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Abstract

This chapter presents some new exact solutions corresponding to unsteady magnetohy-
drodynamic (MHD) flow of Jeffrey fluid in a long porous rectangular duct oscillating
parallel to its length. The exact solutions are established by means of the double finite
Fourier sine transform (DFFST) and discrete Laplace transform (LT). The series solution
of velocity field, associated shear stress and volume flow rate in terms of Fox H-
functions, satisfying all imposed initial and boundary conditions, have been obtained.
Also, the obtained results are analyzed graphically through various pertinent parameter.
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1. Introduction

Considerable progress has been made in studying flows of non-Newtonian fluids throughout the

last few decades. Due to their viscoelastic nature non-Newtonian fluids, such as oils, paints,

ketchup, liquid polymers and asphalt exhibit some remarkable phenomena. Amplifying interest

of many researchers has shown that these flows are imperative in industry, manufacturing of

food and paper, polymer processing and technology. Dissimilar to the Newtonian fluid, the flows

of non-Newtonian fluids cannot be explained by a single constitutive model. In general the

rheological properties of fluids are specified by their so-called constitutive equations. Exact recent

solutions for constitutive equations of viscoelastic fluids are given by Rajagopal and Bhatnagar

[1], Tan and Masuoka [2, 3], Khadrawi et al. [4] and Chen et al. [5] etc. Among non-Newtonian

fluids the Jeffrey model is considered to be one of the simplest type of model which best explain

the rheological effects of viscoelastic fluids. The Jeffrey model is a relatively simple linear model

using the time derivatives instead of convected derivatives. Nadeem et al. [6] obtained analytic

solutions for stagnation flow of Jeffrey fluid over a shrinking sheet. Khan [7] investigated partial

slip effects on the oscillatory flows of fractional Jeffrey fluid in a porous medium. Hayat et al. [8]
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examined oscillatory rotating flows of a fractional Jeffrey fluid filling a porous medium. Khan

et al. [9] discussed unsteady flows of Jeffrey fluid between two side walls over a plane wall.

Much attention has been given to the flows of rectangular duct because of its wide range

applications in industries. Gardner and Gardner [10] discussed magnetohydrodynamic

(MHD) duct flow of two-dimensional bi-cubic B-spline finite element. Fetecau and Fetecau

[11] investigated the flows of Oldroyd-B fluid in a channel of rectangular cross-section. Nazar

et al. [12] examined oscillating flow passing through rectangular duct for Maxwell fluid using

integral transforms. Unsteady magnetohydrodynamic flow of Maxwell fluid passing through

porous rectangular duct was studied by Sultan et al. [13]. Tsangaris and Vlachakis [14]

discussed analytic solution of oscillating flow in a duct of Navier-Stokes equations.

In the last few decades the study of fluid motions through porous medium have received

much attention due to its importance not only to the field of academic but also to the industry.

Such motions have many applications in many industrial and biological processes such as food

industry, irrigation problems, oil exploitation, motion of blood in the cardiovascular system,

chemistry and bio-engineering, soap and cellulose solutions and in biophysical sciences where

the human lungs are considered as a porous layer. Unsteady MHD flows of viscoelastic fluids

passing through porous space are of considerable interest. In the last few years a lot of work

has been done on MHD flow, see [15–19] and reference therein.

According to the authors information up to yet no study has been done on the MHD flow of

Jeffrey fluid passing through a long porous rectangular duct oscillating parallel to its length.

Hence, our main objective in this note is to make a contribution in this regard. The obtained

solutions, expressed under series form in terms of Fox H-functions, are established by means

of double finite Fourier sine transform (DFFST) and Laplace transform (LT). Finally, the

obtained results are analyzed graphically through various pertinent parameter.

2. Governing equations

The equation of continuity and momentum of MHD flow passing through porous space is

given by [7]

∇ � V ¼ 0,ρ
dV

dt

� �

¼ divTþ J� Bþ R, (1)

where velocity is represented by V, density by ρ, Cauchy stress tensor by T, magnetic body

force by J�B, current density by J, magnetic field by B, and Darcy’s resistance in the porous

medium by R.

For an incompressible and unsteady Jeffrey fluid the Cauchy stress tensor is defined as [9]

T ¼ �pIþ S, S ¼
μ

1þ λ
Aþ θ

∂A

∂t
þ V:∇ð ÞA

� �� �

, (2)
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where S and pI represents the extra stress tensor and the indeterminate spherical stress, the

dynamic viscosity is denoted by μ, A =L +LT is the first Rivlin-Ericksen tensor, L is the velocity

gradient, λ is relaxation time and θ is retardation time. The Lorentz force due to magnetic field is

J� B ¼ �σβ2oV, (3)

where σ represents electrical conductivity and βo the strength of magnetic field. For the Jeffrey

fluid the Darcy’s resistance satisfies the following equation

R ¼ �
μϕ

κ 1þ λð Þ
1þ θ

∂

∂t

� �

V, (4)

where κ(>0) and ϕ(0 <ϕ < 1) are the permeability and the porosity of the porous medium.

In the following problem we consider a velocity field and extra stress of the form

V ¼ 0; 0;w x; y; tð Þð Þ,S ¼ S x; y; tð Þ (5)

where w is the velocity in the z-direction. The continuity equation for such flows is automati-

cally satisfied. Also, at t = 0, the fluid being at rest is given by

S x; y; 0ð Þ ¼ 0, (6)

therefore from Eqs. (2), (5) and (6), it results that Sxx=Syy=Syz =Szz= 0 and the relevant equations

τ1 ¼
μ

1þ λð Þ
1þ θ

∂

∂t

� �

∂xw x; y; tð Þ, τ2 ¼
μ

1þ λð Þ
1þ θ

∂

∂t

� �

∂yw x; y; tð Þ, (7)

where τ1 =Sxy and τ2 = Sxz are the tangential stresses. In the absence of pressure gradient in the

flow direction, the governing equation leads to

1þ λð Þ∂tw x; y; tð Þ ¼ ν 1þ θ
∂

∂t

� �

∂
2
x þ ∂

2
y

� �

w x; y; tð Þ � νK 1þ θ
∂

∂t

� �

w x; y; tð Þ �H 1þ λð Þw x; y; tð Þ, (8)

where H ¼
σB2

0

ρ is the magnetic parameter, K ¼
ϕ
κ is the porosity parameter and ν =μ/ρ is the

kinematic viscosity.

3. Statement of the problem

We take an incompressible flow of Jeffrey fluid in a porous rectangular duct under an imposed

transverse magnetic field whose sides are at x = 0, x = d, y = 0, and y = h. At time t = 0+ the duct

begins to oscillate along z-axis. Its velocity is of the form of Eq. (5) and the governing equation

is given by Eq. (8). The associated initial and boundary conditions are
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w x; y; 0ð Þ ¼ ∂tw x; y; 0ð Þ ¼ 0, (9)

w 0; y; tð Þ ¼ w x; 0; tð Þ ¼ w d; y; tð Þ ¼ w x; h; tð Þ ¼ Ucos wtð Þ, (10)

or

w 0; y; tð Þ ¼ w x; 0; tð Þ ¼ w d; y; tð Þ ¼ w x; h; tð Þ ¼ Usin wtð Þ, (11)

t > 0, 0 < x < d and 0 < y < h:

The solutions of problems (8)–(10) and (8), (9), (11) are denoted by u(x, y, t) and v(x, y, t)

respectively. We define the complex velocity field

F x; y; tð Þ ¼ u x; y; tð Þ þ iv x; y; tð Þ, (12)

which is the solution of the problem

1þ λð Þ∂tF x; y; tð Þ ¼ ν 1þ θ
∂

∂t

� �

∂
2
x þ ∂

2
y

� �

F x; y; tð Þ � νK 1þ θ
∂

∂t

� �

F x; y; tð Þ �H 1þ λð ÞF x; y; tð Þ,

(13)

F x; y; 0ð Þ ¼ ∂tF x; y; 0ð Þ ¼ 0, (14)

F 0; y; tð Þ ¼ F d; y; tð Þ ¼ F x; 0; tð Þ ¼ F x; h; tð Þ ¼ Ueiwt, (15)

t > 0, 0 < x < d and 0 < y < h:

The solution of the problem (13)–(15) will be obtained by means of the DFFST and LT.

The DFFST of function F(x, y, t) is denoted by

Fmn tð Þ ¼

ðd

0

‍

ðh

0

‍ sin
mπx

d

� �

sin
nπy

h

� �

F x; y; tð Þdxdy, m, n ¼ 1, 2, 3, :: (16)

4. Calculation of the velocity field

Multiplying both sides of Eq. (13) by sin mπx
d

� 	

and sin
nπy
h

� 	

, integrating w.r.t x and y over

[0, d]� [0, h] and using Eq. (16), we get

1þ λð Þ
∂Fmn tð Þ

∂t
þ νλmn 1þ θ

∂

∂t

� �

Fmn tð Þ þH 1þ λð ÞFmn tð Þ þ νK 1þ θ
∂

∂t

� �

Fmn tð Þ

¼ νλmnU
1� �1ð Þm½ � 1� �1ð Þn½ �

ζmλn
1þ iwθð Þeiwt, (17)

where
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ζm ¼
mπ

d
,λn ¼

nπ

h
and λmn ¼ ζ

2
m þ λ2

n:

The Fourier transform Fmn(t) have to satisfy the initial conditions

Fmn 0ð Þ ¼ ∂tFmn 0ð Þ ¼ 0: (18)

We apply LT to Eq. (17) and using initial conditions (18) to get

Fmn sð Þ ¼
νλmnU 1� �1ð Þm½ � 1þ iwθð Þ 1� �1ð Þn½ �

ζmλn s� iwð Þ 1þ λð Þ sþHð Þ þ ν 1þ θsð Þ λmn þ Kð Þ½ �
: (19)

We will apply the discrete inverse LT technique [20] to obtain analytic solution for the velocity

fields and to avoid difficult calculations of residues and contour integrals, but first we express

Eq. (19) in series form as

Fmn sð Þ ¼
νλmnU 1� �1ð Þm½ � 1þ iwθð Þ 1� �1ð Þn½ �

ζmλn s� iwð Þ

X∞

p¼0

‍
X∞

q¼0

‍
X∞

r¼0

‍
X∞

s¼0

‍
X∞

l¼0

�
νpþ1λsθqKp�rHl λmnð Þrþ1

Γ q� pð ÞΓ r� pð ÞΓ sþ pþ 1ð ÞΓ lþ pþ 1ð Þ

�1ð Þ� pþqþrþsþlð Þq!r!s!l!Γ pð ÞΓ pð ÞΓ 1þ pð ÞΓ 1þ pð Þsl�qþpþ1
:

(20)

We apply the discrete inverse LT to Eq. (20), to obtain

Fmn tð Þ

¼
eiwtU 1� �1ð Þm½ � 1� �1ð Þn½ �νλmn 1þ iwθð Þ

ζmλn

X∞

p¼0

‍
X∞

q¼0

‍
X∞

r¼0

‍
X∞

s¼0

‍
X∞

l¼0

‍

�
νpþ1λsθqKp�rHl λmnð Þrþ1

Γ q� pð ÞΓ r� pð ÞΓ sþ pþ 1ð ÞΓ lþ pþ 1ð Þtl�qþp

�1ð Þ� pþqþrþsþlð Þq!r!s!l!Γ pð ÞΓ pð ÞΓ 1þ pð ÞΓ 1þ pð ÞΓl� qþ pþ 1
:

(21)

Taking the inverse Fourier sine transform we get the analytic solution of the velocity field

F x; y; tð Þ ¼
4

dh

X∞

m¼1

‍
X∞

n¼1

‍ sin ζmxð Þ sin λnyð ÞFmn x; y; tð Þ

¼
4eiwtU 1þ iwθð Þ

dh

X∞

m¼1

‍
X∞

n¼1

‍
1� �1ð Þm½ � 1� �1ð Þn½ � sin ζxð Þ sin λnyð Þ

ζmλn

�
X∞

p¼0

‍
X∞

q¼0

‍
X∞

r¼0

‍
X∞

s¼0

‍
X∞

l¼0

‍
νpþ1λsθqKp�rHl λmnð Þrþ1tl�qþp

�1ð Þ� pþqþrþsþlð Þq!r!s!l!

�
Γ q� pð ÞΓ r� pð ÞΓ sþ pþ 1ð ÞΓ lþ pþ 1ð Þ

Γ pð ÞΓ pð ÞΓ 1þ pð ÞΓ 1þ pð ÞΓl� qþ pþ 1
:

(22)
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To obtain a more compact form of velocity field we write Eq. (22) in terms of Fox H-function,

F x; y; tð Þ ¼
4eiwtU 1þ iwθð Þ

dh

X

∞

m¼1

‍
X

∞

n¼1

‍
sin ζmxð Þ sin λnyð Þ 1� �1ð Þm½ � 1� �1ð Þn½ �

ζmλn

�
X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
�1ð Þpþqþrþs

νpþ1λsθqKp�r λmnð Þrþ1t�qþp

q!r!s!

�H1,4
4,6 Ht

1� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, �s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, 1� p; 0ð Þ, 1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

:

"

(23)

or

F x; y; tð Þ ¼
16eiwtU 1þ iwθð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
sin ζcxð Þ sin λeyð Þ

ζcλe

�
X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
�1ð Þpþqþrþs

νpþ1λsθqKp�r λceð Þrþ1t�qþp

q!r!s!

�H1,4
4,6 Ht

1� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, 1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, 1� p; 0ð Þ, 1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

;

"

(24)

where

ζc ¼ 2mþ 1ð Þ
π

d
,λe ¼ 2nþ 1ð Þ

π

h
, c ¼ 2mþ 1, e ¼ 2nþ 1:

From Eq. (24), we obtain the velocity field due to cosine oscillations of the duct

u x; y; tð Þ ¼
16U cos wtð Þ � wθ sin wtð Þð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
sin ζcxð Þ sin λeyð Þ

ζcλe

�
X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
�1ð Þpþqþrþs

νpþ1λsθqKp�r λceð Þrþ1t�qþp

q!r!s!

�H1,4
4,6 Ht

1� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, 1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, 1� p; 0ð Þ, 1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

;

"

(25)

and the velocity field due to sine oscillations of the duct

v x; y; tð Þ ¼
16U sin wtð Þ � wθ cos wtð Þð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
sin ζcxð Þ sin λeyð Þ

ζcλe

�
X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
�1ð Þpþqþrþs

νpþ1λsθqKp�r λceð Þrþ1t�qþp

q!r!s!

�H1,4
4,6 Ht

1� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, 1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, 1� p; 0ð Þ, 1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

:

"

(26)

We use the following property of the Fox H-function [21] in the above equation
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H
1,p
p,qþ1 �χ

1� a1;A1ð Þ, 1� a2;A2ð Þ,…, 1� ap;Ap

� 	

1; 0ð Þ, 1� b1;B1ð Þ,…, 1� bq;Bq

� 	



















3

5

2

4

¼
X

∞

k¼0

‍

Γ a1 þ A1kð Þ…Γ ap þ Apk
� 	

k!Γ b1 þ B1kð Þ…Γ bq þ Bqk
� 	χk

:

5. Calculation of the shear stress

We denote the tangential tensions for the cosine oscillations of the duct by τ1c(x, y, t), τ2c(x, y, t)

and for sine oscillations by τ1s(x, y, t), τ2s(x, y, t).

If we introduce

τ1 x; y; tð Þ ¼ τ1c x; y; tð Þ þ iτ1s x; y; tð Þ, (27)

τ2 x; y; tð Þ ¼ τ2c x; y; tð Þ þ iτ2s x; y; tð Þ, (28)

in Eq. (7), we get

τ1 x; y; tð Þ ¼
μ

1þ λð Þ
1þ θ

∂

∂t

� �

∂xF x; y; tð Þ, (29)

τ2 x; y; tð Þ ¼
μ

1þ λð Þ
1þ θ

∂

∂t

� �

∂yF x; y; tð Þ: (30)

We apply LT to Eqs. (29) and (30), to obtain

τ1 x; y; sð Þ ¼
μ 1þ θsð Þ

1þ λ
∂xF x; y; sð Þ, (31)

τ2 x; y; sð Þ ¼
μ 1þ θsð Þ

1þ λ
∂yF x; y; sð Þ: (32)

Taking the inverse Fourier transform of Eq. (19) to get F x; y; sð Þ and then by putting it into

Eq. (31), we get

τ1 x; y; sð Þ ¼
4μ 1þ θsð Þ

dh 1þ λð Þ

X

∞

m¼1

‍

X

∞

n¼1

‍

cos ζmxð Þ sin λnyð Þ 1� �1ð Þm½ � 1� �1ð Þn½ �

1þ λð Þ sþHð Þ þ ν 1þ θsð Þ λmn þ Kð Þ½ �

�
Uνλmn 1þ iwθð Þ

λn s� iwð Þ
,

(33)

or

τ1 x; y; sð Þ ¼
16μ 1þ θsð Þ

dh 1þ λð Þ

X

∞

c¼0

‍

X

∞

e¼0

‍

cos ζcxð Þ sin λeyð ÞUνλce 1þ iwθð Þ

λe s� iwð Þ 1þ λð Þ sþHð Þ þ ν 1þ θsð Þ λce þ Kð Þ½ �
, (34)

where
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ζc ¼ 2mþ 1ð Þ
π

d
,λe ¼ 2nþ 1ð Þ

π

h
, c ¼ 2mþ 1, e ¼ 2nþ 1:

We express Eq. (34) in series form in order to obtain a more suitable form of τ1,

τ1 x; y; sð Þ ¼
16μU 1þ iwθð Þ

dh s� iwð Þ

X

∞

c¼0

‍
X

∞

e¼0

‍
cos ζcxð Þ sin λeyð Þ

λe

X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
X

∞

l¼0

�
νpþ1λsθqKp�rHl λceð Þrþ1

Γ q� p� 1ð ÞΓ r� pð ÞΓ sþ pþ 2ð ÞΓ lþ pþ 1ð Þ

�1ð Þ� pþqþrþsþlð Þq!r!s!l!Γ pð ÞΓ pþ 1ð ÞΓ 2þ pð ÞΓ 1þ pð Þsl�qþpþ1
:

(35)

Using the inverse LT of the last equation, we obtain

τ1 x; y; tð Þ ¼
16μeiwtU 1þ iwθð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
cos ζcxð Þ sin λeyð Þ

λe

X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

�
X

∞

l¼0

‍
νpþ1λsθqKp�rHl λceð Þrþ1tl�qþp

Γ q� p� 1ð ÞΓ sþ pþ 2ð Þ

�1ð Þ� pþqþrþsþlð Þq!r!s!l!Γ pð ÞΓ pþ 1ð ÞΓ 2þ pð ÞΓ 1þ pð Þ

�
Γ lþ pþ 1ð Þ

Γ l� qþ pþ 1ð Þ
:

(36)

Lastly, we write the stress field in a more compact form by using Fox H-function

τ1 x; y; tð Þ ¼
16μeiwtU 1þ iwθð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
cos ζcxð Þ sin λeyð Þ

λe

X

∞

p¼0

�
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
νpþ1λsθqKp�r λmnð Þrþ1t�qþp

�1ð Þ� pþqþrþsð Þq!r!s!

�H1,4
4,6 Ht

2� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, �1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, �p; 0ð Þ, �1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ



















3

5

:

2

4

(37)

From Eq. (37), we obtain the tangential tension due to cosine oscillations of the duct

τ1c x; y; tð Þ ¼
16Uμ cos wtð Þ � wθ sin wtð Þð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
cos ζcxð Þ sin λeyð Þ

λe

�
X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
�1ð Þpþqþrþsνpþ1λsθqKp�r λmnð Þrþ1t�qþp

q!r!s!

�H1,4
4,6 Ht

2� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, �1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, �p; 0ð Þ, �1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

;

"

(38)

and the tangential tension corresponding to sine oscillations of the duct
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τ1s x; y; tð Þ ¼
16Uμ sin wtð Þ � wθ cos wtð Þð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
cos ζcxð Þ sin λeyð Þ

λe

X

∞

p¼0

�
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
�1ð Þpþqþrþsνpþ1λsθqKp�r λmnð Þrþ1t�qþp

q!r!s!

�H1,4
4,6 Ht

2� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, �1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, �p; 0ð Þ, �1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

:

"

(39)

In the similar fashion we can find τ2c(x, y, t) and τ2s(x, y, t) from Eqs. (19) and (32).

6. Volume flux

The volume flux due to cosine oscillations is given by

Qc x; y; tð Þ ¼

ðd

0

‍

ðh

0

‍u x; y; tð Þdxdy, (40)

putting u(x,y, t) from Eq. (25) into the above equation, we obtain the volume flux of the rectangu-

lar duct due to cosine oscillations

u x; y; tð Þ ¼
64U cos wtð Þ � wθ sin wtð Þð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
1

ζcλeð Þ2

�
X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
νpþ1λsθqKp�r λceð Þrþ1t�qþp

�1ð Þ� pþqþrþsð Þq!r!s!

�H1,4
4,6 Ht

1� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, 1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, 1� p; 0ð Þ, 1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

:

"

(41)

Similarly, we obtain the volume flux of the rectangular duct due to the sine oscillations

v x; y; tð Þ ¼
64U sin wtð Þ � wθ cos wtð Þð Þ

dh

X

∞

c¼0

‍
X

∞

e¼0

‍
1

ζcλeð Þ2

�
X

∞

p¼0

‍
X

∞

q¼0

‍
X

∞

r¼0

‍
X

∞

s¼0

‍
νpþ1λsθqKp�r λceð Þrþ1t�qþp

�1ð Þ� pþqþrþsð Þq!r!s!

�H1,4
4,6 Ht

1� qþ p; 0ð Þ, 1� rþ p; 0ð Þ, 1� s� p; 0ð Þ, �p; 1ð Þ

0; 1ð Þ, 1� p; 0ð Þ, 1� p; 0ð Þ, �p; 0ð Þ, �p; 0ð Þ, q� p; 1ð Þ
















#

:

"

(42)

7. Numerical results and discussion

We have presented flow problem of MHD Jeffrey fluid passing through a porous rectangular

duct. Exact analytical solutions are established for such flow problem using DFFST and LT
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technique. The obtained solutions are expressed in series form using Fox H-functions. Several

graphs are presented here for the analysis of some important physical aspects of the obtained

solutions. The numerical results show the profiles of velocity and the adequate shear stress for

the flow. We analyze these results by variating different parameters of interest.

The effects of relaxation time λ of the model are important for us to be discuss. In Figure 1

we depict the profiles of velocity and shear stress for three different values of λ. It is

observed from these figures that the flow velocity as well as the shear stress decreases with

increasing λ, which corresponds to the shear thickening phenomenon. Figure 2 are sketched

to show the velocity and the shear stress profiles at different values of retardation time θ. It is

noticeable that velocity as well as the shear stress decreases by increasing θ. In order to study

the effect of frequency of oscillation ω, we have plotted Figure 3, where it appears that the

velocity is also a strong function of ω of the Jeffrey fluid. The effect of frequency of oscillation

on the velocity profile for cosine oscillation is same as that of the retardation time θ. The

effect of magnetic parameter H of the model is important for us to be discussed. In Figure 4,
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Figure 1. Velocity and shear stress profiles corresponding to the cosine oscillations of the duct for different values of λ.

Other parameters are taken as x = 0.5, y = 0.3, U = 0.2, H = 0.5, K = 0.6, d = 1, h = 2, θ = 0.6, ω = 0.5 and ν = 0.1.
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Figure 2. Velocity and shear stress profiles corresponding to the cosine oscillations of the duct for different values of θ.

Other parameters are taken as x = 0.5, y = 0.3, U = 0.2, H = 0.5, K = 0.6, d = 1, h = 2, λ = 1.4, ω = 0.5 and ν = 0.1.
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Figure 3. Velocity and shear stress profiles corresponding to the cosine oscillations of the duct for different values of ω.

Other parameters are taken as x = 0.5, y = 0.3, U = 0.2, H = 0.5, K = 0.6, d = 1, h = 2, θ = 0.6, λ = 1.4 and ν = 0.1.
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Figure 4. Velocity and shear stress profiles corresponding to the cosine oscillations of the duct for different values of H.

Other parameters are taken as x = 0.5, y = 0.3, U = 0.2, λ = 1.4, K = 0.6, d = 1, h = 2, θ = 0.6, ω = 0.5 and ν = 0.1.
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Figure 5. Velocity and shear stress profiles corresponding to the cosine oscillations of the duct for different values of K.

Other parameters are taken as x = 0.5, y = 0.3, U = 0.2, H = 0.5, λ = 1.4, d = 1, h = 2, θ = 0.6, ω = 0.5 and ν = 0.1.
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we depict the profiles of velocity and shear stress for three different values of H. It is

observed from these figures that the flow velocity as well as the shear stress decreases with

increasing H, which corresponds to the shear thickening phenomenon. Figure 5 is sketched

to show the velocity and the shear stress profiles at different values of K. It is noticeable that

velocity as well as the shear stress increases by increasing K. In order to study the effects of t,

we have plotted Figure 6, where it appears that the velocity is also a strong function of t of

the Jeffrey fluid. It can be observed that the increase of t acts as an increase of the magnitude

of velocity components near the plate, and this corresponds to the shear-thinning behavior of

the examined non-Newtonian fluid. Figure 7 presents the velocity field and the shear stress

profiles at different values of y. It is noticeable that velocity and shear stress both decreases

by increasing y.
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Figure 6. Velocity and shear stress profiles corresponding to the cosine oscillations of the duct for different values of t.

Other parameters are taken as x = 0.5, λ = 1.4, U = 0.2, H = 0.5, K = 0.6, d = 1, h = 2, θ = 0.6, ω = 0.5 and ν = 0.1.
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Figure 7. Velocity and shear stress profiles corresponding to the cosine oscillations of the duct for different values of y.

Other parameters are taken as x = 0.5, λ = 1.4, U = 0.2, H = 0.5, K = 0.6, d = 1, h = 2, θ = 0.6, ω = 0.5 and ν = 0.1.
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