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Abstract

Precision variable rate spray is one of the research hotspots in the field of modern agricul-
ture spraying applications. Variable rate spraying of the canopy allows growers to apply
adjusted volume rate of pesticides to the target, based on canopy size, and to apply plant
protection products in an economical and environmentally sound manner. In the field of
pesticide application, knowledge of the geometrical characteristics of plantations will
guarantee a better adjustment of the dosage of the agrochemicals applied. This technology
is integrated with intelligent real-time sensors, which have a high potential for agricul-
tural precision spray applications. This book chapter presents the foundations and appli-
cations in agriculture of the primary systems used for real-time spray target detection of
the geometrical characterization of tree plantations. Systems based on infrared, ultrasonic,
light detection and ranging (LIDAR), and stereo vision sensors were discussed, respec-
tively, on their performances to detect spray targets. Among them, laser scanners and
stereo vision systems are probably the most promising and complementary techniques
for achieving three-dimensional (3D) pictures and maps of plants and canopies. The
advantages of data fusion applied in real-time target detection and its accuracy in density
estimation of the plants were stressed.

Keywords: variable-rate sprayer, infrared sensor, ultrasonic sensor, stereo vision sensor,
LIDAR sensor, data fusion

1. Introduction

In agriculture, chemicals are often essential for crop protection. Pesticide spray applications

have facilitated high-quality and abundant products for ornamental nurseries and orchards.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



However, despite these achievements, conventional sprayers are grossly inefficient because the

same amounts of chemicals are discharged continuously in the field regardless of the plants

present, canopy structure, or leaf foliage density. Canopies are spatially variable, and a uni-

form dose may not be adequate for the entire orchard. Since plants are often either over or

under sprayed, resulting in environmental pollution issues and inadequate pest control.

Besides, growing pressure from farmers, environmental organizations, and public opinion are

encouraging lawmakers to try to reduce pesticide losses to the environment. Spraying at an

adequate volume application rate on a site-specific basis would help reduce the amount of

agrochemicals used in the framework of precision horticulture and precision fruticulture.

Canopies are spatially variable, and knowing the structural characteristics of the canopy is a

crucial consideration for improving the efficiency of the spray application process for tree

crops. The introduction of electronic systems in the development of new equipment helps to

reduce both operating and environmental costs by optimizing the efficiency of the pesticide

treatments. For instance, machines that spray only in the presence of plants, not in the gaps

between them, have already been developed for cabbage vegetable crops [1], peach, and apple

tree cultures [2]. An essential goal for orchard and vineyard spraying systems is a real-time

adjustment of the operating parameters according to the target density, with the aim of

keeping the droplets in the canopy, thus improving spray deposition and reducing spray drift.

Therefore, to reduce pollution during spray operations, interest in variable-rate spray technol-

ogy is growing. A promising solution is the new intelligent variable-rate spray technology that

automatically controls spray outputs to match plant presence, canopy characteristics, and

travel speeds. This currently available technology can reduce pesticide use and off-target

losses, and thus its use will benefit farmers, consumers, and the environment. Advances in

sensing and detection technologies may facilitate precision autonomous operations that could

improve crop yield and quality while saving energy, reducing workforce, and being environ-

mentally friendly. Real-time sensor and control systems on sprayers are necessary to achieve a

uniform spray deposit on the crop canopies and to reduce spray losses. These sensor systems

are based on different kinds of physical principles, which may allow efficient monitoring of the

canopies. The premise of precision spraying is the detection of the characteristic information of

the target plant, which is the foundation and basis for the spraying. However, obtaining

accurate data in an easy, practical, and efficient way is a significant problem to be solved. This

book chapter will review the real-time sensor based on the precision variable spray method.

2. Infrared sensor-based detection technology

All objects with a temperature above absolute zero emit heat energy in the form of radiation.

Infrared sensor is an electronic sensor that measures infrared light radiating from objects in its

field of view. This technique works entirely by detecting infrared radiation emitted by or

reflected from objects. An infrared detector utilization is in the automatic target detection

system. Infrared sensor-detecting techniques have been adopted in automatic target-detecting

orchard sprayers to discern targets and control the spraying system automatically. These
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sprayers can be commercialized easily due to the low price of infrared sensor detectors. Devel-

oped countries such as the USA, EU, and Russia are developing automatic target-detecting

sprayers that utilize infrared imaging techniques [3–5]. Due to the problems related to infrared

image processing, these sprayers remain in the experimental stage.

He et al. [6] designed a precision orchard sprayer based on automatic infrared target-detecting

and electrostatic spraying techniques (Figure 1). The sensors are aimed at the top, middle, and

bottom segments of the tree canopy to detect different shapes of fruit trees and provide signals

to the control system. Experimental results show that the new automatic target-detecting

orchard sprayer with an infrared sensor can save more than 50–75% of pesticides, improve

the utilization rate (over 55%), control efficiency, and significantly reduce environmental pol-

lution caused by the pesticide application.

Bargen et al. [7] designed a red/near-infrared reflectance sensor system for detecting plants.

These reflectance characteristics have been determined using spectra-radiometry technology.

Detection of plants is possible based upon the distinct reflectance characteristics of plants, soil,

and residues. Optical filters were used to select the spectral bandwidth sensitivities for the red

and near-infrared ray photodetectors. The reflectance values were digitized for incorporation

into a normalized difference index in order to provide a stronger indication that a live plant is

present within the field of view of the sensor. This sensor system was combined with a

microcontroller for activating a solenoid-controlled spray nozzle on a single-unit prototype

spot agricultural sprayer. Jiao et al. [8] designed infrared photoelectric switch and applied it to

spraying on aspen. The experiment proved that infrared photoelectric switch attained the

request of the design and reduced the cost of spraying. The interval of target identification

was less than 0.3 m, and range of target identification was between 0.2 and 15 m. Adjustable

work minimum pass spacing was less than 3.0 m. Jianjun et al. [9] developed an infrared

detecting system consisting of integrated circuit for orchard automatic target sprayer. This

system satisfied in detail the design requirements of stability, sensibility, compact volume,

and anti-interference from environmental ray, and the detectable distance between the detector

and the targets was variable from 0 to 6.15 m, and the space between two spraying targets was

no more than 0.3 m.

Infrared detection technology in plant targeting is more applicable for dense and large target

reflectors under high light intensity. It will get the best detector sensitivity near midpoint of

detection distance and give better detection results for plants with high leaf reflectivity.

Figure 1. Photo of the automatic target-detecting orchard sprayer working in orchard [6].
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However, when utilizing infrared target detection for plant pesticide spraying, the operation of

an infrared detecting system for automatic target orchard sprayer was hard to work well in

rough environment interference resulting from designed defects, including short detectable

distance, complicated circuit, and the high cost of the automatic target detector. Although

temperature and humidity have little impact on the detection results, plant appearance, light

intensity, walking speed, and plant space have evident influences on detecting effect, espe-

cially the plants’ appearance and light intensity. Plant density and light intensity are propor-

tional both to detection distance and width. The speed of detector has a linear correlation with

the minimum distance of individual plant efficiently distinguished. Plant space is monoto-

nously correlative to detecting sensitivity [10]. Besides, due to the limitation of this sensor, the

detection method based on infrared technology cannot detect the characteristic information

such as the specific size and size of the target, that is, the qualitative calculation and analysis

cannot be realized. Also, the detection process is easily exposed to external light influence [11, 12],

and with the continuous growth of modern agricultural spray operation requirements, the tech-

nology has been gradually unable to meet the development needs.

3. Ultrasonic sensor-based detection technology

Another type of system is based on the use of ultrasonic sensors to measure distances quickly

and automatically. These sensors have three essential elements: an emitter of ultrasonic waves,

a chronometer, and a wave receiver. Their operation is based on determining the flight time of

an ultrasonic wave from the point of emission to the point of detection after bouncing off an

object. The potential application of ultrasonic sensor includes orchard management based on

rapid quantification of tree volume. The information could be used in variable-rate application

of agrochemicals within a grove. There was without spraying when there was no vegetation,

half spraying when there was little vegetation in front of the sensors and full spraying when

sensors detected the width of the canopy above a given threshold. This achievement led the

way to a continuous variation of flow rate according to the variability of the canopy along

citrus groves, vineyard, and fruit orchard rows [11, 13–15].

Different researches have been conducted for automatic measurement of canopy dimensions

in groves. For decades, ultrasonic sensors have been employed in agriculture for different

purposes [16, 17]. One of these applications is detection and ranging to obtain structural data

from trees. The first advances in this field were related to the application of plant protection

materials such as pesticides in different orchards. When dose adjustment according to canopy

structure was proposed [18], some researchers began to design electronic systems for measur-

ing canopy structural parameters. The first proposed systems to determine canopy volume

used many ultrasonic sensors on a vertical mast [19] or mounted on the sprayer [20]. Because

of the state-of-the-art of the application technologies, using this information in real time was

not possible. The use of ultrasonic sensors has been reported only for the detection of canopy

presence by [2, 21]. In this method, spraying was done exclusively when the canopy was in

front of the sprayer. Another application was citrus trees spraying from constant given dis-

tance [18]. The nozzles were located on a movable arm, which follows the boundary of the tree

Automation in Agriculture - Securing Food Supplies for Future Generations56



according to data collected from sensors. Ultrasonic sensors were placed 50 and 75 cm apart.

The same authors improved another sprayer that was able to spray with three different

dosages according to width estimation of the canopy made by ultrasonic sensors [5].

In the USA, the performance of a sprayer prototype using ultrasonic sensors was tested by Giles

et al. [2]. The system adjusted the flow rate of the sprayer to the canopy size variations measured

by the sensors. The spray boom was divided into three sections each side, and these sections

were independently turned on and off according to the readings of ultrasonic sensors, placed at

different heights. Spray savings were reported, but there was also less spray deposition on some

foliage areas when the control system was used. In the late 1980s, sprayer models appeared on

the market, which were able to turn off the spray when there was a gap between trees [20]. It is

beneficial for saving spray in young orchards or when there are wide gaps between trees,

reducing the spray drift and the chemical cost. However, these systems do not account for

variations in canopy shape, which are found in most of the orchards. More recently, another

approach was made by Balsari and Tamagnone [22] with an ultrasonic control system mounted

on a ducted air-assisted sprayer. In this case, the number of working nozzles could be adjusted to

tree height, according to the readings of sensors placed at different heights. Tumbo et al. [23]

proposed the use of ultrasound sensors to estimate the volume of citrus trees using the principle

of time of flight to determine the distance to the target. Adopting the same system, Zaman and

Salyani [24] proved that forward speed is not as important as tree density on volume estimation.

Planas et al. [17] reported interferences between adjacent sensors spaced less than 60 cm apart.

This method assumes the constant distance from the sensor to the tree center, and a small

variation on this distance results in a large error on the final volume estimation. Balsari et al.

[25] went one step further analyzing the crop identification system and concluded that there is a

relationship between canopy density and its ultrasonic echo signal. Palleja and Landers [26]

reported a low-cost system using four ultrasonic sensors and a microcontroller board to estimate

the canopy density as a function of the ultrasonic echoes. It was tested as the growing season

progressed and the data obtained highly correlated with the season, but they were not compared

to actual canopy density.

Moltó et al. [5] developed a prototype to turn off the spray in the gap between two tree

canopies and with the possibility of making up for the variation of canopy volume at the

beginning and end of each tree (Figure 2), using the action of two electro valves at each boom

section. An automatic sprayer has been developed that, using an electronic control system,

adapts the dose of the product to the actual amount of leaf mass. This system is based on a

cheap, 8-bit, conventional microcontroller that receives information about the tree shape from

two ultrasound sensors and actuates through several electro-hydraulic valves mounted on a

specially designed hydraulic circuit. The system allows spraying higher doses in the central

part of the tree, where there is more vegetation in globular shaped canopies. Under the

conditions of field test experiments, the system achieved savings of up to 37% of the product

while maintaining the quality of the treatment. These savings depend on the size, shape, and

distance between trees in each particular orchard.

Gil et al. [15] pointed out that target detection with ultrasonic sensors can be used to adapt the

applied dose following the principles of the variable-rate technology. A multinozzle air-blast
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sprayer (Figure 3) was fitted with three ultrasonic sensors and three electro-valves, to modify

the flow rate from the nozzles in real time, in relation to the variability of crop width. A

constant application rate of 300 l/ha�1 was compared with a variable-rate application using

the tree row volume principle at a 0.095 l/m�3 canopy. The total flow rate sprayed by the

nozzles was modified according to the variations of crop width measured by the ultrasonic

sensors. On average, 58% less liquid was applied compared to the constant rate application,

with similar deposition on leaves with both treatments.

Figure 2. Chemical applied by a conventional sprayer and by the prototype [5].

Figure 3. (a) Sprayer prototype with ultrasonic sensors and electro-valves, (b) principle of operation of the prototype [15].
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Solanelles et al. [11] designed an electronic control system for pesticide application propor-

tional to the canopy width of tree crops (Figure 4). A prototype of an electronic control system

based on ultrasonic sensors and proportional solenoid valves for a proportional application to

the canopy width of tree crops was mounted on an air-assisted sprayer. The sprayer flow rate

adjustment was based on the relationship between the actual tree width measured by the

ultrasonic sensors and the maximum tree width of the orchard. The prototype was tested in

olive, pear, and apple orchards to assess the system’s performance in different crop geome-

tries. Metal tracers were used so that spray deposits for each treatment could be measured on

the same samples, reducing sampling variability. Liquid savings of 70, 28, and 39% in compar-

ison to a conventional application were recorded in the olive, pear, and apple orchards,

respectively, which resulted in lower spray deposits on the canopy but a higher ratio between

the total spray deposit and the liquid sprayer output. A reduction of the maximum tree width

parameter in the control algorithm in the apple orchard reduced spray savings but increased

spray deposition, with spray savings mainly in the middle level of the outside canopy, com-

pared to conventional air-assisted applications. As a result of this work, the prototype was

assembled with ultrasonic sensors with a working range of 0.4–3.0 m.

Gil et al. [27] designed, implemented, and validated a variable-rate sprayer vineyard prototype

(Figure 5). This prototype can modify the sprayed volume application rate according to the

target geometry by using an algorithm based on the canopy volume inspired by the tree row

volume model. Variations in canopy width along the row crop are electronically measured

Figure 4. Sampling strategy for one replication in the olive orchard trial [11].
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using several ultrasonic sensors placed on the sprayer and used to modify the emitted flow

rate from the nozzles in real time; the objective during this process is to maintain the sprayed

volume per unit canopy volume. Field trials carried out at different crop stages for Merlot and

Cabernet Sauvignon vines (Vitis vinifera) indicated a good relationship between the applied

volume and canopy characteristics. The potential pesticide savings were estimated to be 21.9%

relative to the costs of a conventional application. This conclusion is in accordance with the

results of similar research on automated spraying systems.

Zaman and Salyani [24] evaluated the repeatability of ultrasonic measurements of tree volume,

determined the effects of ground speed and foliage density on the ultrasonic measurements,

and quantified the difference between volumes of the North and South canopy halves of citrus

trees. An experiment was conducted to examine the effects of the canopy foliage density and

ground speed on the performance of the Durand-Wayland ultrasonic system in tree volume

measurement (Figure 6). The difference between ultrasonic and manual volumes ranged from

�17.3 to 28.71% at the 95% confidence level. About 95% of the ultrasonic measurements were

repeatable within �12.7 to 30.9% of the manual volume. Canopy foliage density had signifi-

cant effect on ultrasonic measurements of canopy volume. The volume difference was higher

in light than dense trees. There was no significant effect of ground speed (1.6–4.7 km/h) on

ultrasonic volume measurements. Variability of the measurements in partially defoliated can-

opies increased as ground speed increased. There was a significant difference between the

volumes of two sides of the trees.

Schumann and Zaman [16] developed a software for real-time ultrasonic mapping of tree

canopy size. A schematic layout of ultrasonic transducer system and manually measured tree

dimensions were used for calculation of tree canopy sizes in a citrus grove. Vehicle and trailer

with vertical array of 10 ultrasonic transducers and differential global positioning system

(DGPS) were used to measure tree heights and volumes. Transducers are mounted from 0.6

to 6.0 m above the ground (Figure 7). The data collected with this automated system were

compared with manually measured size data of 30 trees to estimate accuracy, and a grove of

376 citrus trees was surveyed twice with the system to estimate repeatability. Results showed

no significant differences between ultrasonically and manually measured tree sizes ranging in

height from 2.1 to 4.3 m and in volume from 6.3 to 54.0 m3/tree�1. The system located tree

positions for GIS mapping purposes within 1.37 m, 95% of the time.

Figure 5. (a) and (b) Placement of components on the sprayer, (c) laptop for wireless control of the prototype from the

tractor cab, (d) interface for input data created using LabVIEW [27].
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Palleja and Landers [26] proposed a real-time method, based on an array of ultrasonic sensors,

to estimate canopy density in apple orchards and vineyards (Figure 8). This estimation could

be used as a reference to adjust the canopy spraying machine parameters with the aim of

improving deposition and avoiding drift. Two sets of experiments were carried out: the first

Figure 6. Schematic view of dimensions used to compute canopy volume manually and with ultrasonic measurements

[24].

Figure 7. (a) Schematic layout of ultrasonic transducer system, (b) vehicle and trailer with vertical array of 10 ultrasonic

transducers.
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one using a single ultrasound sensor in a greenhouse to determine the signal behavior and

adjust the algorithms. The second set of experiments was conducted in the orchard and

vineyard, under real working conditions. Results show that the signal obtained is highly

correlated with the growing season, and it has similar values on both sides of the row, with

an error of 14.1% in vineyards and 3.8% in apple trees and it is sensitive enough to detect

hailstorm effects on the canopy. The ultrasound echoes and the canopy density are propor-

tional. The greater the density, the more the echoes produced. The sprayers incorporate a set of

four ultrasound sensors and a Louvre system, which allows air volume to be adjusted from 0

to 100%. Four ultrasound sensors were attached on the front of the sprayer, at 2.2 m from the

nozzles, and distributed at different heights.

Palleja and Landers [28] developed a nonexpensive system to estimate the crop density using

ultrasound sensors (Figure 9). It is important to note that canopy spraying is rarely, if ever,

conducted after harvest and it is often done before blossom, in the dormant period. The real-

time capabilities of the ultrasonic system allow the sprayer to be adjusted in order to improve

spray deposition and reduce spray drift. As well as density, dead plants or row ends are easily

detectable, and the sprayer can automatically switch the nozzles on/off.

Maghsoudi et al. [29] designed an electronic control system for the detection and estimation of

tree canopy dimensions for application rate adjustment. Three ultrasonic ranging sensors were

utilized to estimate the distance to the target at three different heights (Figure 10). A multilayer

Figure 8. (a) Schematic hypothesis diagram, (b) and (c) modified sprayer and ultrasound sensor distribution [26].

Figure 9. (a–d) Canopy evolution along the season, (e) ditch and tractor tilt problem [28].
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perceptron (MLP) neural network with gradient-descent back-propagation algorithm, tangent-

sigmoid transfer function, and 3-7-6 topology was used for volume estimation of tree sections.

Training and validation errors as well as R2 values indicated the reliability of the network for

volume prediction. Results of t-test for comparing the number of spray droplet impacts, coverage

of (artificial) target, spray quality parameter, and relative span factor between variable rate and

conventional spraying were not significant, which indicates the consistency of spray distribution

in selective application. Experiments showed a reduction in pesticide usage of about 34.5% by

means of variable-rate technology (41.3, 25.6, and 36.5, respectively for the top, middle, and

bottom sections of tree canopy). Precise application of agrochemicals reduces both costs and

environmental pollution by supporting a decrease in the amount of delivered spray.

Jeon et al. [30] evaluated ultrasonic sensor for variable-rate spray applications. Ultrasonic sensors

were subjected to simulated environmental (Figure 11) and operating conditions to determine

their durability and accuracy. Conditions tested included exposure to extended cold, outdoor

temperatures, crosswinds, temperature change, dust clouds, travel speeds, and spray cloud

effects. After exposure to outdoor cold conditions for 4 months, the root mean square (RMS)

error in distance measured by the ultrasonic sensor increased from 3.31 to 3.55 cm, which was

not statistically significant. Neither the presence of dust cloud nor the changes in crosswind

speeds over a range from 1.5 to 7.5 m/s had significant effects on the mean RMS errors. Varying

sensor travel speed from 0.8 to 3.0 m/s had no significant influence on sensor detection distances.

Increasing ambient temperature from 16.7 to 41.6�C reduced the detection distance by 5.0 cm.

The physical location of the spray nozzle concerning the ultrasonic sensor had a significant effect

on mean RMS errors. The mean RMS errors of sensor distance measurements ranged from 2.3 to

83.0 cm. The RMS errors could be reduced to acceptable values by proper controlling of the

sensor/spray nozzle spacing on a sprayer. Also, multiple-synchronized sensors were tested for

their measurement stability and accuracy (due to possible cross-talk errors) when mounted on a

prototype sprayer. It was found that isolating the pathway of the ultrasonic wave of each sensor

reduced detecting interference between sensors during multiple sensor operations.

Figure 10. (a) Variable-rate sprayer for fruit tree protection, (b) attached nozzles mounted on the vertical masts for

orchard tree spraying [29].
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Of the various types of sensors used in current precision spray systems, ultrasonic sensors that

are affordable, relatively robust during outdoor conditions, and capable of estimating the canopy

volume of trees satisfactorily have been used by several researchers. It was proved that the

ultrasonic system is capable of sensing density. However, it has strong and weak points. The

main advantages of ultrasonic sensors are their robustness and low price. Ultrasonic sensors

have relatively low costs and can be easily implemented. The system works in real time, and it

works through netted canopies, has a small error duringmost of the season, and can be used as a

reference for canopy density. However, the main drawback is the large angle of divergence of

ultrasonic waves, and it has to be calibrated and very uneven fields generate inconsistent data.

The error remained low up to and including harvest date at the end of September, but significant

errors must be expected at the late season. This limits the resolution and accuracy of the

measurements taken and also requires the use of many units to cover a typical agricultural scene

[31]. The reflection of the sound waves emitted by an ultrasonic sensor is significantly affected by

the directional angle and material of the measured plane. Different leaves of a fruit tree have

different angles, which will also change when the wind blows. As a result, the angle of tree

leaves can easily affect the measurement of the leaf wall area and cause errors in the determina-

tion of the distance from the fruit tree and the leaf wall area [32].

4. LIDAR sensor-based detection technology

Another detection principle, which is being used rapidly, is based on the light detection and

ranging (LIDAR) sensor technology. This technology is a nondestructive remote sensing

Figure 11. Experiment setup to test the sensor stability with the spray clouds [30].
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technique for the measurement of distances. It is ideal for detecting and measuring nonmetallic

or biological objects [33], which provides a relatively novel tool for generating a unique and

comprehensive mathematical description of the tree structure. LIDAR is a remote laser range

sensor based on the measurement of the elapsed time between the transmission of a pulsed

laser beam and the reception of its echo from a reflecting object; this time-of-flight (TOF) is

used to estimate the distance between the laser and the object. The advantage of the laser light

relative to the ultrasonic waves is that the measurement beam is thinner and less divergent and

can be combined with a scanning mechanism to obtain a bidimensional scan pattern to report

information about a large area [34]. Terrestrial LIDAR is now used in characterizing canopy

structure for different applications like forestry or agriculture.

The use of terrestrial LIDARs in agriculture enables the measurement of structural parameters

of the orchards such as the volume of the trees. The ability to very quickly (thousands of points

per second) measure the distance between the sensor and the objects around it allows us to

obtain 3D cloud points that, by applying appropriate algorithms, makes it possible to digitally

reconstruct and describe the structure of trees with high precision [35]. For these reasons,

despite their limitation for dusty environments, LIDAR systems have turned out to be one of

the most used sensors for the geometric characterization of tree crops.

The capacity of LIDAR to quantify spatial variations, which is an essential aspect of vegetation

structure, is a significant advance over some previous methods. LIDAR systems can be used to

quantify changes in canopy structure at various time scales, which can provide detailed

assessments of canopy growth and allocation responses to field experiments. Laser technology

offers unique options regarding the viewing angle and distance information needed to model

canopy structure; hence, there is an emergency to thoroughly investigate LIDAR structural

applications [36]. The LIDAR system developed made it possible to obtain 3D digitalized

images of crops from which a significant amount of plant information, such as height, width,

volume, leaf area index, and leaf area density, could be obtained.

In agricultural applications, it is, however, possible to use two-dimensional (2D) terrestrial

LIDAR sensors, which are much cheaper to use [37]. 2D LIDAR sensors obtain a point cloud

corresponding to a plane or section of the object of interest. The fact that these sensors only

scan in one plane does not necessarily limit their scope to 2D perception [38]. Hence, this

sensor gives as output a point cloud that, postprocessed, can be exploited for the construction

of a 3D image. Rosell Polo et al. [39] proposed the use of a 2D LIDAR scanner in agriculture to

obtain 3D structural characteristics of plants. The results obtained for fruit orchards, citrus

orchards, and vineyards showed that this technique could provide fast, reliable, and nonde-

structive estimates of 3D crop structure. It can be concluded that LIDAR systems were able to

measure the geometric characteristics of plants with sufficient precision for most agriculture

applications.

Early works were concentrated on comparing of manual volume estimation with LIDAR and

ultrasonic sensor measurements [23]. Results indicated good correlation between the estima-

tion made by LIDAR and ultrasonic sensors, while correlation with manual measurements

was lower. Observation showed larger differences between manual and sensor estimations in

less dense trees. This canopy information was used to adjust agrochemical dose rate [40] and

Review of Variable-Rate Sprayer Applications Based on Real-Time Sensor Technologies
http://dx.doi.org/10.5772/intechopen.73622

65



estimate fruit yield in citrus groves [41]. LIDAR sensor in relation to vertical sampling resolu-

tion can gather much more information from canopy parameters for a more accurate estima-

tion in comparison with array of ultrasonic sensors [26–28, 42]. The results of these tests were

satisfactory, but extrapolation of these results to trees with different structures is not easy.

Although several groups have developed prototypes to adjust the application flow rate to the

variations in canopy structural parameters using ultrasonic sensors, a review of various

targeted spraying methods [43] showed that solutions for variable-rate spraying in orchards

are still in prototype phase; however, there are already commercially available sprayers for

weed control and plant fertilization in arable land.

Rosell et al. [44] proposed a method of 2D LIDAR scanner in agriculture to obtain three-

dimensional (3D) structural characteristics of plants (Figure 12). There was a great degree of

concordance between the physical dimensions, shape, and global appearance of the 3D digital

plant structure and the real plants, revealing the coherence of the 3D tree model obtained from

the developed system with respect to the real structure. For some selected trees, the correlation

coefficient obtained between manually measured volumes and those obtained from the 3D

LIDAR models was as high as 0.976.

Escolà et al. [13] designed, implemented, and validated a prototype (Figure 13) running a

variable-rate algorithm to adapt the volume application rate to the canopy volume in orchards

Figure 12. The LIDAR measurement system, (a) data in Cartesian coordinates, (b) data in polar coordinates, (c) pear

orchard, (d) different views of the 3D structure [44].

Figure 13. Variable-rate orchard sprayer prototype implemented with LIDAR sensor [13].
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on a real-time and continuous basis. The orchard prototype was divided into three parts: the

canopy characterization system (using a LIDAR sensor), the controller executing a variable-

rate algorithm, and the actuators. The controller determines the intended flow rate by using an

application coefficient (required liquid volume per unit canopy volume) to convert canopy

volume into a flow rate. The sprayed flow rates are adjusted via electromagnetic variable-rate

valves. The goal of the prototype was to keep the actual application coefficients as close as

possible to the objective. Strong relationships were observed between the intended and the

sprayed flow rates (R2 = 0.935) and between the canopy cross-sectional areas and the sprayed

flow rates (R2 = 0.926). In addition, when spraying in variable-rate mode, the prototype

achieved significantly closer application coefficient values to the objective than those obtained

in conventional spraying application mode.

Palleja and Landers [28] analyzed the sensitivity of the tree volume estimates in the spatial

trajectory of a LIDAR (Figure 14) relative to different error sources. The sequence of two-

dimensional scans performed with a LIDAR attached to a tractor can be interpreted as the

three-dimensional outline of the trees of the grove and used to estimate their volume. The

sensitivity of the tree volume estimates relative to different error sources in the estimated

spatial trajectory of the LIDAR is analyzed. Tests with pear trees have demonstrated that the

estimation of the volume is very sensitive to errors in the determination of the distance from

the LIDAR to the center of the trees (with errors up to 30% for an error of 50 mm) and in the

determination of the angle of orientation of the LIDAR (with errors up to 30% for misalign-

ments of 2�). Therefore, any experimental procedure for tree volume estimate based on a

motorized terrestrial LIDAR scanner must include additional devices or procedures to control

or estimate and correct these error sources.

The main advantages of LIDAR sensors are their high speed and accuracy of measurement,

and they provide a 3D point cloud of the object being measured. LIDAR sensors facilitate the

Figure 14. LIDAR placed on the back of a tractor [28].
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description of the geometric structure of trees. However, the scale of these remote sensing

techniques is relatively large, and consequently, the sensing resolution may be insufficient for a

real-time variable-rate application in a liner production field. In addition, remote sensing

techniques typically have a chronological gap between detection and application, resulting in

application errors. To reduce this problem, a LIDAR system or a laser scanner has been used to

measure canopy volume. Promising results were reported for using this system in which

measured canopy volume was close to manually measured volume [39, 45, 46]. Unfortunately,

the narrow row spacing in a liner field may restrict LIDAR from being used on variable-rate

liner sprayers. It is also a relatively expensive sensor ($2000–6000), and the high cost of these

instruments limits their use. Furthermore, a typical tree liner sprayer treats multiple rows at a

time. Each liner row would require an individual LIDAR system to measure its tree canopy

variation. Thus, controlling a variable-rate application sprayer would require several LIDAR

systems. This would increase the application cost to an impractical level.

5. Computer stereo vision-based detection technology

A video camera can capture video images of fruit trees and segregate parameters such as the leaf

wall area, height, and density based on the color information through video processing tech-

niques. However, due to a lack of measured distance information, distance can only be estimated

based on the precalibrated distance from the video camera, which may easily generate relatively

large errors. Computer stereo vision implies the extraction of 3D information from digital images,

as obtained by a CCD or CMOS image sensor-based digital camera, which can provide a 3D field

image by combining two monocular field images taken simultaneously using a binocular camera

[47]. The main advantage of stereoscopic vision over conventional monocular vision is its ability

to detect ranges: distances between scene objects and the camera. Monocular cameras create

planar images in which each pixel is the result of a two-dimensional (2D) projection of the 3D

world. Stereovision adds a third coordinate, or range, which completes the full localization of any

point within a 3D Cartesian frame. The natural outcome of a stereovision sensor is a 3D point

cloud that renders the captured scene with a degree of detail proportional to the resolution of the

acquired images. Every single point in the 3D cloud comes from a stereo-matched pixel and will

be endowed with three coordinates that identify its exact spatial position [38].

Berenstein et al. [48] proposed grape clusters and foliage detection algorithms for autonomous

selective vineyard sprayer (Figure 15). Novel machine vision algorithms were developed to

detect gaps between grapevines in order to reduce pesticide use during foliage spraying and to

detect the exact location of grape clusters to target spraying toward them. A spraying robot

equipped with these detection capabilities and a pan/tilt head with a spray nozzle would be

able to spray selectively and precisely, reducing significant amounts of spraying material and

human labor. Results show 90% accuracy of grape cluster detection leading to 30% reduction

in the use of pesticides.

Microsoft’s Kinect system can capture the color and depth information of a scene in real time. This

system consists of a red, green, and blue (RGB) video camera, a monochrome complementary

metal-oxide semiconductor (CMOS) video camera, and an IR transmitter. The color CMOS
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camera generates color images, and the IR transmitter and the IR CMOS camera generate depth

images. The Kinect system outputs a 640 � 480 RGB image and an IR depth image. Because

conventional depth sensors (e.g., laser ranging radars) are deficient concerning sensitive infor-

mation readability, depth cameras have become an essential means for measuring the depth-of-

field information of scenes. Under ideal conditions, the resolution of depth information acquired

by a depth camera can reach 3 mm. Xiao et al. [32] designed an intelligent precision orchard

pesticide spray technique based on the depth-of-field extraction algorithm (Figure 16). To obtain

desirable spray effect, the advantages of color and depth information using Microsoft’s Kinect

system were integrated. To adjust and control the spray intensity of sprayers and the dose of

sprayed pesticides, an equation for calculating the leaf wall area average distance of fruit trees

was proposed. A comparison with the measured distances showed that the distances calculated

Figure 15. (a) Vineyard spraying robot, (b) block diagram of the algorithm, (c) captured image, (d) final foliage image.

Figure 16. The procedure of target tree extraction. (a) Color image, (b) segmented image, (c) depth image, (d) 3D layer

in-depth image, (e) comparative image, (f) resultant image.
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based on the data acquired by the Kinect system were accurate. The results of the experiment on

peach trees, apricot trees, and grapevines demonstrated that the intelligent orchard pesticide

precision spray model established based on the average distance and the leaf wall area density

can improve the efficiency in spraying pesticides, reduce waste and environmental pollution,

and achieve automated and precision orchard production.

6. Advanced data fusion application technique and future directions

The integration of data and knowledge from several sources is known as data fusion. To

overcome the inherent drawbacks and combine the advantages of different kinds of sensors,

multimodal sensor fusion has been widely used [49–51]. Briefly, data fusion can be defined as a

combination of multiple sources to obtain improved information; in this context, improved

information means less expensive, higher quality, or more relevant information. Data fusion is

the process of integrating multiple data sources to produce more consistent, accurate, and

useful information than that provided by any individual data source. Fusion of the data from

two sources (dimensions 1 and 2) can yield a classifier superior to any classifiers based on

dimension 1 or dimension 2 alone [52]. In general, all tasks that demand any parameter

estimation from multiple sources can benefit from the use of data/information fusion methods.

Data fusion techniques have been extensively employed on multisensory environments with

the aim of fusing and aggregating data from different sensors. The goal of using data fusion in

multisensory environments is to obtain a lower detection error probability and a higher

reliability by using data from multiple distributed sources [53].

The use of spatial sensors with the agricultural application has increased rapidly in recent

years as their costs decline. Because of their ability to provide instantaneous information that

can be used for feature extraction and object detection, vision systems and laser scanners are

becoming more common in outdoor agricultural applications such as tree detection, map

construction, mobile robot localization, and navigation. Vision systems are low-cost solutions

for extracting different features (e.g., color, edge, and texture), while laser scanners are popular

sensors in outdoor applications as they provide precise range and angle measurements in large

angular fields. Fusing images from cameras with range data from laser scanners enable mobile

robots and vehicles to more confidently perform a variety of tasks in outdoor environments

[49]. There are differences between the data acquired from the laser scanner and the camera

images. The 2D laser scanner generates a single horizontal scan of the environment, whereas

the camera provides an instantaneous image of the local environment with precise depth

information. A laser scanner provides range and bearing data, while the camera primarily

provides intensity and color information. There are some standard features in both types of

data. For example, many corners and edges correspond to a sudden change in the range of the

laser scan data and a sudden variation in image intensity [54].

Shalal et al. [55, 56] presented a novel tree trunk detection algorithm using camera and laser

scanner data fusion (Figure 17). The innovation and contribution of this study developed a new

tree trunk detection algorithm using low-cost camera and laser scanner data fusion as a
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component of fully automated operation to enhance the detection capability and to discriminate

between trees and nontree objects. The laser scanner is used to detect the edge points and

determine the width of the tree trunks and nontree objects, while the camera images are used to

verify the color and the parallel edges of the tree trunks and nontree objects. The algorithm

automatically adjusts the color detection parameters after each test, which shows to increase the

detection accuracy. The algorithm was able to detect the tree trunks and discriminate between

trees and nontree objects with a detection accuracy of 96.64% showing that the fusion of both

vision and laser scanner technologies produced robust tree trunk detection. Fusion of data from

these sensors was found to improve tree detection because the laser scanner can provide reliable

ranges, angles, and width of the tree trunks and nontree objects, while the vision system can

distinguish between tree trunks and other nontree objects from different features.

Data fusion as a new method was demonstrated for detecting trees and nontree objects using a

camera and laser scanner data fusion. The utilization of both camera and laser scanner data

enhanced the tree trunk detection. Projecting from the laser scanner to the image plane and

selecting the region of interest with the required features were useful since it reduces the

processing time and minimizes the effect of the noise in the other parts of the image. The

developed algorithm relies only on the onboard sensors without adding any artificial landmarks

such as tags or reflective tapes on the trees in the orchard. The algorithm automatically adjusts

the color detection parameters after each test, which was observed to improve the detection

accuracy. Above all, the fusion of data from the vision and laser sensors improves plant canopy

detection because the laser scanner can provide accurate ranges, angles, and widths of the tree

and objects, while the vision system can distinguish between a tree and other objects.

7. Discussion and conclusion

Development of new, environmentally friendly alternative variable-rate sprayer application tech-

niques only began in the last four decades. Its objective has been to use variable-rate sprayer

dosage rates that are as low as possible and to apply variable-rate sprayer only to places where

Figure 17. (a) The block diagram of the two tree trunk detection algorithms, (b) explorer platform with onboard sensors.
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this was necessary, with minimum losses transferred to the environment. Various procedures and

methods for tree canopy detection have been suggested and developed by both computer and

agricultural scientists [57]. The detailed review indicates that the establishment of an appropriate

variable-rate sprayer is still one of the critical issues in plant protection. Improvement of electronic

tree canopy sensing should facilitate electronic measurements of the tree canopy characteristics

and enable more precise control of variable-rate sprayer dosage, which can then ensure a faster

response of the entire system at higher driving speeds in the orchard. Some researchers suggested

that electronic characterization of the tree canopy could be carried out more efficiently by using

some detection approaches, including ultrasonic, imaging, and optical detection systems.

The analysis of sensing systems for electronic canopy characterization indicates that the infra-

red and ultrasonic sensors as the oldest and simplest approaches are still an appropriate tool

for determining average canopy characteristics such as the ends of rows and significant gaps

between well-separated trees. Furthermore, when equipped with appropriate software, the

infrared and ultrasonic sensor transceivers can be used for measuring the tree density. For this

reason, these types of sensors will remain on sprayers in the near future, because it can

simplify the operator’s repetitive work in the orchards and might serve as an input parameter

for adjusting variable-rate sprayer dosage from a particular nozzle.

The analysis of the different existing detection systems to characterize the structure of tree

plantations shows the existence of several aspects that limit the use of most of the systems

under field conditions, some sensors remaining suitable for this purpose. Laser scanners and

stereo vision are direct competitors and are probably the most promising and complementary

techniques for achieving 3D maps of plants and canopies, although infrared and ultrasonic

sensors remain an attractive option for specific applications. In fact, the possibilities of com-

bining sensors for this purpose are innumerable. In the near future, it is highly likely that we

will see a notable advance in this field of research with the increased use of the new generation

of flash LIDAR sensors, capable of measuring 3D structures of plants in real time and at a

moderate cost compared to alternative detection systems.

The usefulness of using camera sensor to facilitate the quantification of the density of the

plantations has also been mentioned. However, it has become clear that there is still a long way

to go and both the geometric characterization of plants and variable application techniques must

be improved. More highlighted advanced stereo vision measurement sensing systems for elec-

tronic canopy characterization sound very attractive for detection of the tree canopy, because this

technique captures a massive image of an orchard in a short time. However, the computer-

generated digital 3D terrain model of the orchard still cannot assure characterization of canopy

diameter, height, and number of leaves with sufficient precision for estimating the leaf area index

needed for appropriate adjustment of the variable-rate sprayer dosage.

In this chapter, variable-rate sprayer applications based on real-time sensor technologies have

been reviewed. Based on the results from reports and literatures, Table 1 summarizes the

operating principles and the main pros and cons of the exposed sensors and methods for the

measurement of the geometrical properties of plants and crops.

With regard to agricultural applications, innovative techniques represent an essential contribution

to the improvement of variable-rate sprayer application. The different sensing system can detect

tree canopy characteristics precisely, and when combined with sophisticated decision-making
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models, they enable accurate variable-rate sprayer dosage control. The coordinated use of multi-

ple sensors, the development of new real-time data processing algorithms, and the simplification

of crop adaptable application systems are objectives for the future of this research line. Obtaining

a precise geometrical characterization of a crop at any point during its production cycle by means

of a new generation of affordable and easy-to-use detection systems, such as LIDAR and stereo

Sensors Measuring principle Pros Cons

Infrared

sensors

All objects with a temperature

above absolute zero emit heat

energy in the form of radiation.

Infrared sensors measure

infrared light radiating from

objects in their field of view.

Work entirely by detecting

infrared radiation emitted by

or reflected from objects.

Temperature and humidity have

little impact on the detection

results.

Measurement relatively

independent of atmospheric

conditions.

Accurate measurement of the 3D

characteristics of the canopy

remains unfeasible for the

moment.

Plant appearance, light intensity,

walking speed, and plant space

have evident influences on

detecting effect.

Deficient spatial resolution for

applications in agriculture.

Short detectable distance,

complicated circuit.

Ultrasonic

sensors

Measure the distance to an object

by using sound waves.

Based on determining the flight

time of an ultrasonic wave from

the point of emission to the point

of detection after bouncing off an

object.

Robustness and low price make

ultrasonic sensors suitable for

agricultural applications.

Relatively easy to implement.

The large angle of divergence of

ultrasonic wave beams limits the

resolution and accuracy of the

measurements taken.

The use of many units to cover a

common agricultural scene is

required.

LIDAR

sensors

Based on the measurement of the

distance from a laser emitter to an

object or surface using a pulsed

laser beam.

Time-of-flight LIDAR measures

the time that a laser pulse takes to

travel between the sensor and the

target.

High speed of measurement

allows obtaining cloud points

quickly.

Applying appropriate algorithms

makes it possible to digitally

reconstruct and describe the

structure of trees with high

precision.

Plant information, such as height,

width, volume, leaf area index,

and leaf area density can be

obtained with sufficient precision.

The estimation of the volume is

very sensitive to errors in the

determination of the distance from

the LIDAR to the center of the trees

and in the determination of the

angle of orientation of the LIDAR.

Motorized terrestrial LIDAR

scanners must include additional

devices or procedures to control

or estimate and correct these error

sources.

Stereo

vision

Provides a 3D field image by

combining two monocular field

images taken simultaneously

using a binocular digital camera.

Computer algorithms are

necessary to convert the original

camera coordinate arrays of the

objects into their real-world

coordinates.

Provides realistic 3D image of

plants and tree crops.

Measures directly the 3D

vegetation structure including

those plant physical parameters

that are important for production

management, such as crop size

and volume.

Offer less accuracy than

laser-based systems and need

appropriate calibration and

recording procedures.

When several images are

processed together, the magnitude

of the data files grows

considerably, complicating the

handling and storage of 3D

information and requiring long

processing times. The problem

becomes more critical when

real-time processing is required.

Table 1. Physical principles and most remarkable characteristics of the main systems used for the geometrical

characterization of tree crops and their main advantages and disadvantages.
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vision systems, will help to establish precise estimations and provide valuable information on

which to base more sustainable pesticide dosages. Without any doubt, optical sensing systems for

electronic canopy characterization including a LIDAR sensor provide the most accurate and

detailed information about the tree canopy. When supported with the proper software, a

LIDAR-based signal can represent a perfect tool for creating a 3D space at low installation costs,

which is essential for guiding a robotic arm equipped with nozzles and small vents along the tree

row in real time. For all these reasons, LIDAR will represent the crucial sensor in the further

development of both trailer-mounted and self-propelled sprayer prototypes, which should find

the widespread commercial application.

In the near future, the evolution and development of new sensors devoted to the geometric

characterization of tree crops will enable significant and much needed advances in optimizing

the use of variable-rate sprayer in agriculture, as well as an increase in production and quality by

improving training systems. It is worth noting that the benefits of variable spray affect millions of

cultivated hectares and therefore impact directly on the society and the environment in which we

live. It is therefore of vital importance to continue devoting major efforts to the development of

increasingly accurate, robust, and affordable systems capable of measuring the geometric char-

acteristics of plantations, which support the development of the different areas of a sustainable

and precision agriculture. However, it is still necessary to resolve several technological and

commercial questions. The former include improving detection systems, especially with regard

to developing software for the postprocessing steps and improving the speed of calculation and

decision making. Among the latter, it is essential to produce low-cost sensors and control

systems to facilitate large-scale deployment.

Acknowledgements

This research project was financially supported by the National Natural Science Foundation of

China for Young Scholars (Grant No. 51605210), by Yunnan Applied Basic Research Youth

Project (Grant No. 2015FD011), by Introduced Talents Scientific Research Staring Foundation

of KMUST (Grant No. 14118940), by Scientific Research Fund Project of Yunnan Provincial

Education Department (Grant No. 2015Y079), and by Opening Project of the Key Laboratory

of Bionic Engineering (Ministry of Education) (K201621), Jilin University.

Author details

Zhihong Zhang1,2*, Xiaoyang Wang1, Qinghui Lai1 and Zhaoguo Zhang1

*Address all correspondence to: zzh_0822@hotmail.com

1 Faculty of Modern Agricultural Engineering, Kunming University of Science and

Technology, Kunming, China

2 United States Department of Agriculture, Agricultural Research Service, Wooster, OH, USA

Automation in Agriculture - Securing Food Supplies for Future Generations74



References

[1] Ladd Jr T, Reichard D, Collins D, et al. An automatic intermittent sprayer: A new approach

to the insecticidal control of horticultural insect pests 1 2. Journal of Economic Entomology.

1978;71(5):789-792

[2] Giles D, Delwiche M, Dodd R. Control of orchard spraying based on electronic sensing of

target characteristics. Transactions of the ASAE. 1987;30(6):1624-1636

[3] Steward BL, Tian FL, Tang L. Distance-based control system for machine vision-based

selective spraying. Transactions of the ASAE. 2002;45(5):1255. DOI: https://doi.org/10.13031/

2013.11053

[4] Tian L, Reid JF, Hummel JW. Development of a precision sprayer for site-specific weed

management. Transactions of the ASAE. 1999;42(4):893. DOI: https://doi.org/10.13031/2013.

13269

[5] Moltó E, Martı́n B, Gutiérrez A. Pm—Power and machinery: Pesticide loss reduction by

automatic adaptation of spraying on globular trees. Journal of Agricultural Engineering

Research. 2001;78(1):35-41. DOI: https://doi.org/10.1006/jaer.2000.0622

[6] He X, Zeng A, Liu Y, et al. Precision orchard sprayer based on automatically infrared

target detecting and electrostatic spraying techniques. The International Journal of Agri-

cultural and Biological Engineering. 2011;4(1):35-40

[7] Von-Bargen K, Meyer GE, Mortensen DA, et al. Red/near-infrared reflectance sensor

system for detecting plants. Optics in Agriculture and Forestry. International Society for

Optics and Photonics. 1993;1836:231-239. http://dx.doi.org/10.1117/12.144032

[8] Jiao J, Chu J-Y, Ma G-B. Application of infrared photoelectrics switch for sprarying on

aspen. Journal of Agricultural Mechanization Research. 2005;2005(3):216-217

[9] Jianjun Z, Aijun Z, Xiongkui H, et al. Research and development of infrared detection

system for automatic target sprayer used in orchard. Transactions of the Chinese Society

of Agricultural Engineering. 2007;23(1):129-132

[10] Chen Z, Wang Y, Meng T, et al. Experiment of infrared target detection for plants

pesticide spraying. Drainage and Irrigation Machinery. 2009;27(4):237-246

[11] Solanelles F, Escolà A, Planas S, et al. An electronic control system for pesticide applica-

tion proportional to the canopy width of tree crops. Biosystems Engineering. 2006;95(4):

473-481. DOI: https://doi.org/10.1016/j.biosystemseng.2006.08.004

[12] Downey D, Giles D, Klassen P, et al. “Smart” sprayer technology provides environmental

and economic benefits in california orchards. California Agriculture. 2011;65(2):85-89

[13] Escolà A, Rosell-Polo J, Planas S, et al. Variable rate sprayer. Part 1–orchard prototype:

Design, implementation and validation. Computers and Electronics in Agriculture. 2013;

95:122-135

Review of Variable-Rate Sprayer Applications Based on Real-Time Sensor Technologies
http://dx.doi.org/10.5772/intechopen.73622

75



[14] Planas S, Solanelles F, Fillat A. Pm—Power and machinery: Assessment of recycling

tunnel sprayers in mediterranean vineyards and apple orchards. Biosystems Engineering.

2002;82(1):45-52. DOI: https://doi.org/10.1006/bioe.2001.0055

[15] Gil E, Escola A, Rosell J, et al. Variable rate application of plant protection products in

vineyard using ultrasonic sensors. Crop Protection. 2007;26(8):1287-1297

[16] Schumann AW, Zaman QU. Software development for real-time ultrasonic mapping of

tree canopy size. Computers and Electronics in Agriculture. 2005;47(1):25-40. DOI:

https://doi.org/10.1016/j.compag.2004.10.002

[17] Planas S, Rosell JR, Pomar J, et al. Performance of an ultrasonic ranging sensor in apple

tree canopies. Sensors. 2011;11(3):2459-2477

[18] Moltó E, Martı ́n B, Gutiérrez A. Pm—Power and machinery: Design and testing of an

automatic machine for spraying at a constant distance from the tree canopy. Journal of

Agricultural Engineering Research. 2000;77(4):379-384

[19] McConnell RL, Elliot KC, Blizzard SH, et al. Electronic measurement of tree-row-volume.

National Conference on Agricultural Electronics Applications, Hyatt Regency Illinois

Center, Chicago, (USA), American Society of Agricultural Engineers; 1983

[20] Giles DK, Delwiche MJ, Dodd RB. Electronic measurement of tree canopy volume. Trans-

actions of the ASAE. 1988;31(1):264-272

[21] Brown D, Giles D, Oliver M, et al. Targeted spray technology to reduce pesticide in runoff

from dormant orchards. Crop Protection. 2008;27(3):545-552

[22] Balsari P, Tamagnone M. An ultrasonic airblast sprayer. International Conference on

Agricultural Engineering GBR. 1998:585-586

[23] Tumbo S, Salyani M, Whitney JD, et al. Investigation of laser and ultrasonic ranging

sensors for measurements of citrus canopy volume. Applied Engineering in Agriculture.

2002;18(3):367

[24] Zaman QU, Salyani M. Effects of foliage density and ground speed on ultrasonic mea-

surement of citrus tree volume. Applied Engineering in Agriculture. 2004;20(2):173. DOI:

https://doi.org/10.13031/2013.15887

[25] Balsari P, Doruchowski G, Marucco P, et al. A system for adjusting the spray application

to the target characteristics. Agricultural Engineering International: CIGR Journal. 2008;

10:1-12

[26] Palleja T, Landers AJ. Real time canopy density estimation using ultrasonic envelope

signals in the orchard and vineyard. Computers and Electronics in Agriculture. 2015;115:

108-117

[27] Gil E, Llorens J, Llop J, et al. Variable rate sprayer. Part 2 – Vineyard prototype: Design,

implementation, and validation. Computers and Electronics in Agriculture. 2013;95(Sup-

plement C):136-150. DOI: https://doi.org/10.1016/j.compag.2013.02.010

Automation in Agriculture - Securing Food Supplies for Future Generations76



[28] Palleja T, Landers AJ. Real time canopy density validation using ultrasonic envelope

signals and point quadrat analysis. Computers and Electronics in Agriculture. 2017;134

(Supplement C):43-50. DOI: https://doi.org/10.1016/j.compag.2017.01.012

[29] Maghsoudi H, Minaei S, Ghobadian B, et al. Ultrasonic sensing of pistachio canopy for

low-volume precision spraying. Computers and Electronics in Agriculture. 2015;112(Sup-

plement C):149-160. DOI: https://doi.org/10.1016/j.compag.2014.12.015

[30] Jeon HY, Zhu H, Derksen R, et al. Evaluation of ultrasonic sensor for variable-rate spray

applications. Computers and Electronics in Agriculture. 2011;75(1):213-221. DOI: https://

doi.org/10.1016/j.compag.2010.11.007

[31] Rovira-Más F, Zhang Q, Reid J. Creation of three-dimensional crop maps based on aerial

stereoimages. Biosystems Engineering. 2005;90(3):251-259

[32] Xiao K, Ma Y, Gao G. An intelligent precision orchard pesticide spray technique based on

the depth-of-field extraction algorithm. Computers and Electronics in Agriculture. 2017;

133(Supplement C):30-36. DOI: https://doi.org/10.1016/j.compag.2016.12.002

[33] Bietresato M, Boscariol P, Gasparetto A, et al. On the design of a mechatronic mobile

system for laser scanner based crop monitoring. Proceedings of the 14th Mechatronics

Forum International Conference, Mechatronics; 2014

[34] Wehr A, Lohr U. Airborne laser scanning—An introduction and overview. ISPRS Journal

of Photogrammetry and Remote Sensing. 1999;54(2):68-82

[35] Gorte B, Pfeifer N. Structuring laser-scanned trees using 3D mathematical morphology.

International Archives of Photogrammetry and Remote Sensing. 2004;35(B5):929-933

[36] Van der Zande D, Hoet W, Jonckheere I, et al. Influence of measurement set-up of ground-

based lidar for derivation of tree structure. Agricultural and Forest Meteorology. 2006;

141(2):147-160

[37] Walklate PJ, Cross JV, Richardson GM, et al. It—Information technology and the human

interface: Comparison of different spray volume deposition models using lidar measure-

ments of apple orchards. Biosystems Engineering. 2002;82(3):253-267. DOI: https://doi.org/

10.1006/bioe.2002.0082

[38] Rovira-Más F, Reid J, Zhang Q. Stereovision data processing with 3D density maps for

agricultural vehicles. Transactions of the ASABE. 2006;49(4):1213-1222

[39] Rosell Polo JR, Sanz Cortiella R, Llorens Calveras J, et al. A tractor-mounted scanning

lidar for the non-destructive measurement of vegetative volume and surface area of tree-

row plantations: A comparison with conventional destructive measurements. Biosystems

Engineering. 2009;102(2):128-134

[40] Zaman Q, Schumann A, Miller W. Variable rate nitrogen application in florida citrus

based on ultrasonically-sensed tree size. Applied Engineering in Agriculture. 2005;21(3):

331-335

Review of Variable-Rate Sprayer Applications Based on Real-Time Sensor Technologies
http://dx.doi.org/10.5772/intechopen.73622

77



[41] Zaman Q, Schumann A, Hostler H. Estimation of citrus fruit yield using ultrasonically-

sensed tree size. Applied Engineering in Agriculture. 2006;22(1):39-44

[42] Palleja T, Tresanchez M, Teixido M, et al. Sensitivity of tree volume measurement to

trajectory errors from a terrestrial lidar scanner. Agricultural and Forest Meteorology. 2010;

150(11):1420-1427

[43] Van-De-Zande J, Achten V, Michielsen J, et al. Towards More Target Oriented Crop

Protection. International advances in pesticide application. 2008;84:1245-1252

[44] Rosell JR, Llorens J, Sanz R, et al. Obtaining the three-dimensional structure of tree

orchards from remote 2d terrestrial lidar scanning. Agricultural and Forest Meteorology.

2009;149(9):1505-1515. DOI: https://doi.org/10.1016/j.agrformet.2009.04.008

[45] Lee K-H, Ehsani R. Comparison of two 2d laser scanners for sensing object distances,

shapes, and surface patterns. Computers and Electronics in Agriculture. 2008;60(2):250-262

[46] Wei J, Salyani M. Development of a laser scanner for measuring tree canopy characteristics:

Phase 2. Foliage density measurement. Transactions of the ASAE. 2005;48(4):1595-1601

[47] Kise M, Zhang Q, Rovira Más F. A stereovision-based crop row detection method for

tractor-automated guidance. Biosystems Engineering. 2005;90(4):357-367. DOI: https://

doi.org/10.1016/j.biosystemseng.2004.12.008

[48] Berenstein R, Shahar OB, Shapiro A, et al. Grape clusters and foliage detection algorithms

for autonomous selective vineyard sprayer. Intelligent Service Robotics. 2010;3(4):233-

243. DOI: 10.1007/s11370-010-0078-z

[49] Garcia-Alegre MC, Martin D, Guinea DM, et al. Real-time fusion of visual images and laser

data images for safe navigation in outdoor environments. Sensor Fusion-Foundation and

Applications. 2011:121-138. InTech. https://doi.org/10.5772/16690

[50] Panich S, Afzulpurkar N. Sensor fusion techniques in navigation application for mobile

robot. Sensor Fusion-Foundation and Applications. 2011:101-120. InTech. https://doi.org/

10.5772/16444

[51] Thomas C, Narayanaswamy B. Sensor fusion for enhancement in intrusion detection.

Sensor Fusion-Foundation and Applications. 2011:61-76. https://doi.org/10.5772/21550

[52] Viola P, Wells III WM. Alignment by maximization of mutual information. International

Journal of Computer Vision. 1997;24(2):137-154

[53] Castanedo F. A review of data fusion techniques. The Scientific World Journal. 2013;2013

(19):1-20. DOI: 10.1155/2013/704504

[54] Peynot T, Kassir A. Laser-camera data discrepancies and reliable perception in outdoor

robotics. Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference.

IEEE. 2010:2625-2632. https://doi.org/10.1109/IROS.2010.5648934

[55] Shalal N, Low T, McCarthy C, et al. Orchard mapping and mobile robot localisation using

on-board camera and laser scanner data fusion – Part B: Mapping and localisation.

Automation in Agriculture - Securing Food Supplies for Future Generations78



Computers and Electronics in Agriculture. 2015;119(Supplement C):267-278. DOI: https://

doi.org/10.1016/j.compag.2015.09.026

[56] Shalal N, Low T, McCarthy C, et al. Orchard mapping and mobile robot localisation using

on-board camera and laser scanner data fusion – Part A: Tree detection. Computers and

Electronics in Agriculture. 2015;119(Supplement C):254-266. DOI: https://doi.org/10.1016/

j.compag.2015.09.025

[57] Rosell JR, Sanz R. A review of methods and applications of the geometric characterization

of tree crops in agricultural activities. Computers and Electronics in Agriculture. 2012;81

(Supplement C):124-141. DOI: https://doi.org/10.1016/j.compag.2011.09.007

Review of Variable-Rate Sprayer Applications Based on Real-Time Sensor Technologies
http://dx.doi.org/10.5772/intechopen.73622

79




