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Abstract

Quantum key distribution (QKD), another name for quantum cryptography, is the most
advanced subfield of quantum information and communication technology (QICT). The
first QKD protocol was proposed in 1984, and since then, more protocols have been
proposed. It uses quantum mechanics to enable secure exchange of cryptographic keys. In
order to have high confidence in the security of the QKD protocols, such protocols must be
proven to be secure against any arbitrary attacks. In this chapter, we discuss and demon-
strate security proofs for QKD protocols. Security analysis of QKD protocols can be
categorised into two techniques, namely infinite-key and finite-key analyses. Finite-key
analysis offers more realistic results than the infinite-key one, while infinite-key analysis
provides more simplicity. We briefly provide the background of QKD and also define the
basic notion of security in QKD protocols. The cryptographic key is shared between Alice
and Bob. Since the key is random and unknown to an eavesdropper, Eve, she is unable to
learn anything about the message simply by intercepting the ciphertext. This phenomenon
is beyond the ability of classical information processing. We then study some tools that are
used in the derivation of security proofs for the infinite- and finite-length key limits.

Keywords: quantum cryptography, QKD, protocols, security, finite-security,
entanglement, QKD schemes

1. Introduction

Quantum cryptography, specifically QKD, has been built based on physical concepts associ-

ated with quantum mechanics. In contrast to conventional cryptography, whose security is

based on the complex computational and mathematical algorithms for security, it is founded

on the uncertainty relations, Bell’s inequalities, entanglement or non-locality [1]. The imple-

mentation of QKD consists of detectors, repeaters, quantum memories and decoy states [2–4].

These concepts form the basis of security proofs [5]. In order for Eve to obtain the secret key,
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she needs to break the laws of physics, but this is impossible without her presence being

detected. Since there is great need for security in a communication system, it is necessary to

investigate security proofs for QKD systems.

Regardless of the challenges that come with developing unconditional security proofs, a lot of

progress has been realised in the last two decades. An unconditional security proof considers all

kinds of attacks that Eve can perform and incorporating this into the security proof is a difficult

task. However, a new technique for analysing collective attacks due to an eavesdropper was

developed in 1995 by Yao [6]. Later, Bennett et al. realised that if the legitimate parties possess a

reliable quantum computer, they can implement an entanglement distillation (ED) protocol to

obtain a secure version of an EB key distribution [7]. In 1998, based on this idea, Lo and Chau

then developed a formal security proof for the protocol [8]. By using the ideas of Mayers, Lo and

Chau then Shor and Preskill developed a simple proof of security for the BB84 protocol in 2000

[9]. This was followed by a proof of Biham who was the second to show an unconditional

security proof [10]. In 1991, Biham’s proof was then used by Gottesman and Preskill to prove

the unconditional security proof of a continuous variable protocol where Alice’s signals are

sufficiently squeezed [11]. In the same spirit, Inamori et al. showed the unconditional security

proof of BB84 protocol where Alice’s source emits weak coherent states and Bob’s detector

remains uncharacterised [12]. However, a complete security proof that is secure against arbitrary

attacks by the eavesdropper and full realistic implementation of the QKD protocol remains

missing. But this progress depicts that major achievements have been made in this field to prove

that protocols used in quantum communication are secure for sending messages. Amongst

different approaches to security proofs, a number of publications on composable security [13],

de Finetti’s theorem [5, 14], post-selection technique [15] and recently the finite-length key

analysis [16] are now available.

Regardless of enormous progress that has been made in QKD, there are still some theoretical

and experimental problems of communicating in absolute secrecy in the presence of an eaves-

dropper. In particular, matching the theoretical security proofs to real devices still remains

unknown. The security proofs still contain assumptions concerning the behaviour of devices

used by the communicating parties [17]. As a result of this mismatch, an eavesdropper can

learn part of the key shared by Alice and Bob, thus rendering some schemes insecure over

large distances. Moreover, the existing security proofs have been derived in the asymptotic

limit which is not very realistic. In fact, the bits which are processed in QKD are necessarily of

finite length. Therefore, thanks to Valerio and Renner for introducing the general framework

for the security analysis of QKD with finite resources [16]. The security study is mainly based

on the framework introduced by Devetak-Winter, Csiszar-Körner and Renner security [5, 18].

For a detailed overview of QKD, we refer the reader to [2, 4].

2. Quantum features

2.1. Detection of measurements

Based on the measurement postulate of quantum mechanics [19], it is impossible to perform a

measurement on an unknown quantum state without introducing a disturbance unless the
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state is an eigenstate to the observable being measured [20]. This means that Eve is unable to

perform a measurement on an unknown quantum state without introducing a disturbance that

can be discovered by Alice and Bob.

2.2. Uncertainty principle

The uncertainty principle states that a measurement of one quantum observable intrinsically

creates an uncertainty in other properties of the system. This means that it is impossible to

measure the simultaneous values of non-commuting observables on a single copy of a quan-

tum state [21]. This ensures that an eavesdropper cannot perform measurements that leave the

quantum state undisturbed [22]. This automatic detection of an eavesdropper is impossible

with classical cryptography.

2.3. No-cloning theorem

In quantum mechanics, it is impossible to make a perfect copy of an unknown state with

perfect fidelity. This is called the no-cloning theorem [23]. This prevents an eavesdropper from

simply intercepting the communication channel and making copies (so as to make measure-

ments on them later) of the transmitted quantum states, while passing on an undisturbed

quantum state to Bob [24, 25]. Therefore, the no-cloning theorem forms an important property

in the security of QKD protocols [26].

2.4. Non-orthogonality principle

Suppose, we have quantum states |ψi⟩ which are not orthogonal, then it can be proved that

there exists no quantum measurement that is able to distinguish states [19]. In this case, a non-

zero component of the state |ψ1⟩ parallel to the state |ψ2⟩ always gives a non-zero probability of

the measurement outcome associated with the state |ψ2⟩ also occurring when the measurement

is applied to the state |ψ1⟩. This is because |ψ2⟩ can be decomposed into a non-zero component

parallel to |ψ1⟩ and a component orthogonal to |ψ1⟩. Then, there is no measurement of any

kind that can reliably determine which of the two non-orthogonal quantum states were mea-

sured [27]. This feature is very useful for cryptographic applications such as QKD [20].

3. QKD schemes

There are two major types of QKD schemes, namely prepare and measure (P&M) and

entanglement-based (EB) schemes [2, 4]. A P&M scheme is based on individual qubits, while

an EB scheme is based on entangled qubits. Either of these schemes can be used by two parties

in order to end up with a shared secret key. However, a P&M scheme can immediately be

translated into an EB scheme [4, 28]. However, there exists another family of protocols called

continuous-variable protocols and distributed-phase-reference (DPR) protocols [4], which con-

sist of the coherent-one-way protocol [29, 30] and the distributed-phase-reference protocols

[31, 32]. In the following sections, we briefly describe the processes for each scheme.
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3.1. Prepare and measure (P&M) scheme

In a P&M scheme, Alice encodes some classical information into a set of quantum states and

sends them via an insecure quantum channel to Bob. Bob then performs measurements on the

quantum states he receives. This results in classical data generated by quantum means being

shared between Alice and Bob. Examples of protocols that use this scheme are BB84 [33], B92

[27], six-state [34] and SARG04 [35] protocols.

3.2. Entanglement-based (EB) scheme

In an EB scheme, a source prepares and distributes a maximally entangled quantum state

where one system is sent to Alice and another to Bob. Alice and Bob then perform measure-

ments in two mutually unbiased bases on their system, respectively. Upon measurement, they

obtain perfectly correlated outcomes which are completely random. Since the source prepares

a pure state, it means that this state cannot be correlated with an eavesdropper. This implies

secrecy of the key. An example of a protocol which uses this scheme is the E91 protocol [36].

4. QKD procedure

In this section, we describe what happens in a P&M scheme, specifically in the BB84 protocol

[33]. In this protocol, Alice and Bob are connected by two communication channels, namely an

insecure quantum channel and an authenticated classical channel [2]. The quantum channel is

used for the transmission of qubits and is controlled by the eavesdropper. The classical channel

is authenticated so that the eavesdropper can only listen to the communication but cannot alter

the messages being transmitted. This ensures that Alice and Bob can prove that they are

communicating between each other. Otherwise, an eavesdropper could simply block all quan-

tum and classical communication between Alice and Bob and perform QKD with Alice while

taking on Bob’s role and vice versa. Therefore, Alice and Bob have to identify each message

they send as originating from themselves before any post-processing can begin.

4.1. Quantum phase

In the quantum phase, Alice and Bob make use of the quantum channel. They employ the

quantum mechanical signals (i.e. qubits) and they also perform measurements. Three sub-

protocols take place which are as follows:

a. Signal preparation: Alice prepares a random sequence of strings which are drawn from a

set of four signal states and encodes each bit value in the state of a quantum system. The

basis states are horizontal, vertical, diagonal and anti-diagonal.

b. Transmission: The encoded quantum system is sent to Bob via the quantum channel.

c. Measurement: Bob applies a quantum measurement on the quantum system to decode a

bit value. The signals are measured in a random sequence of polarisation bases, either in

the horizontal/vertical or diagonal/anti-diagonal bases.
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Afterwards, Alice keeps the record of signal choices; Bob keeps the record of his basic choices

and the corresponding measurement results.

4.2. Classical phase

In this phase, Alice and Bob use some classical communication protocol in order to distil a

secret key from their correlated data. They achieve this by means of a discussion over the

authenticated classical channel. The key extraction procedure is described as follows:

a. Parameter estimation: Alice randomly chooses some fraction of her signal slots and

announces for these slots to Bob which signal she sent. Bob announces the measurement

he performed and the outcome which he obtains. Depending on the amount of errors

which they obtain from their comparisons, they may also decide whether to continue or

abort the protocol.

b. Sifting: In the sifting protocol, Alice and Bob announce the polarisation bases they used for

the preparation of the signals and which bits are discarded. In order to prevent Eve from

modifying the transmitted messages, Alice and Bob use the authentication scheme. The

remaining data are called sifted data. Alice and Bob proceed to the reconciliation phase or

error correction phase.

c. Key map: Alice and Bob discard the basis which they were using so that Eve may not learn

any information about the encoding. During key map, Alice and Bob map their event

records of the sifted data into a raw key. This step applies to prepare andmeasure protocol.

d. Error correction: The sifted data may still contain some errors; therefore, Alice and Bob

execute a classical error correction protocol in order to reconcile their data. They need to

exchange additional information about their respective data over the public channel. In

addition, they need to authenticate this phase because Eve is still able to modify the

messages in this step. As a result of this protocol, Alice and Bob agree now on a key which

is identical with very high probability but Eve might still have some small additional

information about the key. After this stage, privacy amplification takes place.

e. Privacy amplification: After Alice and Bob have reconciled their key, they can cut the

correlations between their key and Eve by using the so-called privacy amplification. In

this stage, Alice and Bob map their string via a special family of functions called universal

hash functions to a shorter final key [5].

5. Security in QKD

5.1. Security definition

A good definition of security would allow the key generated by a QKD protocol to deviate by a

small parameter ε, from a perfect key [2]. This definition should be able to bound Eve’s

knowledge about the final key. A perfect key refers to a uniformly distributed bit string whose

value is completely independent and remains unknown to an eavesdropper [16]. The main

requirement that the definition of security must fulfil is composability [5]. The composable
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definition characterises the security of a protocol with respect to the ideal functionality. This

means that the security of the key generated could be used in any subsequent cryptographic

task such as the one-time pad for message encryption, where an ideal key is expected. How-

ever, there always exist some challenges in constructing security proofs without making any

assumptions either about the devices or the parties. For example, attacks against practical

schemes exist, such as photon-number-splitting attacks (PNS) [37], time-shift attacks [38], large

pulse attacks [17, 39], blinding attacks [40] and high-power damage attack [41]. Some of the

assumptions made in the definition of QKD security are as follows:

a. there should be no side channels. Side channels are basically discrepancies between the

theoretical model and a practical implementation. They always exist if some information

about the raw key is encoded in degrees of freedom not considered in the theoretical

model. Therefore, this leads to a wrong assessment of the dimension of the Hilbert space

which describes the protocol,

b. there should be access to perfect or almost perfect randomness (locally) and

c. quantum theory is correct and complete.

If there is randomness and quantum theory is correct, then this leads to completion of the

security proofs. However, in classical cryptography, the security is based on the difficulty or

complication of a certain mathematical algorithm to afford security of the protocol. Therefore,

the security is mainly based on the failure to solve the algorithm. This can fail in four ways that

are as follows:

a. conjecture of hardness/difficulty in this case is wrong,

b. underlying computation model could be wrong or could be unphysical,

c. the algorithm is easy for many instances and.

d. the computation could be small.

5.2. Security requirements

In this section, we follow closely the definitions in [5, 42]. A QKD protocol outputs a key SA on

Alice’s side and also a key SB on Bob’s side. The length of the key is l > 0, otherwise no key is

extracted. The length of the key depends on the noise level of the communication channel as

well as security and on the correctness requirements of the protocol. Depending on the devia-

tion of the output key from the ideal one, the protocol aborts in which case SA = SB = ⊥ [42].

1. Correctness: A QKD protocol is called “correct”, if, for any strategy by the eavesdropper

SA = SB. This occurs whenever Alice and Bob output the classical keys SA and SB, respec-

tively, such that Pr[SA 6¼ SB] ≤ εcor. The term εcor is the maximum probability that the

protocol deviates from the behaviour of the correct protocol. In order for correctness to be

achieved, the QKD devices must perform what they are supposed to do according to a

specified model. The devices generate the correct correlations which they are supposed to

output, otherwise the protocol aborts. In other terms, the devices should not send any
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other information to the outside world, in which it is not supposed to do (i.e. devices work

according to their specification),

2. Secrecy: A random variable S drawn from the set S is said to be ε-secure with respect to an

eavesdropper holding a quantum system E, if.

min∈σE
1

2
tr∣rSE � rU ⊗σE∣ ≤ ε, (1)

where rSE = ∑s∈S Ps(s)|s⟩⟨s| ⊗ rE |S = s is the actual state that contains some correlations

between the final key and Eve and ε gives the maximum failure probability of the key

extraction process. The state rU = ∑s∈S |s⟩⟨s||S| is the completely mixed state on S and |S|

is the size of S. Since the trace distance, that is, 1
2tr|r0 � r1| refers to the maximum

probability of distinguishing between the two quantum states (r0,r1), this composable

security definition naturally gives rise to the operational meaning that the protocol is ε-

secure, that is, S is identical to an ideal key U except with probability ε [5]. Again,

according to Helstrom’s Theorem, the probability of distinguishing between the two

quantum states r0 and r1 is bounded by 1
2 +

1
4 tr|r0 � r1| [43].

3. Robustness: A QKD protocol is said to be “not robust” if the protocol aborts even though

the eavesdropper is inactive. While correctness and secrecy are difficult to prove, robust-

ness can simply be proven by running the protocol.

5.3. Infinite-length key security in QKD

Over the last decade, a lot of work in QKD has been devoted to the derivation of unconditional

security proofs [8, 16, 44–47]. One of the main problems is that Eve has the power to perform

any type of eavesdropping strategy. In particular, she can evade detection by attributing noise

caused by her eavesdropping attack to normal noise in the channel. Therefore, it remains

difficult to accurately bound the amount of information that Eve may obtain from the commu-

nication channel. The most important resource which should be determined when constructing

security proofs for QKD protocols is the secret key rate. Therefore, all QKD protocols must be

able to provide a clear expression for the secret key rate. In the asymptotic limit, the secret key

rate is expressed as

r ¼ limn!∞

l

n
, (2)

where l is the length of the final secret key and n is a list of symbols called r raw keys [2]. This

rate was established by Devetak and Winter [18]. The secret key rate against collective attacks

was derived by Kraus, Gisin and Renner [48] and is expressed as

r ¼ I X : Yð Þ � χ X : Eð Þ (3)

where I(X: Y) = H(X) � (X|Y) quantifies the amount of bits need to be satisfied for error

correction. The term χ(X: E) = H(X) + S(E) � S(X, E) refers to the Holevo quantity, where H is
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the Shannon entropy and S is the von Neumann entropy [49, 50]. The Holevo quantity refers to

the amount of privacy amplification required in order to eliminate Eve’s information.

The upper bound on the secret key rate r, can be expressed as.

r ≤ I A : B↓Eð Þ, (4)

where I(A: B ↓ E) is the intrinsic conditional mutual information (intrinsic information for

short) between two information sources held by Alice and Bob after Eve has performed an

optimal individual attack [51]. The intrinsic information between two information sources A

and B given E ̄ is defined as, I(A : B ↓ E) = infE ̄ I(A : B|E ̄), where the infimum is taken over all

discrete random variables E such that AB ! E ! E ̄ is a Markov chain [52]. It has been shown

that I(A: B ↓ E) is an upper bound on the rate S = S(A;B||E) at which such a key can be

extracted [51].

5.4. Finite-length key security

Many efforts have been made to improve the bounds on the secret key rates for a finite amount

of resources [5, 16, 53–58]. Since the tools for analysing the security under non-asymptotic

regime have become available, there is need to provide new security definitions. In this section,

we follow closely the techniques demonstrated in [16] to discuss some of the parameters used

in the security of QKD for finite-length key limit. The main goal of finite-length key security is

to obtain a secret key rate r, based on a certain number of signals, a security parameter ε, and

certain losses from the error correction without making any assumptions about the post

processing (sifting, error correction and privacy amplification). For example, one can recognise

that the limit in this expression of Eq. (2) is unrealistic because in all implementations of QKD

protocols finite resources are used. This is because in this scenario, N is assumed to be large,

that is, it approaches infinity, while in practice Alice and Bob exchange a limited number of

symbols or signals. In the non-asymptotic limit, the secret key rate can be expressed as.

r ¼ n=N Sξ XjEð Þ �△� leakEC=n½ �: (5)

This shows that only a fraction of n out of N signals exchanged contributes to the key. This is

because of the fact that m = N� n is used for parameter estimation thus leading the presence of a

pre-factor of n/N. The expression Sξ (X |E) takes into account the finite precision of the parameter

estimation. Eve’s information is calculated by using measured parameters, for example, error

rates. In the finite-key scenario, these parameters are estimated on samples of finite length. The

parameter△ is related to the security of privacy amplification. Its value is given by.

△ � 2log dþ 3ð Þ√ log 2 2=εð Þ=n½ � þ 2=nlog2 1=εPA, (6)

where d is the dimension of the Hilbert space, ε ̄ is a smoothing parameter and εPA is the

failure probability of the privacy amplification procedure. Eve’s uncertainty is quantified by a

generalised conditional entropy called the smooth min-entropy and is denoted as Hmin
ε ̄ (X(n)|

E(N)) [5]. The smoothing parameters, ε ̄ and εPA, are parameters which should be optimised
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numerically. The square-root term corresponds to the speed of convergence of the smooth-min

entropy, which is used to measure the key length of an identical and independently distributed

(i.i.d) state toward the von Neumann entropy. In the asymptotic limit, the smooth-min entropy

of an i.i.d state is equal to the von Neumann entropy. The second term εPA is directly linked to

the failure probability of the privacy amplification procedure. Finally, leakEC/n corresponds to

the amount of information which needs to be exchanged by Alice and Bob during the recon-

ciliation phase. This quantity may not reach the Shannon limit, so leakEC ≥ nH(X|Y). Typically,

leakEC ≈ fECH XjYð Þ þ 1=n log 2 2=εECð Þ, (7)

where fEC > 1 depends on the code and εEC refers to the failure probability of the error

correction procedure.

Unlike in the asymptotic scenario, one needs to fix an overall security parameter ε for the QKD

protocol. The parameter ε corresponds to the maximum probability failure that is tolerated on

the key extraction protocol. This can be expressed as ε = εPE + εEC + ε ̄ + εPA, where εPE is the

error in the parameter estimation step and the other terms are as previously defined. All the

parameters, εPE, εEC, ε ̄, εPA, can be independently fixed at arbitrarily low values.

As a result, the overall security parameter ε can be chosen arbitrarily small, to a value

corresponding to Alice and Bob’s wishes, but this comes at a cost of decreasing the final secret

key rate. If m signals have been used to estimate the parameter λ, then the deviation of

measurement outcomes λm obtained from measuring the m samples from the ideal estimate

λ∞ can be quantified by using the law of large numbers resulting [5, 59].

∣λm � λ∞∣ ≤ ξ m;dð Þ ¼ √ ln 1=εPEð Þ þ dln mþ 1ð Þ=2 m½ � (8)

The objective of the privacy amplification step is to minimise the quantity of correct informa-

tion which the eavesdropper may have obtained about Alice and Bob’s reference raw key.

After privacy amplification, the length of the raw key that remains will be.

l ≤Hmin
ε XjEð Þ � 2log2 1=εPAð Þ, (9)

where Hmin (X |E) expresses Eve’s uncertainty and εPA is the error in the privacy amplification

step.

6. Conclusion

In the general philosophy of proving the security of QKD protocols, standard methods are

known to exist. However, these seem to fail for other classes of protocols, for example, the

distributed phase reference protocols. In this chapter, we discussed that QKD is a technique,

which uses the power of quantum mechanics to establish a string of random bits called a key.

We also showed how the secret key is generated and shared between Alice and Bob. Since the

key is random and unknown to an eavesdropper, Eve, she is unable to learn anything about
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the message simply by intercepting the ciphertext. This phenomenon is beyond the ability of

classical information processing.

In this chapter, we provided a background study of QKD and also defined the basic notion of

security in QKD protocols. In particular, the tools for analysing the security proofs for both

infinite- and finite-key QKD protocols were discussed and demonstrated. Further, we

discussed that the finite-key analysis offers more realistic results than the infinite-key one,

while the infinite-key analysis provides more simplicity.
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