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An Adaptive Controller Design for Flexible-joint
Electrically-driven Robots With Consideration of
Time-Varying Uncertainties
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2Dept. of Mechanical Engineering, National Taiwan University of Science and Technology
Taiwan, R.O.C.

1. Abstract

Almost all present control strategies for electrically-driven robots are under the rigid robot
assumption. Few results can be found for the control of electrically driven robots with joint
flexibility. This is because the presence of the joint flexibility greatly increases the
complexity of the system dynamics. What is worse is when some system dynamics are not
available and a good performance controller is required. In this paper, an adaptive design is
proposed to this challenging problem. A backstepping-like procedure incorporating the
model reference adaptive control is employed to circumvent the difficulty introduced by its
cascade structure and various uncertainties. A Lyapunov-like analysis is used to justify the
closed-loop stability and boundedness of internal signals. Moreover, the upper bounds of
tracking errors in the transient state are also derived. Computer simulation results are
presented to demonstrate the usefulness of the proposed scheme.

Keywords: Adaptive control; Flexible-joint electrically-driven robot; FAT

2. Introduction

Control of rigid robots has been well understood in recent years, but most of the schemes
ignore the dynamics coming from electric motors and harmonic drivers that are widely
implemented in the industrial robots. However, actuator dynamics constitute an important
part of the complete robot dynamics, especially in the cases of high-velocity movement and
highly varying loads[1],[2]. The main reason for using a reduced model is to simplify
complexity of controller design. For each joint, consideration of the flexibility from the
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harmonic driver results in an additional 2nd order dynamics. If the motor dynamics is also
included, a totally 5t order dynamics should be considered. It is well-known that a multi-
DOF rigid robot is a highly nonlinear and coupled system. If we consider the motor
dynamics and joint flexibility for all joints, the controller design problem would become
extremely difficult. In this paper, we would like to design a controller for a flexible-joint
electrically-driven robot under more challenging conditions, that is, the robot system
contains various uncertainties.

Better motion control performance was obtained by Tarn et. al.[2] under experimental
verification for a rigid robot when considering the motor dynamics. For the robust control of
rigid robots with consideration of actuator dynamics can be found in [3]-[9]. Important
developments for the adaptive control of electrically-driven rigid robots can be seen in [10]-
[18].

The above mentioned schemes are all for the control of rigid robots. For the control of
flexible-joint electrically driven robots, few results can be found. Some robust designs were
presented in [19]-[22]. However, to our best knowledge, no work has been reported on
adaptive control of flexible-joint robot manipulators incorporating motor dynamics. The
main contribution of the present paper is to propose an adaptive controller for this system.
The controller does not need to calculate the regressor[23] which is required in conventional
robot adaptive control. The design follows a backstepping-like procedure with the support
of the model reference adaptive control. The function approximation technique (FAT)[24]-
[35] is employed to deal with the system uncertainties. A Lyapunov-like analysis is used to
justify the closed-loop stability and boundedness of internal signals.

This paper is organized as follows. Section 2 derives the proposed adaptive motion
controller in detail. Section 3 presents simulation results of the motion control of a 2-D robot
using the proposed controller. Section 4 concludes the paper.

3. Main Results

The dynamics of a rigid-link flexible-joint electrically-driven (RLFJED) robot can be
described by

D(q)q +C(q,9)q +g(q) = K(0—-q) (1)
JO+BO+K(0—q)=Hi )
Li+R(i,0)=u 3)

where € R" is the vector of link angles, @ € N" is the vector of actuator angles, i€ R”

is the motor armature currents, W€ R" is the control input voltage, D(q) is the nxn
inertia matrix, C((, q)q is an n-vector of centrifugal and Coriolis forces, and g(q) is the
gravity vector. J, B and K are nxn constant diagonal matrices of actuator inertia,

damping and joint stiffness, respectively. H € R is an invertible constant diagonal
matrix which characterizes the electro-mechanical conversion between current and torque,

Le R™ is the constant diagonal matrix of electrical inductance, R(i,0)e R”"
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represents the effect of the electrical resistance and the motor back-emf. Here, we would like

to consider the case when the precise forms of D(q), C(q,q)q, g(q), L and R(i, 0) are

not available and their variation bounds are not given. This implies that traditional adaptive
control and robust control cannot be applicable. In the following, we would like to use the
FAT to design an adaptive controller for the robot. Moreover, it is well-known that
derivation of the regressor matrix for the adaptive control of high DOF rigid robot is
generally tedious. For the RLFJED robot in (1), (2), and (3) its dynamics is much more
complex than that of its rigid-joint counterpart. Therefore, the computation of the regressor
matrix becomes extremely difficult. One of the contributions of the present paper is to
propose an adaptive controller which does not need to calculate the regressor matrix needed
in the conventional robot adaptive control.

Define T, = K(0 - 36,37] to be the vector of transmission torques, so (1) and (2
t q q

becomes

D(q)q +C(q.q9)q +g(q) =T, @)
Jt;l:z +Bttt + T, = Hi _q(qaq) ()

where Jz :JK’I, B[ = BI<_1 and Q(q,q) = J(i-f—B(]. Define signal vector
s=e+Ae and V=( i Ae, where ( 4 € R" is the vector of desired states,

€ =( —(, is the state error, and A = diag(ﬂl , ﬂz yeres /'Ln) with ﬂ.i >0 for all i=1, ...

n. Rewrite (4) in the form
Ds+Cs+g+Dv+Cv=r, (6)
A. Controller Design for Known Robot

Suppose D(q), C(q,q)q and g(q) are known, and we may design a proper control law
such that T follows the trajectory below

T,=g+Dv+Cv-K s (7)
where K, is a positive definite matrix. Substituting (7) into (6), the closed loop dynamics

: 1
becomes Ds+Cs + K 4S= (0. Define a Lyapunov function candidate as V' = 5 s" Ds.

Its time derivative along the trajectory of the closed loop dynamics can be computed as
V=-"K 45T s’ (D—-2C)s. Since D—2C can be proved to be skew-symmetric, the
above equation becomes V==K ;S < 0.1t is easy to prove that s is uniformly bounded

and square integrable, and S is also uniformly bounded. Hence, § — 0 as £ = oo, or we

may say € —> 0 as  —> oo. To make the actual T converge to the perfect T in (7), let us
consider the reference model
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Jt +Bt +Krt =J1,+B1,+K 1, 8)

where T, € R" is the state vector of the reference model and T W € R" is the vector of

desired states. Matrices J . € EK”X", Br e R and Kr e R™" are selected such that

T, —T,, exponentially. Define T,,(T,;,T,) ZK;I B.t,+J.7,), we may rewrite (5) and

(8) in the state space form as

x,=A x +B Hi-B q )
Xm :Anxm +Bm(Ttd +%td) (10)

I .
WhereXp:[Tt ‘rt] e R and XmZ[Tr Tr] e R*" are augmented state

0 I
vectors. A )= |: 1 n_xln e R and
o Jz o Jt Bz
_ 0 I nxn 9»{ 2nx2n .
m 1 ) € are augmented system matrices.
~-J'K. -J'B,

J—] 1

t

0 0
Bp :|: j|e R and B, :|:J K :|€ R>™"  are augmented input gain

7

matrices, and the pair (A, ,B ) is controllable. Since all system parameters are assumed to

be available at the present stage, we may select a perfect current trajectory in the form[38]

i=H[6x, +Pr,, +h(T,,q)] (11)

where ©€ R andDe R satisfy AP+BP@=Am and BPCD=Bm,

respectively, and h(T,,q) =PT, +(q. Substituting (11) into (9) and after some

rearrangements, we may have the system dynamics
x,=A,x, +B, (t,+7,) (12)
Define€, =X , —X, and we may have the error dynamics directly from (10) and (12)
e, =A e, (13)
Let €. =T, — T, be the output vector of the error dynamics (13) as

e. =C e, (14)
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where C, € R s the augmented output matrix such that the pair (A, ,C ) is

observable and the transfer function C,_(sI—A m)_lB ., 1s strictly positive real. Since
A is stable, (13) implies €, —> 0 as # —> oo . This further gives T, — T, as [ —> 0.

To ensure the actual I to converge to the perfect 1 in (11), let us select the control input in
(3) as

u=Li, +R(1,0)-K e, (15)

where €, = i—i 4 1s the current error, i 4 € R" is the desired current which is equivalent
to the perfect current trajectory i in (11), and K, € R is a positive definite matrix.
Substituting (15) into (3), the closed loop dynamics becomes Léi +K €, = 0. According

to this, it is easy to prove that i — i 4 as I — oo with proper selection of K .
In summary, if all parameters in the RLFJED robot (1), (2), and (3) are available, the

desired transmission torque (7), the desired current (11), the control input (15) can give
asymptotic convergence tracking performance.

B. Controller Design for Uncertain Robot

Suppose D(q), C(q,q)q, g(q), L and R(i, 9) are not available, and ,é are not easy
to measure, we would like to design a desired transmission torque T, so that a proper
controller u can be constructed to have T, — T, . Instead of (7), let us design a desired

transmission torque T,; as

1, =g+DV+Cv-K s (16)
where D, C and é are estimates of D(q), C(q,q) and g(q), respectively. Using (16),
we may have the closed loop dynamics

Ds+Cs+K s=-Dv-Cv-8+(t,-1,) (17)

where D=D—-D , C=C-C and g =g — g . If a proper controller and update laws

for D, C and g can be designed, we may have T, = T, ﬁ—)D, C —>C and

g — g so that (17) can give desired performance. Let us consider the desired current i d
instead of (11)

i,=H"(©x +r,+h) (18)
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where h is an estimate of h . By (18), we may have the system dynamics

x,=A x,+B, (r,+7,)+B H(i—-i,)+B, (h—h) (19)

Together with (10), we may have the error dynamics
¢, =A,e,+B [He, +(h—h)] (20)
e. =C e (21)

If we may design a control input # and an appropriate update law such that I —> i 4 and

h — h, then (20) implies €, —>0 as f —>oo. This further implies T, = T, as

! — oo . Here, according to (15), let us select the control input in (3) as

A

u=f-K_e, (22)
where f is an estimate of f(l d ,i,é) =Li ; T R(, 9) Substituting (22) into (3), we may
have the system dynamics

Le, +K e =f—f (23)

If an appropriate update law for f can be selected, we may have 1 —1,.Since D, C, g h

and f are functions of time, traditional adaptive controllers are not directly applicable. To
design the update laws, let us apply the function approximation representation

D=W,Z,+¢,, C=W.Z +g., g=W,Z, +¢,,

(24a)
h=W/Z, +¢,, T=W/Z, +g,

2 2 n

where Wy, € R4 W e R W, e R W, e R, and
] n’ B xn 2 1

W, e SK”ﬁ-’X” are weighting matrices, Z € R Ao , L. € R Pexn ) Zg c g{”ﬂgx ’

1 X1 . . .
Zh € Cﬁnﬂ » and Zf € Cﬁn/j‘/ are matrices of basis functions, and 8(,)are

approximation error matrices. The number ﬁ(,) represents the number of basis functions

used. Using the same set of basis functions, the corresponding estimates can also be
represented as

(24b)
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Define W W W( ) then equation (17), (20) and (23) becomes
Ds+Cs+K,s=(1,—-7,)- W Z,v-WIZ.v-W!Z, +g (25
¢, =A,e,—B W/Z +B He +B g, (26)
Lé, +K e =-W/Z, +¢, 27)

where & =8&,(£),8¢,€,,8,4,), & =&,(g,,€,) and &; =&,(&,e€,)are lumped

approximation errors. Since W(,) are constant matrices, their update laws can be easily

found by proper selection of the Lyapunov-like function. Let us consider a candidate

V(s,e

m?>

e, Wy, We, W,, W,, W,) = —sTDs+emP,em+1e Le,
2 2
(28)
+2Tr(W QDW + W/ QCW +W Q, W +W Qh +W QfW)

where Pt = P[T e R i 4 positive definite matrix satisfying the Lyapunov equation
2 2 2 2
A;P[ + PtAm = _CZ,;Cm-The matrices QD (- 9{” Boxn” By R QC c g{n ﬁcxn ﬁc ,

Q g € g{nﬂg P , Q, € R"PPr and Q; € EK"'B’ by are positive definite. The

notation Tr(.) denotes the trace operation of matrices. The time derivative of V along the
trajectory of (25), (26), and (27) can be computed as

V=s Ds+;s Ds+é Pe +e Pé +el Lé
~THWIQ, W, + W Q. W, +W/Q, W +W/Q, W, + W/ Q,W,)
=—s'K,s+s'e.—e;e. +e,PB He, —¢/K e +s's +e,PB g, +e¢,
CTAWI(Z,vsT +Q W, )+ W (Zovs” +Q W] 2
~Tr W (Z,8" +Q,W,)+ W, (Z,e'P.B, +Q,W,)] @
—TH{W (Z,e” +Q,W,)]

According to the Kalman-Yakubovic Lemma, we have erTnPtB p = e: by

picking B m = B p [39]. According to (29), the update laws can be selected as
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A

W, =—Q,Z,vs' —o,W,, W.=-QlZ.vs' —c.W,,
W, =-Q,Zs" -o,W,, W,=-Q,'Z,el -0, W,, (30)
vAVf =_Q;1ZfeiT _O-fwf

where O, are positive numbers. Then (29) becomes

s g
Vz—[sT el e,.T]Q e, +[sT el el.T] g,
e, g,
+ 0, Tr(Wy Wy) + 0 Tr(WE W) +0,Tr (W) W,) (31)
+0,Tr (W, W, )+ 0,Tr(W/W,)
- i -
Kd _Elnxn 0
1 |
where Q = _EI”X” Im —EH is positive definite due to proper selections
0 1lu
L 2 |

of K 4 and K .- Owing to the existence of &, €,, and &€, the definiteness of V' cannot

be determined. According to Appendix Lemma A.1, Lemma A.4 and Lemma A.7, the right
hand side of (31) can be divided into two parts to derive following inequalities

S g,
-7 ef eflQle, [+l el ellle,
e, €,
> 2\ (32a)
S g
<1 Awin (Q)]| € S 3
- 2 min T ﬂmm(Q) 2
e €,
~ o A 1 1 ~ o~
Tr(WSWD)SETr(WIZWD)—ETr(WgWD) (32b)
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Tr(WIW,) < %Tr(WCT W,.) —%Tr(Wg W,) (32)

Tr(W,W,) < %Tr(WgT W,) - %Tr(WgT W,) (32d)

Tr(W,/W,)< %Tr(w{ W,)- % Tr(W/W,) (32¢)

Tr(W/W,)< %Tr(WfT W,)- % Tr (W, W,) (326)

According to (28), we hav
1
14 =E[STDS+ e Le +2¢ Pe,

+Tr (Wi Qp, W, + WQ W, + WgT Qg\7vg + W/ Q, W)+ W Q,W.)]
s I (33)

Ao A €, |+ 2,0 (Qp)THWy W) + 4 (Q)THWE W)

max

<

N | —

e.

1

+ A Q)T (W W, ) + A, (Q)THAW, W, ) + A, (Q)THW, W, )]

max max

D 0 0
where A =1 0 ZCQPIC 0 |.With (32) and (33), (31) can be further written as
0 0 L
2
| S
V <-al + 5 [aﬂ’max (A) 12 ﬂ’min (Q) er + [aﬂ’max (QD) \ O-D ]TF(WIY; WD)
e.

1

+ [0 Q) = O ITH(WEW ) +[0A,,,, (Q,) — 0, 1T (W, W,)
(34)

+ [almax (Qh) - O-h ]Tr(WhTWh) + [aﬂ“max (Qf) - O-f ]Tr(WfTWf)
1 5 ]

+ +0,Tr(WW ) +0c.Tr(W. W

ﬂ’min(Q) €, o Tr(WpWy) O¢ r( C c)

3

+0,Tr(W, W,)+0,Tr(W, W,) + 0, Tr(W, W,)}
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Although D and L are wunknown, we know that ElﬁandQ s.t.
D<|p|<D. ILandL st L<|L|<L, 3n,7,>0 st A, (A)<y, and

Aun(A)27 [40]. Picking gepminbn@ % o % o o |
a 77/1 ﬂh)ax(QD) //z‘max(QC) ﬂinax(Qg) ]ﬁnax(Qh) Amax(Qf )

then we have

2

81
! 1 1 T T
V<-o+———oI| ¢ +—[oTr(W, W, )+0.Tr(W.W
22, QI F LT (W Wy )+ o Tr(We We) (35)
83
+0,Tr(W, W,)+0,Tr(W, W)+ 0, Tr(W; W,)]
Hence, V < 0 whenever
(s,e,,ei,WD,WC,Wg,Wh,Wf)e{(s,e,,ei,WD,WC,Wg,Wh,Wf)‘V>
2
. &,(7)
sup|| €,(7) || +o,Tr(WpWy)+0 Tr(WeW,)
2| A4, (Q) ==, (7)
€3

+0,Tr(W, W,)+0,Tr(W, W,)+ 0, Tr(W; W,)]}

e, WD, WC, Wg, Wh, and Wf are uniformly

ultimately bounded(u.u.b.). The implementation of the desired transmission torque (16),
desired current (18), control input (22) and update law (30) does not need to calculate the
regressor matrix which is required in most adaptive designs for robot manipulators. The
convergence of the parameters, however, can be proved to depend on the persistent
excitation condition of the input.

The above derivation only demonstrates the boundedness of the closed loop system, but in
practical applications the transient performance is also of great importance. For further
development, we may apply the comparison lemma[40] to (35) to have the upper bound for
Vas

This further concludes that s, €

T/

B 2
| | &,(7)
V(e)<e “" V() + sup|| £,(7) || +o,Tr(WaW,)
200 ﬂ’min (Q) to<t<t c (’Z’) (36)
3

+0 Tr(WEW) +0,Tr(W, W,) + 0, Tr(W, W) + 0, Tr(W, W,)]
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From (28), we obtain

B 2
S
V 2% ﬂ‘min (A) e'r mm (QD )TF(WTW ) + min (QC )Tr(WgWC) (37)
ei

+ A QITHWI W) + A (QTHW, W) + A, (Q)TH(W, W)
st

Thus, the bound of for t 2t can be derived from (36) and (37) as

2

S
e, SHL[V Ao (Qu)TH(WIW,)
e. 24

~ A QTr(WEW) = A, (Q)Tr (W, W,)
~ o (QTr (W] W, V) Ain Q)T (W W,)]

£,(7)

1 1
e Y (1 )+ — sup|l €, (1
( 0) (04 mm (Q) to<‘[13t 2( )

£,(7)
+ 0, Tr(Wy W) + 0 Tr(We W) + 0, Tr (W, W,)
+0,Tr(W/'W,) + 0, Tr(W/ W)= A (Q,)Tr(W.W,)
— Ain Q)T (WEW) = A, (Q)Tr (W, W,)
~ Ao QTF(WIW,) = A, (Q)Tr (W] W, )}

From the derivations above, we can conclude that the proposed design is able to give
bounded tracking with guaranteed transient performance. The following theorem is a
summary of the above results.

Theorem 1: Consider the RLFJED robot (1)-(3) with unknown parameters D, C, g, L and R,

then desired transmission torque (16), desired current (18), control input (22) and update
law (30) ensure that

(38)

IA
s

~ ~ ~ ~

(i) error signalss, €_, €, WD , WC, Wg, Wh , and Wf are u.u.b.
(if) the bound of the tracking error vectors for f 2 £ can be derived as the form of

(38), if the Lyapunov-like function candidates are chosen as (28).
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Remark 1: The term with O ) in (30) is to modify the update law to robust the closed-loop
system for the effect of the approximation error[26]. Suppose a sufficient number of basis

functions ,B(,) is selected so that the approximation error can be neglected then we may

have 0, = 0, and (31) becomes

T

s
V=—fs" e’ el.T]Q e <0 (39)
¢,

It is easy to prove that s, € , and €, are also square integrable. From (25), (26) and (27), §,

€, and €, are bounded; as a result, asymptotic convergence of s, e; and e; can easily be

shown by Barbalat’s lemma. This further implies that i —i,, T, = T, and q = q,

even though D, C, g, h, L, and f are all unknown.
Remark 2: Suppose €, €&, and €3 cannot be ignored but their variation bounds are

available[25,26] i.e. there exists positive constants d, & and & such that H 81HS 51,

H g, H < 52 and H €, H < 53 . To cover the effect of these bounded approximation errors, the

desired transmission torque (16), the desired current (18), and the control input (22) are
modified to be

T, =g+ﬁv+év_KdS+Trobustl (40)
id = H_I[G)Xp +(I)Ttd +h+Trobust2] (41)
u= f_Kcei +Trobust3’ ei :i_id (42)

where Tropustt, Troousz and Tropusts are robust terms to be designed. Let us consider the
Lyapunov-like function candidate (28) and the update law (30) again. The time derivative of
V can be computed as

T

S
v=-]s" e e'lQle,|+ds|+ e+ e
e.

(43)
i
8" Tt T €T pn T € Ty
By picking T, ;.1 = —51 [sgn(sl) e sgn(sn )]T , where s, k=1,...n is the k-th
elementofs, T, , . = —52 [sgn(erl ) oo sgn(ern )]T where eTk ,k=1,...,2n is the k-th
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element of e, and T = —53 [sgn(el.l ) o sgn(el. )]T , where eik , k=1,...,n is the

robust3 —

k-th element of e;, we may have V' <0, and asymptotic convergence of the state error can
be concluded by Barbalat’s lemma.

4. Simulation Study

Consider a 2-DOF planar robot (Fig.1) represented by the differential equation (1), (2) and
(3). The quantities m;, I;, I; and I; are mass, length, gravity center distance and inertia of link
i, respectively. Actual values of link parameters in the simulation[34] are m1=0.5kg, m>=0.5kg,
1h=1>=0.75m, 11=1=0.375m, 1=0.09375kg-m2, and [,=0.046975kg-m2. The actuator inertias,

damping, and joint stiffness are J = diag(0.02,0.01)(kg-m*), B = diag(5,4)(Nm-sec/ rad)
and K =diag(100,100)(Nm/rad)  respectively. ~The motor parameters are:
L = diag(0.025,0.025)(H), H = diag(10,10)(N —m/ A). Considering the cases of high-

velocity movement, we would like the end-point to track a 0.2m-radius circle centered at (0.8
m, 1.0 m) in 2 seconds without knowing its precise model. The initial conditions of the link

angles and the motor angles are q =0 =[0.0022 1.5019 0 0] . The initial value of
the reference model state vector is T, = [1597 -47.26 0 0]" which is the same as

the initial value of the desired reference inputT,. The initial condition of the motor

armature currents is 1 = [77.49 - 83.92] " Which is the same as the initial value of the

desired reference current i,. The controller gains are selected as K , =diag(20,20),
A =diag(10,10), and K = diag(50,50). Each element of D, C, g, h, and f is approximated

by the first 11 terms of the Fourier series. The simulation results are shown in Fig. 2 to 9. Fig.
2 shows the tracking performance of the end-point and the desired trajectory in the
Cartesian space. It is observed that the end-point trajectory converges nicely to the desired
trajectory, although the initial position error is quite large. Fig. 3 is the joint space tracking
performance. It shows that the transient response vanishes very quickly. Fig. 4 is the control
inputs in voltage. Fig. 5 to 9 are the performance of function approximation for D, C, g, h,
and f respectively. Since the reference input does not satisfy the persistent excitation
condition, some estimates do not converge to their actual values but remain bounded as
desired. It is worth to note that in designing the controller we do not need much knowledge
for the system. All we have to do is to pick some controller parameters and some initial
weighting matrices.

5. Conclusions

An adaptive controller is proposed for RLFJED robots containing time-varying
uncertainties. A backstepping-like procedure is developed to deal with the cascade structure
in its dynamic equations. The function approximation technique is employed to cope with
the time-varying uncertainties. The closed loop stability is proved by using the Lyapunov-
like analysis. The realization of the proposed controller does not need to calculate the
regressor which is required in most adaptive designs for robot manipulators. Simulation
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results justify the performance of the proposed controller in fast tracking operations
although most of the robot parameters are not available.
4

1.2

1.05

0.95

0.85

0.75

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 2. Tracking performance of end-point in the X-Y space (— actual; --- desired). The
end-point is initialized at the point (0.8, 0.75m) and is required to track a 0.2m-radius circle
in 2 seconds. After some transient, the tracking error is very small, although we do not
know precise dynamics of the robot
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7. Appendix

Lemma A.1:
Let se N , &€ R" and K is the nxn positive definite matrix. Then,

_"Ks+sTe< ﬂmln( )|s H H H (A1)

ﬂ’mm (K)
Proof:
—s"Ks+s"e <[4, (K)s] + |e]l]s]
_H
[ 2Hlll'l (
VAin (K)o = FNTOL
_1 el
2 [/lmin (K)HSH mm (K)
g0 -
m1n (K)
Q.E.D.
Lemma A.2:
Let WI.T = [Wl.1 Woyooeee WM]E Slen, i=1,...,m and W is a block diagonal matrix
defined as W = diag{w,,w,,--,w,_}€ R™™  Then,
Tr (W W)= 3w, (*2)
i=1

The notation Tr(.) denotes the trace operation.
Proof: The proof is straightforward as below:
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w, 0 - 0
w, 0 - 0
_w“ w0 e 0 e 0 e ol o wy o 0
WIW = 0 0 w-21 W,, 0 0| : s :
: 0 w,, 0
0 0 0 0 Wi 0 Wi | :
0 0 W
| 0 0 W,
R 0w, 0 0]
10w, 00 w, 0
0 0 w, [0 0 W,
_wlTwl 0 0 |
0 wow, 0
0 0 ww
w0 0
2
L0 fwf
0 0 w,[]
2

The last equality holds because by definition Wl.TW ;= Wl.z1 + Wl.z2 +..+ Win = ”W ;

2

Therefore, we have Tr = (WTW) = i”wi

i=1

Q.E.D.

Lemma A.3:

Suppose WiT =[w;, wy, - ow,]e R*" and ViT =y vy o vm]emlml
i=1,...m. Let W and V Dbe block diagonal matrices that are defined as
W =diag{w ,w,,---,w, }€ R™" and V =diag{v,v,,--,v, e R"",

respectively. Then,
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m
Tr(VIW) <> |v[|w, (A3)
i=1
Proof: The proof is also straightforward:
v 0 - 0w, 0 - 0]
viw=| 0 v 00 e e O
00 v, |0 0 W, |
viw, 0 0 |
0 vyw, 0
0 0 vV, W, |
Hence,
Tr(VW)=viw, +Vviw, +.+V.w_
<[viflw [+ vaflwal+ vl QED.
m
=2 [villw
i=
Lemma A.4:

Let W be defined as in Lemma A.2, and W is a matrix defined as W = W — W , where

W is a matrix with proper dimension. Then

Tr(W'W) < %Tr(WTW) —%Tr(WTW) .

Proof:
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Tr(W W) =Tr(W W) =Tr(W'W)
< (v,
=33,

257

1 & N

<3 2w -1,
i=l

- %Tr(wTw) - %Tr(WTW) (by Lemma A.2)

_ HVNV, Hz) (by Lemma A.2 and A.3)

2

2 ~
—HW,.

%)

Q.E.D.
In the above lemmas, we consider properties of a block diagonal matrix. In the following,
we would like to extend the analysis to a class of more general matrices.
Lemma A.5:

Let W be a matrix in the form W' = [WIT WzT e W;]G R/ where
VVI. = diag{wmwiza' . -,Wl.m} e R , i=1,...,p, are block diagonal matrices with the

) T Ixn .
entries of vectors W, = [Wjjl W, Wiin e R , j=1,...,m. Then, we may have

ij2
p_m )
Tr(W'W)=3"%"|w, (A5)
i=1 j=1
Proof:
W1
WW=[W .. W]
Wp

=W/W, +--+W'W

Hence, we may calculate the trace as
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Tr(W W) =Tr(W/ W) +---+Tr(W; W )

Il
s

HWU H +- 4 ZHWPJ H (by Lemma A.l)

1 Jj=l1

>,

J=1

J

Il
M“

I’
—_

i

Q.E.D.
Lemma A.6:

P m
Let V and W be matrices defined in Lemma A.5, Then, T I”(VTW) < z z HV
i=l j=I

ij

(A.6)
Proof:
Tr(V'W)=Tr(V/ W)+ +Tr(V, W)
<3 v e Sl | oy zemna a3
=
P m
:ZZHVU ‘sz
i=l j=I
Q.E.D.
Lemma A.7:

Let W be defined as in Lemma A.5, and W is a matrix defined as W = W — W , where

W is a matrix with proper dimension. Then

Tr(W'W) < %Tr(WTW) — %Tr(WTW) . (A7)
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Proof:
Tr(W W) = Tr(W W) —Tr(W'W)

<ZZ(HW [, |- %, H ) (by Lemma A5and A.6)

Q.E.D
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