional value of d. That is why, it is concerned to the problem of

removing redundant conditional features so that the reduced set provides the same effect, e.g.,

the same quality of classification or decision as the original.

A coeffect reduced set R of conditional features set is a subset of A so that I(R, d) = I(F, d), i.e., R

contains some conditional features having the same effect as F. Any coeffect reduced set or

reduced set of F for short can be used as the whole F. An algorithm to find a reduced set R based

on mutual information is as follows:

ALGORITHM MIBR // Mutual Information Based Reduced set.

// Input: DIT = (Ω, F ∪ {d}).

// Output: R // a reduced set of F.

S ≔∅; R ≔ CFs; // set of core features.

Repeat.

S ≔ R; for any f∈F�R, if I(R∪{f}, d) > I(S, d) then S ≔ R∪{f};

R ≔ S; // reassign before doing the next iteration.

Until I(R, d) = I(F, d);

Example 2: Using data in Table 1, the above algorithm is done as follows.

Firstly, R = CFs = {f1}, S = R then

i. f2∈F�R, then I(R∪{f2},d) = 0.6850 > I(S, d) = 0.3198, so S = R∪{f2} = {f1, f2};

ii. f3∈F�R, I(R∪{f3},d) = 0.6850 = I(S, d), S does not change;

iii. f4∈F�R, I(R∪{f4},d) = 0.6850 = I(S, d), S does not change;

R = S = {f1, f2}. By checking, I(R, d) = 0.6850 = I(F, d), the iteration is terminated. It is obtained

R = {f1, f2} is a reduced set of F.

It is noticed that, if the two steps i and ii of the previous treatment are permuted, then the set

R = {f1, f3} is another reduced set of F.
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Remark: As shown above, reduced set R of DIT is not unique. Finding minimum reduced set of

DIT is an optimization problem. Several algorithms have been proposed to solve this problem,

e.g., algorithm of rough set-based feature selection based on ant colony optimization (RSFSACO)

in [8], cf. [9], for more detail.

Given X, a subset of Ω in a DIT, low-approximation or upper-approximation of X w.r.t. F respec-

tively named as LFX or UFX, is defined by:

LFX ¼ ω∈Ω j ω½ �F⊆X
� �

,UFX ¼ ω∈Ω j ω½ �F ∩X 6¼ ∅
� �

(9)

It can be shown that LFX ⊆ X ⊆ UFX. Some other relations between these approximations have

been illustrated, e.g., in [5]. The difference set BFX = UFX�LFX is called a boundary of X and

Ω�UFX is the outside region of X. X is a rough set if BFX6¼∅, otherwise a crisp set.

Example 3: In Example 1, let X = {ω1, ω3, ω5, ω7, ω9}. Then, the approximations of X are

LFX = {ω3, ω5, ω9} = C3 and UFX = {ω1, ω2, ω3, ω5, ω7, ω8, ω9} = C1∪C2∪C3. The boundary

BFX = {ω2, ω8, ω9} differs from empty set, so X is a rough set and C4 is the outside region of X.

Figure 1 shows all these sets w.r.t in Ω.

Any decision class Ωk in Ω/Rd is subset of Ω, so it has a low approximation LFΩk. Hence,

positive region in Ω w.r.t d, f is the following subset:

Pi Fð Þ ¼ ∪
s
k¼1LFΩk (10)

In data analysis, the dependence between attributes is important. The dependency of the deci-

sion feature d on the conditional features F is defined by the following ratio:

Dep d; Fð Þ ¼ ∣Pd Fð Þ∣=∣Ω∣ (11)

By definition, 0 ≤ Dep(d, F) ≤ 1 and if Dep(d, F) = 1, d depends totally on F. If Dep(d, F) = 0, i.e.,

Pd(F) = ∅, then d does not depend on F. In case of 0 < Dep(d, F) < 1, d depends partially on F.

Figure 1. Approximations of X.
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Using the degree of dependency, a coeffect reduced set R of conditional features in a DIT can

also be found by meaning of Dep(d, R) = Dep(d, F).

Example 4: Example 1 gives two decision classes D0 = {ω2, ω5, ω7, ω9}, D1 = {ω1, ω3, ω4, ω6,

ω7, ω8}; low approximations of these classes are LFD0 = {ω2, ω7}, LFD1 = {ω1, ω4, ω6, ω8}

thus Pd(F) = {ω1, ω2, ω4, ω6, ω7, ω8} and the degree of dependency or quality of approx-

imation is Dep(d, F) = 1/3. Using the coeffect reduced set R = {f1, f2}, it can be shown that

all equivalence classes w.r.t R are the same ones in Example 1. Therefore, the above low

approximations and positive region are also the same, i.e., LRD0 = LFD0, LRD1 = LFD1 and

Pd(R) = Pd(F).

So far, problems of inducing rules from DITs have been studied and developed. The rough set

method can be applied to the problems with several advantages [5]. For instance, the lower

and upper approximations are applied to describe the inconsistency of a DIT and to induce

corresponding rules dynamically from decision systems [6]. These methods of approximation

can be used to address incomplete input data for inducing decision rules [7]. Such rules can be

applied to partition a set of objects into classifications [10].

Given a DIT, let Vf be the range of f∈F, for a v∈Vf, ω ∈ Ω a proposition like f(ω) = v or f = v for

short, takes a logic value true or false depending on ω. Assignment, ϕ ≔ f = v is to define a

logic variable ϕw.r.t the proposition f = v. Then, ϕ is true if there exists ω ∈Ω so that f(ω) = v or

false in vice versa. Set of logic variables on F and logical operations, like ~: not; ∧: and; ∨: or; set

up a set of logic expressions called decision language from F, denoted by L(F). The meaning of ϕ

in L(F), denoted by 〈ϕ〉, is a set of ω in Ω so that the proposition ϕ is true. Additionally, if ϕ ≔

f = v then 〈ϕ〉 = {ω∈Ω/f(ω) = v}, so ϕ takes the set 〈ϕ〉 as its description.

A decision rule allows individual, team workers, and organization choose effectively specific

course of action in response to opportunities and threads and help. Formally, a decision rule

is a logic expression defined by proposition ϕ ! ψ , read “if ϕ then ψ“, where ϕ ∈ L(F) and

ψ ∈ L(d) referred to as condition and decision of the rule, respectively. A decision rule

ϕ ! ψ is true if 〈ϕ〉 ⊆ 〈ψ〉 . Both ϕ andψ are equivalent written as ϕ $ ψ, if and only if

(ϕ!ψ) ∧ (ψ!ϕ).

Assume that 〈ϕ〉 and 〈ψ〉 are nonempty. The support of the rule ϕ ! ψ is defined as

Supp ϕ ! ψ
� �

¼ ϕ
� �

∩ ψh i
�

�

�

� (12)

The larger Supp(ϕ ! ψ), the more power of the rule in DIT. When |〈ϕ〉 |6¼∅, the certainty or

accuracy of ϕ ! ψ denoted by Cert(ϕ,ψ) is

Cert ϕ ! ψ
� �

¼ ϕ
� �

∩ ψh i =j j ϕ
� �

�

�

�

� (13)

This is a percentage objects of 〈ψ〉 presented in 〈ϕ〉 or percent of objects having property ψ in

the set of objects having property ϕ or Cert(ϕ ! ψ) shows the confidence of the rule. In

consequences, Cert(ϕ ! ψ) = 1 is equivalent to ϕ ! ψ is true, the rule is certain or accurate.

Alternatively, if |〈ψ〉 | 6¼ ∅ the coverage of ϕ ! ψ is also defined:
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Covg ϕ ! ψ
� �

¼ ϕ
� �

∩ ψh i =j j ψh i
�

�

�

� (14)

The smaller of Covg(ϕ ! ψ), the less power of the rule. Finally, the popularity of ϕ ! ψ is

measured by the strength of the rule:

Strg ϕ ! ψ
� �

¼ ϕ
� �

∩ ψh i =j jΩ
�

�

�

� (15)

In a given DIT, a coeffect reduced set R of conditional features and corresponding positive

region Pd(R) are set up. Then, the DIT is restricted to a new table with features R, d and Pd(R).

Such a table is called decision support table or DST. Based on the above measures, decision rules

extracted from DST are verified before using them in prediction decisions.

It is noted that, there may be pairs of inconsistent or conflicting decision rules which have the

same conditions but different decisions. Such conflicting rules must be excluded. In general,

set ℜ of τ decision rules ϕα!ψα selected need to meet the properties:

1. Each ϕα!ψα in ℜ is admissible, Supp(ϕα!ψα) 6¼ 0,

2. ℜ covers Ω or ∪
τ
α¼1 ϕα

� ��

�

�

� ¼ ∪
τ
α¼1 ψα

� ��

�

�

� ¼ Ωj j,

3. ℜ consists of pairs mutually independent, i.e., for ϕα!ψα , ϕβ!ψβ∈ℜ, it is obtained that

〈ϕα〉 ∩〈ϕβ〉 = ∅ and 〈ψα〉∩〈ψβ〉 = ∅,

4. ℜ preserves the consistency: ∪τi¼1LFDi ¼ ∨
τ
α¼1ϕα

� �

.

Example 5: A coeffect reduced set, e.g., R = {f1, f2}, and positive region determined by

Pd(R) = {ω1, ω2, ω4, ω6, ω7, ω8} as in Example 4. Some decision rules are extracted from Table 1

and measures of obtained rules are presented in Table 2. The supports of the 2nd and 3rd rules

are 2, their certainties and strengths are equal to 1 and 22.2%. So, they can be combined

together:

f1 ¼ 1ð Þ ∧ f2 ¼ 1ð Þ ∨ f2 ¼ 2ð Þ½ � ! d ¼ 1 (16)

The support of this rule is raised to 4, coverage of 100% and strength 44.4%. This rule is

supported by the classes C1, C4, and can be deduced as follows: “if capacity for innovation is

acceptable and service capability is unpleased then the system activity is still acceptable”.

The class C3 = {ω3, ω5, ω9} is not in Pd(R), and a rule like (f1 = 1) and (f2 = 0)! (d = 0 or 1) may

not be considered. Because, when it was used, this rule would be useless, since it receives

nothing in decision.

Decision rules Coverage (%) Supported by

1. (f1 = 0) ∧ (f2 = 1) ! (d = 0) 50.0 C2: ω2, ω7

2. (f1 = 1) ∧ (f2 = 1) ! (d = 1) 40.0 C1: ω1, ω8

3. (f1 = 1) ∧ (f2 = 2) ! (d = 1) 40.0 C4: ω4, ω6

Table 2. List of extracted decision rules.
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The method of decision-making is also applied to build up decisions for risk warning based on

processing historical data. Risk management model includes three sequential basic steps, that

are risk identification, risk measurement, and risk warning. Risk identification should be

objective itself, all risk levels are assessed by experts based on their work experience, this

method ignores the role of historical data. That model does not have enough consideration on

the uncertain and imprecision of risk. Alternatively, that method will unavoidably lead to

some faulty judgments.

Data to identify risk factors often come from the operation, policy, environment, and man-

agement of a system. Collected data including a feature to assess risks are described by the

feature d in a DIT. This decision feature d is often of six levels, 0: no risk, 1: little, 2: low-

grade, 3: middle-grade, 4: distinct, and 5: dangerous. The historical data are collected factu-

ally, so there will be some data fields or features which have less impact on the final risk

level. If these redundant features are removed, then there will be produced a simplified

feature set which will have a positive impact on risk judgment. Where is the place of finding

reduced feature set to ignore unnecessary information while the nature of collected data is

still unchanged.

Based on fact-finding of conditional features and observed risk levels on DIT, decision rules to

predict risk levels are extracted. This process is only a step of the training stage in machine

learning. To improve quality of risk prediction, more observations on DIT and verifications of

rules must be done repeatedly.

Example 6: To evaluate security risks of a system, three conditional feature types of the system

come from environmental impact, management structure, and control equipment are taken

into account. These conditional features are notated as E, M, and C, respectively, and the

decision feature d is simplified at two levels, either 1: risk-warning or 0: no-warning. Data are

shown in Table 3.

From Table 3, there are five equivalence classes C1 = {ω1}, C2 = {ω2, ω5}, C3 = {ω3}, C4 = {ω4},

C5 = {ω6} and two decision classes D1 = {ω4, ω5}, D2 = {ω1, ω2, ω3, ω6}.

Using Eqs. (4)–(6), the information entropy of F = {E, M, C} is H(F) = 2.2516, H(d) = 0.9183 and

mutual information between F and d I(F, d) = 0.5850. From Eq. (6), I(F � {C}, d) = 0.1258 less

than I(F, d), then a3 is a core feature with a significance of Sgnf(C, d) = 0.4591.

E M C d

ω1 0 1 1 1

ω2 1 0 1 1

ω3 1 1 2 1

ω4 0 1 0 0

ω5 1 0 1 0

ω6 0 1 2 1

Table 3. Risk warning data.
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Consider F-{M} = {E, C}, from Eq. (5), H(d|F � {M}) = 0.3333 implies to I(F � {M}, d) = 0.5850 =

I(F, d). Therefore, {E, C} is a coeffect reduced set of F. Hence, there are formally two decision rules:

E ¼ 0ð Þ ∧ C ¼ 0ð Þ½ � ∨ E ¼ 1ð Þ ∧ C ¼ 1ð Þ½ � ! d ¼ 0ð Þ (17)

E ¼ 1ð Þ ∧ C # 0ð Þ½ � ∨ E ¼ 0ð Þ ∧ C # 0ð Þ½ � ! d ¼ 1ð Þ (18)

It is noticed that the first expression of the second disjunction is an implication of the second

one in the first rule. Therefore, maybe [(E = 1) ∧ (C = 1)] ! [(d = 0) or (d = 1)] happens.

Alternatively, the second rule can be written as (C # 0) ! (d = 1). However, if E = 1 and C = 1,

the first rule gives d = 0 contrary to the just deduced rule. For these reason, the above rules are

chosen reasonably as [(E = 1) ∧ (C = 2)] ∨ [(E = 0) ∧ (C 6¼ 0)] ! (d = 1).

Similarly, F-{E} = {M, C} gives I(F � {E}, d) = I(F, d), thus {M, C} is also a reduced set of F. Then,

M ¼ 1ð Þ ∧ C ¼ 0ð Þ½ � ∨ M ¼ 0ð Þ ∧ C ¼ 1ð Þ½ � ! d ¼ 0ð Þ (19)

M ¼ 1ð Þ ∧ C 6¼ 0ð Þ½ � ∨ M ¼ 0ð Þ ∧ C ¼ 1ð Þ½ � ! d ¼ 1ð Þ (20)

It is also noticed that the second expressions of the above disjunctions are identical and it is

necessary to ignore them. Because, if (M = 0) ∧ (C = 1) is true, these rules simultaneously imply

d = 0, 1 hard to decide.

Consequently, the second and fourth rules in Table 4 may be used for risk warning w.r.t the

collected data in Table 3.

The difficulties in choosing decision rules will be increasing with large-scale datasets. To

reduce in part this shortcoming and make decision rules more efficiently, techniques of

machine learning should be used. For instance, in [11], a back propagation neural network

was used for training data in DIT, verifying decision rules in a number of steps to minimize

errors in prediction based on decision rules.

3. Evaluation of the extent of MIS using ANOVA

For the outcome extent of an MIS, it is assumed that a reduced set of m features, namely f1, f2,

…, fm, is considered and evaluated with real numbers. The probability distribution of fi is

assumed that normal N(ξi, σ i
2) with expected mean ξi and variance σi

2.

Decision rules for risk warning Coverage (%) Strength (%)

1. [(E = 0) ∧ (C = 0)] ! (d = 0) 50.0 20.0

2. [(E = 1) ∧ (C = 2)] ∨ [(E = 0) ∧ (C 6¼ 0)] ! (d = 1) 75.0 60.0

3. [(M = 1) ∧ (C = 0)] ! (d = 0) 50.0 20.0

4. [(M = 1) ∧ (C 6¼ 0)] ! (d = 1) 75.0 60.0

Table 4. List of extracted decision rules for risk warning.
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ANOVA or analysis of variance was derived based on the approach in which the statistical

method uses the variance to determine the expected means whether they are different or equal.

It assesses the significance of factors, the so-called features here, by comparing the response

means of observation samples at different features. In this chapter, ANOVA with single stage

and multiple stages are introduced to evaluate features from the extent of an MIS.

In doing ANOVA, it is also assumed that all m features fi are of the same variances. In a course

of consideration, m observation samples at different features are randomly drawn. The ith

sample is denoted by {ωij}, j = 1, 2,…, ni, a manifestation of a random variable fi from the

population of fi values. Basic characteristics of the ith sample are:

ωi ¼
Pni

j¼1 ωij

	 


=ni—sample average, is an estimate for μi,

s2i ¼
Pni

j¼1 ωij � ωi

� �

	 
2
=df i—sample variance, estimate forσ2with degree of freedomdfi = ni� 1.

These calculations are done by using the following three basic sums:

Sum:

Si ¼
Xni

j¼1
ωi (21)

Sum of squares:

SSi ¼
Xni

j¼1
ω

2
i (22)

Sum of squares of derivations:

SSi ¼
Xni

j¼1
ωij � ωi

� �2
(23)

Then, it is implied that ϖ i = Si/ni and SSDi = SSi�Si
2/ni, so s*i

2 = SSDi/dfi.

To verify condition that all variance σi
2 are equal to the same value σ2, the Bartlett test based on

the χ
2 probability distribution is used at a level of significance α valued from 1 to 5%. If the

hypothesis on the equality of all variances is correct, m > 1 and ni > 1 for all i, Bartlett has

shown that the statistic χ2cal has approximately a χ
2-distribution with df = m�1:

χ
2
cal ¼ 2:3026 df � logs2 �

Xm

i¼1
dfi log s

2
∗i

	 


=c (24)

Here, df = ∑i:1..m dfi, c = 1+(∑i:1..m 1/dfi�1/df)/[3(m� 1)], s2 = (∑i:1..m dfi � s*i
2)/df = (∑i:1..m SSDi)/

df is the pool variance, an estimate for σ2. If a calculated χ
2
cal is less than χ

2
1 � α-percentile, it is

unreasonable to deny that all variances are the same. It is noticed that the approximation χ
2-

distribution is a poor one for dfi ≤ 2.

In case of n1 = n2 = … = n, then df = n�1 and Eq. (21) can be quite simple. Indeed, because of

logs2 = log∑ i:1..m SSDi�log(df) and logsi
2 = logSSDi�log(dfi), a shortened form of Eq. (24) is
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χ2
cal ¼ 2:3026 m� logs2 �

Xm

i¼1
log s2

∗i

	 


df=c (25)

where, c = 1 + (m + 1)/(3 m[n�1]). The value χ2cal in Eq. (25) is calculated by using only all SSDs.

Setting n = ∑ i:1..m ni, ωo = (∑ i:1..ni niϖi)/n, ξo = (∑ i:1..ni niξi)/n and ηi = ξi�ξo. It is shown the

following partitions

Xm

i¼1

Xni

j¼1
ωij � ξi
� �2

¼
Xm

i¼1

Xni

j¼1
ωij � ωi

� �2
þ
Xm

i¼1
ni ωi � ξi½ �2

¼
Xm

i¼1

Xni

j¼1
ωij � ωi

� �2
þ
Xm

i¼1
ni ωi � ωo � ηi

� �2
þ n ωo � ξo½ �2

(26)

According to the χ2-partition theorem, the sums in the rightmost side of Eq. (26) are of χ2-

distribution with degrees of freedom n�m, m�1, 1, respectively.

If the expected means of m populations are the same, ξi = ξo and ηi = 0 for all i. The two first

terms of Eq. (26) are variations within or between samples and determined in turn as follows:

s21 ¼
Xm

i¼1

Xni

j¼1
ωij � ωi

� �2
	 


= n�mð Þ ¼
Xm

i¼1
SSDi

	 


= n�mð Þ (27)

s22 ¼
Xm

i¼1
ni ωi � ωo½ �2

	 


= m� 1ð Þ ¼
Xm

i¼1
S2i =ni �

Xm

i¼1
Si

h i2
=n


 �

= m� 1ð Þ (28)

The statistics s1
2, s2

2 and s3
2 = n[ωo�ξo]

2 are unbiased estimates of σ2. In this case, the total

variance between observations and population is determined as follows:

s2 ¼
Xm

i¼1
ni ωij � ωo

� �2
	 


= n� 1ð Þ ¼
Xm

i¼1
SSi �

Xm

i¼1
Si

h i2
=n


 �

= n� 1ð Þ (29)

In such a case, the variance ratio v
2
cal = s1

2/s2
2 is of the Fisher probability distribution with

dfs1 = n � m, dfs2 = m � 1. Therefore, the hypothesis about equality of m expected means is

tested using the Fisher distribution with a given level of significance α valued from 1 to 5%. If

v
2
cal > F1 � α(dfs1, dfs2), the hypothesis of equal means would be rejected, in which F1 � α(dfs1,

dfs2) is the 100(1 � α)% percentile of the Fisher distribution.

It is noticed that the condition m > 1 and, for all i, ni > 1 are essential not only for Bartlett test,

but also for doing ANOVA [12]. Conversely, the analysis is trivial when ni = 1 for some i. Also,

if m = 1, the analysis is pure inference from single population [13].

Example 7: Assume that there are four features need to be tested at the 5% level of significance

with data in Table 5. Calculations are given in Table 5.

Using Eq. (24), χ2cal = 1.328 is far less than χ20.95(3) = 7.815, the 95% percentile in the table of χ2

probabilities with df = 3. Therefore, the hypothesis on equality of variances is accepted. The

variation between dataset is estimated by the pool variance, Eq. (29), s2 = 36.3/9 = 4.037. Using

the underlined numbers in Table 5, the ANOVA table is presented in Table 6.
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The calculated basic sums in the first part of Table 5 are used to set up an ANOVA in Table 6.

It is shown that v2cal = 0.453/4.037 = 0.112 < 3.86, the 95% percentile in the table of Fisher

probabilities w.r.t α = 5%. The hypothesis on equality of the expected means would be accepted

at the 5% significance level.

If the hypothesis ξi = ξ2 =… = ξm is rejected, all possible differences of these means in form of

linear combinations are estimated by using confidence intervals. In such a case, there is a

probability of 1 � α that all comparisons simultaneously among the expected means satisfy:

�λ <
Xm

i¼1
δiωi �

Xm

i¼1
δiξi < λ (30)

Here, ∑i = 1…m δi = 0 and λ2 = s2 � F1 � α(m � 1, n � k) � (m � 1) � ∑i = 1…m (δi
2/ni), F1�α(m�1,

n � k) is the 100(1 � α)% percentile of the Fisher probability distribution.

Features fi f1 f2 f3 f4

ωi1 7 5 8 7

ωi2 3 4 3 4

ωi3 4 6 5 2

ωi4 5

{1}. ni. 3 3 3 4 13

Si 14 15 16 18 63

SSi 74 77 98 94 343

Si2/fi 65.33 75 85.33 81 306.67

SSDi 8.667 2 12.67 13 36.333

{2}. dfi. 2 2 2 3 9

1/dfi 0.5 0.5 0.5 0.333 1.833

si2 4.333 1 6.333 4.333

log(si2) 0.637 0 0.802 0.637

dfi.log(si
2) 1.274 0 1.603 1.91 4.787

s2: 4.037 c.: 1.157 χ2cal: 1.328

df.log(s2) 5.455 Σ(Si2/ni)�(ΣSi)2/n: 1.359

Table 5. Calculations for single-stage ANOVA.

Variation sources SSD df s
2

v
2

Between features 1.359 3 0.453 0.11

Within features 36.333 9 4.037

Total 37.692 12 F0.95(3,9) = 3.86

Table 6. Single-stage ANOVA table of Example 7.
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For instance, if m = 3, n = 4, ϖ1 = 2.25, ϖ2 = 4.0, ϖ3 = 4.5 and s2 = 4.41, then F0.95(2,3� 4 – 3) = 4.26.

Using Eq. (30), some 95% confidence intervals are calculated as follows:

�δ1 = 1 =�δ2, δ3 = 0, λ = 4.33; the confidence interval of ξ1� ξ2 is�1.75� 4.297 or (�2.55, 6.47).

�δ1 = 0, δ2 = 1 = �δ3; similarly, the confidence intervals of ξ2 � ξ3 is �0.5 � 4.297 or (�3.797,

4.797).

�δ1 = ½ = δ2, δ3 = �1, λ = 3.721. The 95% confidence interval of ½ξ1�½ξ2�ξ3 is (�2.436, 5.096).

When having several stages need to be tested on equality with expected means of features,

multiple-stage ANOVA is applied. This is the case of evaluating the same given m features in k

different stages, denoted by Γνν = 1, 2,…, k. To simplify in presentation, without loss general-

ity, it is assumed that all observed samples in stages have the same size, i.e., ni = n for all i, and

Eq. (25) is used for Bartlett test.

The notations are similar, but an index ν added to the observations in each νth stage. The sums

in Eqs. (21)–(23) are renotated as Sνi, SSνi, SSDνi. Since, ϖνi = Sνi/n, sνi
2 = SSDνi/(n�1) are the

average and variance of sample of the νth stage. All computations with multistage are similar

to the single-stage ANOVA. Then, the results from stage computations are combined as shown

at the end part of Table 7, to form multistage ANOVA table.

Example 8: Given a two-stage dataset of three features in five first rows of Table 7, calculations

are illustrated in the parts, notated as {1} and {2}, of the table which aim at presenting schemes

for finding basic sums and terms of Bartlett test and ANOVA.

fi Stage 1 Stage 2 Sizes

f1 f2 f3 f1 f2 f3

ων ij 1 5 7 6 9 8 10 k = 2

2 8 4 7 8 7 8 m = 3

3 6 6 5 8 5 7 n = 3

{1} Sij 19 17 18 25 20 25 124

SSij 125 101 110 209 138 213 896

Sij
2/n 120.33 96.33 108.00 208.33 133.33 208.33 874.67

SSDij 4.67 4.67 2.00 0.67 4.67 4.67 21.33

logSSDij 0.67 0.67 0.30 �0.18 0.67 0.67 2.80

{2} Bartlett test: ANOVA:

(ΣlogSSDi)/(km)�log(n�1): 0.166 S2/(mn): 868.44

S2/dfi 874.67 logs2 0.250 S2/(kmn): 854.22 14.222

SSD 21.333 c. 1.194 (Σ(S1i + S2i)
2)/(km) � S2/(kmn): 4.778

logSSDi 2.80 χ2cal 1.945 SS1 + SS2 � S2/(kmn): 41.778

Table 7. Calculations for Two-stage ANOVA.
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Calculations for the Bartlett test in {2} of Table 7 show that χ2cal = 1.194 < χ20.95(5) = 11.07, the

hypothesis that population variance is the same for all features is accepted at α = 5%.

An estimate of the population variance is s1
2 = 21.33/(2 � 3 � [3–1]) = 1.778, cf. Table 8. The

part {3} of Table 7 is the calculation scheme for the terms in Table 8, where Subtotal equals

Total minus Within stages or the sum of Between features within stages, Between stages, and

Interaction.

The ratio of the variation between stages to within features is v
2 = s3

2/s1
2 = 14.222/1.778 = 8.0

which by far exceeds the 95% percentile of Fisher distribution F0.95(1,12) = 4.75. That means the

difference of the expected means between stages is different significantly. In other words, the

effects between stages are significantly discriminated.

Similarly, in comparison of the variation within features and between features within stages,

Table 8 shows that v2 = s2
2/s1

2 = 3.105/1.778 = 1.747 < F0.95(2,12) = 3.89. This shows that the

difference between the expected means of features within stages is not significant or the effects

between features within stages are almost the same.

Beside the above effects, the interaction between stages and features is also a factor need to be

considered. The ratio v
2 = 0.006/0.012 = 0.50 gives that such an interaction is not present in

given dataset. Thus, both the lines labeled “Interaction” and “Within stages” give the same

unbiased estimates of σ2, since a combination of these lines can improve the estimate of σ2.

The residual mean square is a sum of variations between the Interaction and Within stages.

This leads to an updated population variance is 1.525 less than s1
2 = 1.778 in Table 8, but

obviously increases v2 ratios. Table 9 analyzes the interaction without stage of Example 8.

Variation sources SSD df s
2

v
2

Between stages 14.222 1 14.222 8.0

Between features within stages 6.210 2 3.105 1.747

Interaction 0.012 2 0.006 0.50

Subtotal 20.444 5

Within stages 21.333 12 1.778

Total 41.778 17

Table 8. Two-stage ANOVA table of Example 8.

Variation sources SSD df s
2

v
2

Between stages 14.222 1 14.222 9.328

Between features within stages 6.210 2 3.105 2.036

Residual mean square 21.345 14 1.525

Total 41.778 17

Table 9. ANOVA table—two-stage without interaction.
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The ratio v
2 = s2

2/s1
2 = 3.105/1.525 = 2.036 < F0.95(2,14) = 3.74 or the effects between features

within stages are the same. While, v2 = s3
2/s1

2 = 14.222/1.525 = 9.328 which also by far exceeds

F0.95(1,14) = 4.60, the effects between stages are also significantly discriminated, cf. Table 8.

4. Case studies

To evaluate the extent to which MIS is being used to attain achievements of long-term plan-

ning, short-term planning in the South-West Nigerian universities [14], all selected features are

f1: Construction of building in the university, f2: Student enrolment projection, f3: Manpower

projection, f4: Staff recruitment exercises, f5: Establishment of new faculties and department, f6:

Designing university academic program, f7: Stock library with books and journals are consid-

ered in long-term evaluation. For short-term, f1: Promotion of Staff, f2: Staff Training and

Development, f3: Appointment of Deans or Heads of Departments or Divisions, f4: Appoint-

ment of Committee Members, f5: Allocation of offices to staff, f6: Allocation of Residential

Quarters, f7: Allocation of Lecture room/theaters, f8: Full-time equivalent or Teacher-Students

Ratio, and f9: Maximum Teaching Load are considered.

In evaluation of the extent of our university for a 5-year strategy planning, the following

features are used f1: Effectuation rights and obligations of students, f2: Promotion of interna-

tional cooperations, f3: Library, equipment and material facilities, f4: Potential of Scientific R&D

and transfer of technology, f5: Capacity of organization and management, f6: Design of univer-

sity academic programs, f7: Promotion of academic operations, f8: Capacity of manpower

projection, f9: Management of finance and resources. These basic features are factors to evalu-

ate whether the university attains its goal and objectives. Each basic feature is evaluated in the

scale of 100 but here it is illustrated in the one of 20 points.

Example 9: Let fi, i = 1, 2,…, 9 be features characterized as the extent of an MIS as above. ωij,

j = 1, 2,…, 12 is a value that is evaluated as the ith feature by the jth evaluator in a shorten

marking scheme of 20. Calculations for the single-stage ANOVA table are shown in Table 10.

The calculated value χ
2
cal = 9.432 in Table 10 does not exceed χ

2
0.95(8) = 15.51, the hypothesis

on equality of variances is accepted. The population variance is estimated as s2 = 1185.58/

99 = 11.976. The corresponding ANOVA table for this dataset is given in Table 11.

Here, as variance ratio v
2 = 8.907 far exceeds F0.95(8,99) = 2.06, it is unreasonable to assume that

all the expected means of features are the same. This can also be seen from Table 10, where all

sum of features from f1 to f4 are less than the ones of features from f5 to f9.

A more detailed examination revealed that the nine features can be partitioned into two

groups, namely A = {f1, f2, f3, f4} with the first four features and B = {f5, f6, f7, f8, f9} with the

remainders. Each group of features can be seen as a treatment and its observation sample

includes all observations in the same group. Since, it would be reasonable to consider the

variation between features into three portions between: the features from A, the features from

B, and between group A and B. Calculations in this consideration are extracted from Table 10

and illustrated in Table 12.
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In comparison with the variance within features s2, the variance ratios v
2 = 23.243/

11.976 = 1.941 < F0.95(3,99) = 2.66 and v
2 = 113.60/11.976 = 2.371 < F0.95(4,99) = 2.43 in Table 13

show that there is no essential difference between features in the same group. Since the third

ratio v
2 = 183.33/11.976 = 15.309 is far greater than F0.95(1,99) = 3.9, the features in group A and

B do have different expected mean.

Example 10: Assume that in an MIS, there are two stages that need ANOVA with the same set

of features. In each stage, samples of evaluations in marking scheme of 20. Let ωνij be an

integral value in marking scheme of 20 that evaluates the ith feature given by the jth evaluator

f1 f2 f3 f4 f5 f6 f7 f8 f9

ωi1 13 2 10 2 14 10 9 9 11

ωi2 1 1 3 13 11 10 10 10 14

ωi3 7 5 0 11 13 7 11 15 15

ωi4 9 15 2 17 10 7 11 13 15

ωi5 3 8 9 7 17 9 7 17 20

ωi6 6 2 5 5 14 10 11 15 17

ωi7 7 2 7 2 13 11 15 11 5

ωi8 10 3 10 10 11 13 13 11 15

ωi9 8 13 7 7 10 11 11 8 17

ωi10 11 6 9 8 9 9 10 14 15

ωi11 5 2 7 8 3 14 7 10 15

ωi12 7 3 3 10 9 15 11 13 11

{1} Si 87 62 72 100 134 126 126 146 170

SSi 753 554 556 1038 1632 1392 1378 1860 2566

Si2/ni 630.75 320.33 432 833.3 1496.3 1323 1323 1776.3 2408.3

SSDi 122.25 233.67 124 204.7 135.67 69 55 83.667 157.67

logSSDi 2.087 2.369 2.09 2.311 2.133 1.839 1.740 1.923 2.20

{2} Bartlett df:8 Anova

Σlogsi
2/k: 1.036 c: 1.034 ΣSi: 1023 ΣSSDi: 1185.58

log.s2: 1.078 χ2cal 9.432 ΣSi2/fi: 10,543 ΣSi2/n � S2/nm: 853.33

Table 10. Calculations for single-stage ANOVA dataset.

Variation sources SSD df s
2

v
2

Between feature 853.333 8 106.667 8.907

Within features 1185.583 99 11.976

Total 2038.917 107

Table 11. Single-stage ANOVA table of Example 9.
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from the νth stage, ν = 1, 2, i = 1, 2,…, 7, j = 1, 2,…, 8. This dataset is in Table 14 including

calculation for ANOVA.

Using Bartlett test in {3}, χ2cal = 9.507 not exceed χ20.95(15) = 22.36, so population variances are

the same with the pool variance of s2 = 1185.58/96 = 2.105. Table 15 shows this ANOVA.

The ratio v
2 = s2

2/s1
2 = 3.932/2.063 = 1.906 is less than F0.95(6,98) = 2.15, the difference between

the expected means within stages is not significant. Similarly, v
2 = s3

2/s1
2 = 37.723/

2.063 = 18.29 > F0.95(1,98) = 3.96, the expected means between stages are discriminated.

Since v2 = 0.057/0.339 = 0.167 less than the 95% percentile of Fisher distribution, any interaction

does not exist. Thus, “Interaction” and “Within stages” variation sources are combined to

s1
2 = (202.125 + 0.339)/104 = 1.947 a better estimation for σ2 than 2.063 in Table 15.

The case of m = 1 and k = 2 has been presented in the previous subsection with group A, B. In

[15], ANOVA has been used to specify whether a statistical relationship exists between human

development index and security index. The authors in [16] have used the ANOVA combined

with regression analysis to assess and evaluate student MIS of a university.

In this subsection, the student test is presented in comparison with the effects of f from the two

stages or treatments. Let {ωij} i = 1, 2 and j = 1, 2,…, ni be two observation samples of sizes ni
drawn from the two treatments of the feature f. Using Eqs. (21)–(23), the means ϖ1, ϖ2 and

variances s1
2, s2

2 are calculated with df1 = n1–1, df2 = n2–1.

The equality of population variances is tested using Fisher distribution with v
2 = s1

2/s2
2. If

v
2 < Fα/2(df1, df2) or v

2 > F1�α/2(df1, df2), it is unreasonable to assert that the population

Group A Group B n = 12

n* 4 � 12 5 � 12 108

ΣSi 321 6.6875 702 11.7 1023

ΣSi
2/ni 2216.4 8327 10,360

S2/S(ni) 2146.7 8213.4 9690.1

SSD 69.729 113.6 183.33

Ave.: 6.688 11.7 9.472

Table 12. Calculations for ANOVA between group A and B.

Variation sources SSD df s2 v
2

Between features from A 69.729 3 23.243 1.941

Between features from B 113.60 4 28.40 2.371

Between features in A and B 183.33 1 183.33 15.309

Total 853.33 8

Table 13. ANOVA table of two groups A and B.
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variances are equal. Otherwise, the pool variance of these treatments is s2 = (SSD1 + SSD2)/

(df1 + df2).

f1 f2 f3 f4 f5 f6 f7

ω1i1 16 15 17 14 14 13 14 k = 2

ω1i2 13 14 11 12 10 13 12 m = 7

ω1i3 14 16 15 14 15 14 16 n = 8

ω1i4 12 14 13 12 14 12 15

ω1i5 13 15 14 10 13 14 13

ω1i6 10 12 11 13 12 10 12

ω1i7 12 14 13 14 13 13 12

ω1i8 13 14 13 15 13 14 13

{1} S1i 103 114 107 104 104 103 107 742

SS1i 1347 1634 1459 1370 1368 1339 1447 9964

S1i
2/ni 1326 1625 1431 1352 1352 1326 1431.1 9843

SSD1i 20.88 9.5 27.88 18 16 12.88 15.88 121

logSSD1i 1.32 0.978 1.445 1.255 1.204 1.11 1.201 8.512

f1 f2 f3 f4 f5 f6 f7

ω2i1 16 17 18 14 15 14 15

ω2i2 14 15 13 12 11 13 14

ω2i3 15 18 15 14 16 15 16

ω2i4 13 14 14 15 14 13 14

ω2i5 14 16 15 13 15 14 13

ω2i6 13 14 13 15 14 14 15

ω2i7 14 15 16 14 13 15 14

ω2i8 13 14 14 16 14 15 15

{2} S2i 112 123 118 113 112 113 116 807

SS2i 1576 1907 1760 1607 1584 1601 1688 11,723

S2i
2/ni 1568 1891 1741 1596 1568 1596 1682 11641.9

SSD2i 8 15.88 19.5 10.88 16 4.875 6 81.125

logSSD2i 0.903 1.201 1.29 1.036 1.204 0.688 0.778 7.101

(S1i + S2i)
2 46,225 56,169 50,625 47,089 46,656 46,656 4973 343,149

{3} Bartlett Anova S=S1 + S2 1549

ΣlogSSDi./(km)�log(n�1): 0.270 S2/(mn): 21460.9

ΣSSDi: 202.1 logs2: 0.314 S2/(kmn): 21423.2 37.723

ΣlogSSDi: 15.61 c: 1.051 Σ(S1i + S2i)
2 /(km)�S2/(kmn): 23.589

χ2cal: 9.507 SS1 + SS2 – S2/(kmn): 263.77

Table 14. Calculations for two-stage ANOVA dataset.
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The equality of the expected means from treatments is tested by the student distribution based

on the difference ϖ0 = ϖ1 � ϖ2. If this hypothesis is correct, there are two cases:

• If the variances in each treatment are equal, the statistics tcal = ϖ0/so with so
2 = s2[1/n1 +

1/n2] has the student distribution df = df1 + df2 degrees of freedom,

• If the variances of treatments not equal, tcal = ϖ0/so with so
2 = s1

2/n1 + s2
2/n2 approximate

the student distribution with df = c2/df1 + (1�c2)/df2, where c = (s1
2/n1)/(s1

2/n1 + s2
2/n2).

The hypothesis that the two expected means of the feature f from the treatments are equal is

rejected at a level of significance α when |tcal| > t1 � α/2(df). Otherwise, the confidence interval

of the difference η between the two means is

ϖ0 þ tα=2 dfð Þso < η < ϖ0 þ t1�α=2 dfð Þso (31)

where t1 � α/2(df) is the 100(1�α/2)% percentile of the student distribution, t1�α/2(df) =

�tα/2(df).

For instance, from Table 12, the variances in groups sA
2 = 69.729/47 = 1.484 and sB

2 = 113.60/

59 = 1.925 give v2 = sA
2/sB

2 = 1.30 less than t0.995(106) = 2.35. It is accepted the variances in group

A and B are equal. The pool variance is estimated by s2 = (SSD1 + SSD2)/(df1 + df2) = 113.60/

106 = 1.729. Also, Table 12 gives so
2 = s2.[1/47 + 1/59] = 0.06611 and tcal = (11.7–6.6875)/so = 19.68,

this so far exceeds t0.995(106) = 2.606. The student test for these two treatment shows the

expected mean of group B so far exceeds the one of A. The 99.5% confidence interval of the

difference between these expected means is 11.7 � 6.6875 � 2.606 � √0.06611 or (4.342, 5.683).

Similarly, Table 15 shows that there is no difference in evaluating features by evaluators within

stages in Example 10. It is reasonable to group features in each stage to each other and using

the method of comparison between two treatments of a feature as above.

5. Conclusion

It is dealt with this chapter the useful methods for choosing important features and supporting

decisions of a given decision information system, presented in Section 2. The methods of

ANOVA are introduced in Section 3 to evaluate features from the extent of an MIS.

Variation sources SSD df s
2

v
2

Between stages 37.723 1 37.723 18.290

Between features within stages 23.589 6 3.932 1.906

Interaction 0.339 6 0.057 0.167

Subtotal 61.652 13

Within stages 202.125 98

Total 263.777 111

Table 15. Two-stage ANOVA table of Example 10.
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The demonstrations of using such methods, through examples and case studies in Section 4 at

our Faculty of Information System—University of Information Technology, showed that the

efficiency of the proposed methods. The illustrated calculating schemes allow designing and

coding computer programs for solving the above problems automatically.
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