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Abstract

Bacterial colonization of implanted biomaterials remains one of the most challenging compli-
cations in orthopedics and trauma surgery, with extremely high social and economic costs. 
Antibacterial coating of implants has been advocated by many experts as a possible solution to 
reduce the burden of implant-related infection and several different solutions have been pro-
posed in the last decades. However, while most of the investigated technologies have shown 
their efficacy in vitro and/or in vivo, only few were able to reach the market, due to clinical, 
industrial, economic and regulatory issues. Hyaluronic acid composites have been previously 
shown to possess antifouling capabilities and have been used in various clinical settings to 
reduce bacterial adhesion and mitigate biofilm-related infections. Recently, a fast-resorbable, 
hyaluronic-based hydrogel coating was developed to protect implanted biomaterials in ortho-
pedics, trauma and maxillofacial surgery. Preclinical and clinical testing did show the safety 
and efficacy of the device that can be intraoperatively loaded with one or more antibiotics and 
directly applied by the surgeon to the implant surface, at the time of surgery. Here, we review 
the current evidence concerning this very first antibacterial coating of implants and outline the 
economic impact of the possible large-scale application of this technology.

Keywords: coating, hydrogel, hyaluronic acid, DAC, infection, implant, orthopedic, 
trauma, prosthesis, prevention
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1. Introduction

Up to 80% of human bacterial infections are biofilm-related, according to the U.S. National 
Institutes of Health [1]. Among these, implant-related infections in orthopedics and trauma 

still have a tremendous impact [2]. In fact, periprosthetic joint infection (PJI) (Figure 1) is 

among the first reasons for implant failure [3], posing challenging diagnostic and therapeutic 

dilemmas [4] and with high economic and social costs [5–7].

Similarly, surgical site infections after osteosynthesis, with a reported incidence ranging from 
3.9 to 10% for closed fractures [8–11] and even more after open fractures [12], are associated 

with high morbidity and possible mortality raise [9] and elevated costs [13].

Whenever a biomaterial is implanted, a competition between host and bacterial cells occurs for 

surface colonization. In the event of bacterial adhesion to an implant, immediate biofilm formation 
starts, making the bacteria extremely resistant to host’s defense mechanisms and to antimicrobi-

als [14–16]. According to recent evidence, fully formed biofilm can be found few hours after the 
first bacterial adhesion [17]; thus, the destiny of an implant is decided at the very time of surgery.

To reduce or prevent bacterial adhesion and biofilm formation, a number of different antimi-
crobial finishing or coatings of implants are under study [18]. However, their clinical applica-

tion appears particularly challenging, due to the many requirements they need to fulfill [19].

Hyaluronic acid (HA) is mucopolysaccharide, occurring naturally in mammals. It is abundant 

in skin and in connective tissues, being one of the main components of extracellular matri-

ces. HA has several clinical applications in dermatology, esthetic surgery, dentistry, urology, 

orthopedics and ophthalmology [20]. In fact, due to its high biocompatibility, and nonimmu-

nogenicity, hyaluronic acid is considered as an ideal biomaterial for medical and pharmaceu-

tical applications [21, 22].

Figure 1. Infected, exposed, knee prosthesis in a 60-year-old woman. Approximately one million joint replacements 

are performed annually in Europe, and infection is currently among the first three most common reasons for failure 
of implants. Septic complications are associated with prolonged and complex medical and surgical treatments, often 
leading to implant removal. Poor functional results, possible infection recurrence, risk of amputation and increased 

mortality rate are all well known and feared consequences of periprosthetic and implant-related infections. Direct costs 

of treatment of periprosthetic infection exceeds 100,000 euros, per case, according to a recent analysis [7].
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Local application of hyaluronic-based compounds has been demonstrated to be protective 

against various infectious agents, depending on HA concentration and molecular weight; fur-

thermore, HA’s ability to reduce bacterial adhesion and biofilm formation has been recently 
reported [23].

High biocompatibility, safety profile and antiadhesive properties make HA and its compos-

ites a possible non-antibiotic option to reduce the impact of biofilm-related infections in vari-
ous clinical settings. However, the use of HA in its pure form as an antibacterial coating does 
not appear suitable, due to its rapid degradation by hyaluronidases, enzymes naturally occur-

ring in the human and animal body. Furthermore, due to its high hydrophilicity, a coating 

produced with a hydrogel of HA alone would not have sufficient mechanical stability when a 
prosthesis is implanted in the body, which is an essentially water-based environment.

To overcome these limits, a combination of HA with another biocompatible and biodegrad-

able polymer, polylactic acid (PLA), was investigated [24]. In fact, PLA is a synthetic poly-

ester, approved in the U.S.A. by the Food and Drug Administration (FDA) and widely used 
for orthopedic implants [25]. PLA unlike HA, shows a hydrophobic character; therefore, its 

presence could be exploited to control in appropriate way the hydrophilic and mechanical 

properties of a hydrogel based on HA, thus slowing down the susceptibility to hydrolysis.

Here, after an overview of the antiadhesive and antibiofilm properties of HA, we summarize 
the development of a CE-marked, patented hydrogel coating, based on HA grafted to PLA 

(DAC®, “Defensive Antibacterial Coating,” Novagenit Srl, Mezzolombardo, Italy). Some of 
the most relevant preclinical and clinical results that made this device the very first resorbable 
antibacterial coating for large-scale clinical applications in orthopedic, trauma, dentistry and 

maxillofacial implants are also briefly reported.

2. Antiadhesive and antibiofilm properties of HA

Pavesio et al. [26] were probably the first to describe HA nonfouling properties and its ability 
to resist bacterial adhesion, with particular reference to Staphylococcus epidermidis [27], pro-

posing coated polymeric medical devices to reduce implant-related infections. In particular, a 

hydrophilic HA overlayer, linked to the surface of polymethylmethacrylate intraocular lenses 

(IOLs), was shown to be able to significantly reduce the adhesion of Staphylococcus epidermidis 

to the implant surface [28].

In line with this observation, Kadry and coworkers, reported the ability of hyaluronan to 

reduce bacterial adhesion to IOLs of a S. epidermidis wild strain [29]; based on these findings, 
the authors proposed the use of HA as an antiadhesive, adjuvant therapy, in combination 

with antibiotics in irrigating solutions for bacterial ocular infections.

More recently, Drago et al. reported on the in vitro antiadhesive and antibiofilm activity of HA 
toward bacterial species commonly isolated from respiratory infections [30]. In this experimen-

tal study, HA was shown to be able to reduce bacterial adhesion to a cellular substrate in a con-

centration-dependent manner. The antibiofilm action, exerted by HA in ear, nose and throat 
districts, has been recently reviewed [31]. The authors conclude that “its efficacy in  treating 
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rhinosinusitis, whether or not associated with polyposis, is well documented, as well as results 

from its effects on mucociliary clearance, free radical production and mucosal repair.”

HA has also been reported to exert bacteriostatic, dose-dependent effect on different plank-

tonic microorganisms [32, 33]. Radaeva et al. showed the inhibiting activity of HA with 
respect to some Pseudomonas species [34], while Ardizzoni and coworkers [23] investigated 

the effects of HA on 15 ATCC bacterial strains, representative of clinically relevant bacterial 
and fungal species. According to their results, different microbial species and strains are dif-
ferently affected by HA. In particular, staphylococci, enterococci, Streptococcus mutans, two 

Escherichia coli strains, Pseudomonas aeruginosa, Candida glabrata and C. parapsilosis showed a 

dose-dependent growth inhibition, while no HA effects were detected in E. coli ATCC 13768 

and C. albicans, and S. sanguinis was favored by the highest HA dose.

Carlson and coworkers [33] compared the potential bacteriostatic effect of collagen type I, hyal-
uronic acid, hydroxyapatite, polylactic acid and polyglycolic acid on some of the most common 

orthopedic bacterial pathogens (S. aureus, S. epidermidis, β-hemolytic Streptococcus and Pseudomonas 

aeruginosa): HA had the most significant bacteriostatic properties on the studied organisms. 
Similarly, Pirnazar et al. [32] did demonstrate the bacteriostatic effect of HA in different con-

centrations and molecular weight on oral and nonoral microorganisms (Staphylococcus aureus, 

Propionibacterium acnes, Actinobacillus actinomycetemcomitans, Prevotella oris and Porphyromonas 

gingivalis). The authors concluded that the clinical application of hyaluronan in the form of 

membranes, gels or sponges may reduce bacterial contamination of the surgical wound, thereby 

lessening the risk of postsurgical infection and promoting more predictable regeneration.

Concerning orthopedic applications, Harris and Richards [35] showed how coating titanium 

with sodium hyaluronate significantly decreased the density of S. aureus adhering to the sur-

faces and proposed its potential use to protect osteosynthesis, orthopedic or dental implants.

In a recent review, focused on the use of polysaccharide-based coatings to prevent biofilm 
formation, hyaluronic acid was discussed as one of the most promising [36]; displaying 

hydrophilic characteristics, this coating was in fact reported to reduce adhesion of S. aureus, 

S. epidermidis and E. coli by several orders of magnitude compared to unmodified surfaces.

3. Clinical applications of HA to prevent bacterial adhesion

Several clinical local applications of HA to reduce the impact of biofilm-related infections 
have been reported with favorable results and no adverse events [37].

Torretta et al. [38] recently described topical administration of hyaluronic acid in children 

with recurrent or chronic middle ear inflammations and chronic adenoiditis.

Other studies have documented the positive effect of topical HA in chronic urinary tract infec-

tions (UTI). At variance with current antibiotic treatments, aimed at eradicating pathogens, 

HA local administration targets bacterial adherence to the bladder mucosa [39–42]. Damiano 

et al., in a prospective, randomized, double-blind, placebo-controlled study, showed a signifi-

cant reduction of 77% (P < 0.0002) in the UTI rate per year in HA-treated patients, compared 

to controls. Moreover, mean time to UTI recurrence was significantly prolonged (185.2 ± 78.7 
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vs. 52.7 ± 33.4 days, P < 0.001) after HA treatment, compared with placebo [43]. No adverse 
events were reported. A recent multicenter European study confirmed the efficacy of intra-

vescical administration of combined HA and chondroitin sulfate (CS) for the treatment of 
female recurrent urinary tract infections [44].

In dentistry, the effect of the application of HA-containing gels in early wound healing after 
scaling and root planing (SRP) on clinical variables, subgingival bacteria and local immune 
response was investigated [45, 46]. Eick et al. [47] reported on 34 individuals affected by 
chronic periodontitis and treated with full-mouth SRP; in the test group (n = 17), a 0.8% hyal-
uronan-containing gel was introduced into all periodontal pockets during SRP and a 0.2% 
HA gel was applied by the patients onto the gingival margin twice daily during the following 

2 weeks, while the control group (n = 17) was treated with SRP only; no placebo was used. 
Probing depth (PD) and clinical attachment level (CAL) were recorded at baseline and after 
3 and 6 months, and subgingival plaque and sulcus fluid samples were taken for microbio-

logic and biochemical analysis. The changes in PD and the reduction of the number of pockets 

with PD ≥ 5 mm were significantly higher in the test group after 3 (P = 0.014 and 0.021) and 
6 (P = 0.046 and 0.045) months. Six months after SRP, the counts of Treponema denticola were 

significantly reduced in both groups (both P = 0.043), as were those of Campylobacter rectus 
in the test group only (P = 0.028). Prevotella intermedia and Porphyromonas gingivalis increased 

in the control group. No adverse effects of HA were observed during the study.

4. Synthesis of DAC® HA-g-PLA hydrogel coating

Composed of covalently linked hyaluronan and poly-d,l-lactide, the “Defensive Antibacterial 

Coating” (DAC®, Novagenit Srl, Mezzolombardo, Italy) was specifically developed in order 
to protect implanted biomaterials used in orthopedics, traumatology, dentistry and maxillo-

facial surgery from bacterial colonization [24, 48] (Figure 2).

Figure 2. DAC® HA-g-PLA, fast-resorbable, hydrogel coating. Composed of covalently linked hyaluronan and poly-d, 

l-lactide, the “Defensive Antibacterial Coating” (DAC®, Novagenit Srl, Mezzolombardo, Italy) is the first antibacterial-
coating cleared for clinical use in orthopedics, trauma, dentistry and maxillofacial surgery in Europe.
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Preparation of the hydrogel was performed according to a patented procedure [49]. In partic-

ular, HA-g-PLA copolymer was dispersed in an appropriate volume of twice distilled water, 

and the mixture was stirred vigorously at the vortex to obtain a gelatinous and transparent 

hydrogel with a polymer concentration between 3% (w/v) and 10% (w/v).

The synthesis of HA-g-PLA copolymer was performed as previously reported [50, 51] (Figure 3).  

Briefly, a low weight–average molecular weight HA (HALMW) was made soluble in organic 
solvents by transformation to its tetrabutylammonium (TBA) salt. The synthesis of the 

N-hydroxysuccinimide (NHS) derivative of PLA (i.e., PLA-NHS) was performed as reported 
elsewhere [52]. In particular, 2.4 g of PLA was dissolved in 30 ml of anhydrous dichlorometh-

ane with an excess of DCC and NHS for 24 h at room temperature, and then the solution was 
precipitated in ethanol and the recovered solid was dried under vacuum. 1H NMR of PLA-NHS 
(CDCl

3
) showed: δ 1.5 and δ 1.6 (d, 3H, ─O─CO─CH(CH

3
)─OH; d, 3H, ─O─CO─CH(CH

3
)─O─), 

Figure 3. Principal steps in the synthesis of HA-g-PLA copolymer.
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δ 2.80 (m, 4H, ─OC─CH
2
─CH

2
─CO─); δ 4.3 and δ 5.2 (m, 1H, ─O─CO─CH(CH

3
)─OH; m, 

1H, ─O─CO─CH(CH
3
)─O). The synthesis of HA-g-PLA copolymer was carried out as follows: 

600 mg of HA-TBA was dissolved in 48 ml of anhydrous dimethyl sulfoxide (DMSO) and then 
576 μl of DEA, as a catalyst, was added. A suitable amount of PLA-NHS (dissolved in 6 ml 
of anhydrous DMSO) was added according to X = 1, X being equal to moles of PLA-NHS/
moles of HA repeating units. The PLA-NHS solution was added drop by drop to the HA-TBA 
solution in about 1 h. The reaction was carried out under argon at 40°C for 24 h. After this 

time, the TBA was exchanged with Na+ using a Dowex 50 W × 8-200 resin, and then the eluate 

was dialysed against distilled water, by using spectra/por tubing with a cutoff of 14,000 Da 
and then freeze-dried. The sample has been characterized by FT-IR and 1H NMR analyses. 
FT-IR spectrum (KBr) of HA-g-PLA showed a broad band centered at 3450 cm−1 (ν as OH + ν 

as NH of HA), bands at 1757 (ν as COO of PLA), 1623 (amide I of HA), 1456 (δ as CH
3
 of 

PLA), 1382 (δ as CH
3
 of PLA), 1189 (ν as C─O─C ester group of PLA), 1089, 1048 (ν C─O alco-

holic and ether of HA) cm−1. 1H NMR of HA-g-PLA (DMSO-d
6
/D

2
O 90:10) spectrum showed: 

δ 1.25 and δ 1.45 (2d, ─O─CO─CH(CH
3
)─O─ of PLA); δ 1.85 (s, 3H, ─NH─CO─CH

3
 of HA) δ 

5.1 ppm (m, ─O─CO─CH(CH
3
)─ of PLA). The % degree of grafting (DG) has been calculated 

as: %DG = (moles PLA chains/moles of HA repeating units) × 100. The degree of grafting was 
determined by comparing the integral of the peaks at δ 1.25–1.45 attributed to protons of methyl 
groups of PLA with the integral of peaks at δ 1.85 attributed to protons of NHCOCH

3
 belonging 

to N-acetylglucosamine residue of HA and resulted to be 7 ± 1 mol%.

5. DAC® hydrogel in vitro activity

5.1. Cell compatibility assay

In vitro cell compatibility of DAC® HA-g-PLA hydrogel (polymer concentration 6%, w/v) was 

evaluated using human dermal fibroblasts. The viability of cells cultured in direct or indirect 
contact with HA-g-PLA hydrogel was comparable with that of the control well, showing that 

the hydrogel does not release in the culture medium substances that interfere with cell viabil-

ity and they do not cause a decrease in the cell viability after direct contact with them [24]. 

Further in vitro and in vivo biocompatibility studies were performed on the DAC® hydrogel 

and on the DAC® kit, in accordance to ISO standards, all showing no cytotoxicity, genotoxic-

ity, sensitization, irritation or intracutaneous reactivity, systemic toxicity (acute), subchronic 

toxicity or interference with bone or periimplant tissues.

Furthermore, as degradation of DAC® HA-g-PLA hydrogel occurs via deesterification of hyal-
uronic acid and polylactic acid, it gives raise exclusively to the starting macromolecules, whose 

degradation pathways in the human body are widely known and whose use as implantable 

class III medical devices is largely accepted and tested safe.

5.2. Antiadhesive and antibiofilm activity

Both the ability of the DAC® HA-g-PLA hydrogel to reduce bacterial adhesion and biofilm 
formation were extensively studied in vitro.

Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics…
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Reductions of adhered bacteria on sterile titanium discs, coated with DAC® hydrogel, equal 

to 86.8, 80.4, 74.6 and 66.7% vs. untreated discs were observed after 15, 30, 60 and 120 min 

of incubation, respectively [37]. In another experiment, the ability to dislodge previously 

adhered bacteria was investigated. Once again, the results showed that DAC® hydrogel treat-

ment of discs reduced the amount of adhered bacteria in respect to control discs after 15, 30, 

60 and 120 min by 84.0, 72.8, 72.3 and 64.3%, respectively [37].

Concerning more specifically the antibiofilm activity, DAC® hydrogel showed similar or 

superior in vitro activity, compared to various antibacterials and a synergistic activity when 

used in combination [48]. In one experimental setting, S. epidermidis and S. aureus were grown 

on chrome-cobalt devices in 6-wells polystyrene plates containing TSB for 24 h at 37°C. The 
plates were incubated at 37°C in ambient air, until a visible biofilm was obtained. Gentamycin 
and vancomycin were tested at a final concentration of 20 mg/mL. Similarly, when mixed 
with the hydrogel, 60 mg of gel powder was reconstituted with 1 mL of water for injections 

containing gentamicin or vancomycin at 20 mg/mL concentration. The amount of biofilm at 
each time was determined before hydrogel and antibiotic agents’ addition and after 0.5, 1, 2, 

4, 6, 24 and 48 h of incubation by a spectrophotometric assay. At each time point, both gen-

tamicin and vancomycin showed only a partial inhibition of biofilm formation (ca. 30–40% 
for gentamicin; ca. 40–50% for vancomycin), with minor difference between the two studied 
microorganisms. On the other side, the hydrogel alone resulted in a significant reduction 
of biofilm of ca. 50%, in comparison to the untreated controls, while a combination of the 
hydrogel with either antibacterial coating resulted in a larger reduction of biofilm formation 
(approximately 75–80% in comparison with untreated controls).

Both these experimental studies show the ability of the DAC® hydrogel to significantly reduce 
bacterial adhesion and biofilm formation of common bacterial pathogens, thus potentially pro-

viding an effective protection of the implant; however, these data also point out how, in the clini-
cal setting, in the absence of an adequate immune response from the host and/or of sufficient local 
levels of antibiotics, a passive antiadhesive coating [18] like HA can be overcome by the remain-

ing bacteria in a time-dependent manner. For this reason, any passive antiadhesive coating of 

implants [53] should probably better be seen as a tool to reduce and delay bacterial adhesion and 
biofilm formation to a variable degree, also depending on the local environment, the contaminat-
ing bacterial species and initial bacterial load; this activity of the coating may represent a key 

additional advantage to the host’s cells to win the competition with the microorganisms that may 

eventually be present. However, the known intrinsic limits of all passive coatings ground the 

idea of adding antibacterial agents to the protective hydrogel, in order to minimize the possibility 

for planktonic bacteria, which may eventually remain in the local environment, to colonize the 

implant at a second stage, when the coating has been hydrolyzed or covered by host’s proteins.

5.3. Antibiotic release studies

Although designed as a “stand alone” product, the DAC® hydrogel was also tested concern-

ing its ability to entrap and eventually release locally various antibacterial agents. As outlined 

above, the rationale for this combination lies in the pathogenesis of implant-related infections 

and on the specificities of passive protective coatings. In fact, biofilm formation is a  multistep 
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process that schematically includes the bacterial adhesion to a substrate, the subsequent 

immediate release of signals from adherent bacteria that triggers biofilm production and, 
finally, the biofilm construction and progressive consolidation. Acting mainly as a physical 
and antiadhesive barrier, DAC® hydrogel may reduce or prevent the first phase of the pro-

cess, provided that the number of living bacteria is not too high and that they are not able to 

overcome or hydrolyze the hydrogel [54]; moreover, for an effective prevention of bacterial 
colonization of the coated implant, it is necessary that, while bacteria are in the more vulner-

able planktonic state, they are completely removed or killed by the host’s immune system 

and/or by the local chemicophysical environment. This is why, even in the presence of DAC® 

coating protection, systemic antibiotic prophylaxis is still to be considered necessary. In fact, if 

not eliminated, the remaining floating microorganisms may successfully colonize the implant 
once the protective coating has been hydrolyzed (a phenomenon that is expected to happen 

normally within 3 days from application for the DAC hydrogel) or after the implanted bio-

material has been covered by host’s proteins (fibrin, fibronectin, etc.), which may also work 
as suitable for bacterial adhesion. In this scenario, the possibility to add also an antibacterial 

drug to the coating may further contribute to reduce the planktonic microorganisms, enhanc-

ing the overall protection offered by the DAC hydrogel (Figure 4).

To test the hydrogel ability to entrap antibacterial drugs, vancomycin and tobramycin had 

been originally chosen as examples of antibiotic molecules [24]. Both these antibiotics have 

been added to the hydrogel just before its use, a solution that offers several advantages. First 
of all, this allows to add the antibiotic when it is needed, thus avoiding the problems of shelf-

life and any long-term compatibility with the hydrogel; secondly, in this way, it is possible 

to choose the optimal antibiotic in the specific case, taking into account the patient’s specific-

ity (e.g., known intolerances to specific antibacterial agents) or of the specific intervention; 
finally, the dosing of the antibacterial agent on a case-by-case basis can be decided by the 
clinician. The results of the in vitro study clearly showed how the investigated antibacterial 

hydrogel coating, applied on a titanium disc, at a concentration in polymer in the range 2–8% 

(w/v) and a concentration in drug equal to 1 or 2% (w/v) is able to release vancomycin or 

tobramycin, or of their association, for up to 72 h, with an amount of drug released that is 

hundred or thousand times higher than the minimum inhibitory concentration (MIC), in a 
time- and dose-dependent manner.

Similar results were founded by testing several other antibacterial compounds or their com-

binations, including vancomycin, teicoplanin, rifampicin, daptomycin, tigecycline, cefazolin, 

gentamicin, tobramycin, amikacin, meropenem, levofloxacin, etc. (cf. Figure 5), at concentra-

tions ranging from 2 to 10% [48].

In summary, all examples reported above show that DAC® hydrogel is potentially able to 

entrap and release suitable quantities of antibacterial agents just after the implant of the 

coated prosthesis. The high initial burst effect of the released drug may ensure the most effi-

cient action at the time that is critical for the destiny of the biomaterial. Moreover, during 
the entire drug release period, the antibiotic concentration released by the hydrogel remains 

greater than MIC, thus further ensuring effectiveness of the drug released in proximity to the 
prosthesis.

Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics…
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5.4. DAC® hydrogel coating ability

For any device candidate to act as a coating of orthopedic and trauma biomaterials, mechani-

cal adherence to the implant surface plays a key role. In particular, DAC® hydrogel has been 

designed to be spread manually at the time of surgery and to not interfere with the usual 

surgical techniques of press-fit insertion of an implant. The ability of DAC® hydrogel to com-

pletely cover even sand-blasted titanium surface and resist scraping has been confirmed by 

Figure 4. Rationale for intra-operative mixing of DAC® hydrogel coating with antibacterial agents. Schematic repre-
sentation of different scenarios. (a) Noncoated implants may get colonized by biofilm-forming bacteria (yellow circles) 
and infection will develop. (b) Antiadhesive coating may reduce/prevent bacterial adhesion, while the immune system 

(orange circles and red stars) and the systemically administered antibiotics (blue star) kill planktonic microorganisms. 

(c) However, if bacterial load is large enough, or if immune response and local antibiotic levels are inadequate, surviving 

bacteria may eventually colonize the implant, once the coating has been hydrolyzed or covered by host’s proteins.  

(d) To prevent this, the antibacterial hydrogel may be loaded, at the time of surgery, with antibiotic agents (blue stars) 

that may be locally released, contributing to eliminate all remaining planktonic bacteria.
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scanning electron microscopy (SEM) analysis [37]. This is an important requirement in order 

to reduce the exposed surface of a biomaterial, thus creating a uniform coating of the surface 

and leaving no pores or cracks that could eventually be colonized by planktonic bacteria.

The resistance to scraping and declothing has also been tested in the animal model and in 

human femurs, simulating a press-fit insertion of a cementless implant [24, 48]. Both studies 

demonstrated the ability of the hydrogel coating to resist insertion, with 60% to more than 

80% of the hydrogel remaining adherent to the entire implant surface, while the remainder 

being retrieved along the inner surface of the medullary canal.

6. DAC® hydrogel in vivo activity

Safety and efficacy of the DAC® hydrogel have been investigated in several animal studies.

Concerning efficacy, in an acute model of highly contaminated implant-related infection in the 
rabbit, Giavaresi and coworkers [55] found that a vancomycin-loaded DAC® coating was associ-

ated with local bacterial load reduction ranging from 72 to 99%, compared to uncoated controls.

In another large investigation in the rabbit model, Boot et al. [56] showed, at longer follow-up 

and without systemic antibiotic prophylaxis, the ability of vancomycin-loaded DAC®-coated 

implants to significantly resist infection, compared to uncoated controls. Both studies did 
also reveal the absence of local or systemic side effects. In line with this observation, a more 

Figure 5. Tigecycline-loaded DAC® hydrogel coating, applied at surgery on a knee revision prosthesis. The hydrogel, 

which comes in a powder form, in a prefilled syringe, is designed to be reconstituted at the time of surgery with water 
for injection. The surgeon may decide to add a single or a combination of antibiotics to the water for injection, to further 

enhance implant protection.
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recent paper, focused on the impact on bone healing and implant osteointegration, reported 

no detrimental effects of vancomycin-loaded DAC® or of DAC® alone [57].

Another study on a rat model of acutely infected osteosynthesis did provide evidence that 

vancomycin-loaded DAC®-coated plates and screws not only are associated with a significant 
reduction of infection but also protect from the occurrence of septic nonunion, compared to 

uncoated implants [58]. This study is the very first demonstration that bone healing in a con-

taminated fracture can be improved by using an osteosynthesis coated with a fast-resorbable, 

antibiotic-loaded hydrogel.

7. Clinical results and applications

The DAC® hydrogel received the CE mark at the end of year 2013. The available kit (www.

coatingdac.com or www.dac-coating.com) is composed of a prefilled syringe, containing 
300 mg sterile DAC® powder, that is filled at surgery with a solution of 5 mL sterile water for 
injection, eventually mixed with the desired antibiotic(s); this allows to obtain, in approxi-

mately 3–5 min, the antibiotic-loaded hydrogel, at a DAC® concentration of 6% (w/v) and at 

an antibiotic concentration usually ranging from 20 mg/mL to 50 mg/mL, depending on the 

surgeon’s choice. The surgeons can choose the antibiotic from among a list of antibacterials 

previously tested as being compatible with the hydrogel (Novagenit SRL, data on file). A few 
minutes after reconstitution, the hydrogel can be directly spread onto the implant, which is 

then inserted into the body in the usual way. If necessary, once reconstituted, the hydrogel 

may remain at ambient temperature for up to 4 h.

Two large multicenter, randomized, prospective clinical trials were undertaken in Europe, within 

the 7th European Framework Programme (project # 277988), funded by the European Commission.

In a first trial, a total of 380 patients, scheduled to undergo primary (n = 270) or revision 
(n = 110) total hip (N = 298) or knee (N = 82) joint replacement with cementless or hybrid (par-

tially cemented) implants were included [59, 60]. The patients were randomly assigned, in six 

European orthopedic centers, to receive an implant either with the DAC® coating, intraopera-

tively loaded with antibiotics (treatment group), or without the coating (control group). Pre- and 

postoperative assessment of clinical scores, wound healing, laboratory tests and X-ray exams 

were performed at fixed time intervals. Overall, 373 patients were available at a mean follow-up 
of 14.5 ± 5.5 months (range 6–24). On average, a volume of 8.3 mL hydrogel was used to coat an 
implant. The most often used antibiotics were vancomycin and gentamicin at a concentration of 

5% and 3.2%, respectively. Fifteen patients received an implant with a combined vancomycin 

and meropenem antibiotic coating; four patients received an implant coated with teicoplanin 5% 

or ceftazidime 5% or amphotericin B 5%, all in a second-stage procedure for previous infection. 

Eleven surgical site infections were observed in the control group and only one in the treatment 

group (6% vs. 0.6%; P = 0.003). No local or systemic side effects related to the DAC® hydrogel 

coating were reported and no detectable interference with implant osteointegration was noted.

In the other multicenter, prospective study, 256 patients, undergoing osteosynthesis for a 

closed fracture, were randomly assigned, in 5 European orthopedic centers, to receive the 

antibiotic-loaded DAC® coating or to a control group, without coating. At a mean follow-up of 
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18.1 ± 4.5 months (range 12–30), 253 patients were available for evaluation. On average, 5.7 mL 
(range: 1–10 mL) of DAC® hydrogel was needed to coat the implant. Gentamicin and vanco-

mycin were the most used antibiotics, at concentration of, respectively, 4% or 2%. Six surgical 
site infections (4.6%) were observed in the control group compared to none in the treated 

group (P < 0.02). No local or systemic side effects related to DAC® hydrogel coating were 

observed and no detectable interference with bone healing was reported [61, 62] (cf. Table 1).

Preliminary results of the possible use of the DAC® hydrogel coating in one-stage exchange 

of infected prosthesis did also recently show the efficacy and safety of the device in this chal-
lenging application [63]. Further studies are currently under way concerning joint replace-

ment in bone tumors, spine surgery, exposed fractures and dentistry.

8. Economic impact

Periprosthetic joint infections (PJI) are associated with increased costs for public health sys-

tems, mainly due to additional surgeries, prolonged hospitalization, increased length of reha-

bilitation and increased use of antibiotics [64]. Moreover, PJIs are associated with an increase 
in morbidity and mortality [65]. Unless novel, effective measures are taken to reduce the inci-
dence of surgical site infections (SSIs), these complications will become an accruing burden to 
the health care system in the next two decades [66, 67].

Cost-effectiveness of antibacterial coatings of joint prostheses can be calculated, comparing 
their direct and indirect hospital costs with those of unprotected implants, taking into con-

sideration the expected surgical site infection rate and using a decision-analytic modeling 

approach, as previously described by Diaz-Ledezma et al. [68] and Kapadia et al. [69].

Table 2 reports an algorithm used to calculate the overall economic impact of DAC® hydrogel 

coating. The following variables are included for calculation: average cost and number of 

primary joint replacements; average cost of the antibacterial coating per patient; incidence 

of PJI and expected reduction of infection rate with the use of the coating; average cost of PJI 

treatment and expected number of cases.

Various scenarios can be simulated with the reported algorithm, depending on the relative 

value given to each variable.

Considering the undiscounted price of DAC® hydrogel at our institution of € 585.00 per pack-

age and two packages of DAC® as the standard use per patient, it can be calculated that, if the 

Reference Number of 
patients

Follow-up 
(months)

DAC-treated SSI 
rate (%)

Controls SSI 
rate (%)

P Side 

effects

Romanò et al. [58] 380 14.5 ± 5.5 0.6 6 0.003 None

Malizos et al. [60] 256 18.1 ± 4.5 0 4.6 <0.02 None

SSI, surgical site infection.

Table 1. Summary of the main results of the published clinical multicenter trials on DAC® hydrogel coating in orthopedics 

and trauma.
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Table 2. Algorithm used to estimate the economical impact of antibacterial coating technologies.

Table 3. In this simulation, assuming an average cost of primary joint replacement of € 8000 per patient, an average cost 

of DAC® of € 1170 per case (i.e., two packages per patient), an expected reduction of postsurgical infections by using the 

coating of 90% and an average cost of PJI treatment of € 50,000 [6, 74], it can be calculated that DAC® is in economical 

balance if used in a population of patients with an expected periprosthetic infection rate, without the coating, of 2.6%.
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coating is able to reduce surgical site infection by 90% [60], DAC® is in economical balance if 

applied to a population of patients with an expected rate of septic complications (without the 

coating) of 2.6% (Table 3).

According to a similar calculation, if applied on a large scale, to a selected population of 

patients with at least one risk factor for infection and an expected incidence of infection, with-

out the coating, of 5%, DAC® would provide, in a medium size country, like Italy (approxi-

mately 160,000 joint replacements per year), annual direct cost savings of approximately 

€ 43,200,000 (or 1080 € per patient). An expected incidence of postsurgical infection of 5% 

applies to patients with at least one risk factor for infection, which is at least 25% of all patients 

undergoing joint replacement [70, 71].

The present analysis is very conservative. One package of DAC® is in fact sufficient in the vast 
majority of primary implants. Secondly, recent studies point out how the long-term average 
cost of PJI is much higher than € 50,000, largely exceeding € 100,000 per patient [13]; finally, 
the algorithm does not include indirect costs, like those deriving from treatment complica-

tions, functional inability, work loss and compensation, medicolegal costs, increased mortal-

ity rate and quality of life reduction.

9. Conclusions

Biofilm- and implant-related infections represent a dramatic and increasing burden world-

wide. Available data show that hyaluronic acid has a proven in vitro antiadhesive/antibiofilm 
effect against some of the most common pathogens, and HA has been used safely, alone or 
in combination with other polymers, with satisfactory results in different conditions associ-
ated with biofilm-related chronic infections. Clinical data in various applications, including 
dentistry, urology, wound management, dermatology and orthopedics, paved the way to the 

possible use of HA as a protective coating barrier of implants.

The chemical derivatization of hyaluronic acid with polylactic acid allows the formation of graft 

copolymers, which, when contacted with an aqueous medium, can be used to produce hydro-

gels, like the recently CE-marked DAC®, with appropriate characteristics for easy preparation 

and application at the time of surgery. Resulting medicated hydrogel is transparent, easily 
spreadable over a surface, like a titanium prosthesis, and has a specifically designed duration; 
moreover, it has proven, peculiar, antiadhesive and antibiofilm capabilities. If required, it may 
also be easily loaded, at surgery, with antibacterial agents that will be released over the fol-

lowing hours or few days in effective high local concentrations. In fact, as a passive protective 
barrier, DAC® hydrogel has some limits. Among others, the antiadhesive/antibiofilm effect 
is limited and may vary, depending on the type of the microorganism, the bacterial load, the 

local environment, etc.; moreover, HA protection may be neutralized by the possible ability 

of some bacteria to produce hyaluronidase, an enzyme that catalyzes the degradation of hyal-

uronic acid [52], while collagen and hyaluronan may even become possible ligands for micro-

bial attachment in particular situations, or the coating can be covered by other host’s proteins 
to which bacteria may anchor [72, 73]. To overcome some of these limits, possible loading of 
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the hyaluronic-based hydrogel with antibiotics is technically feasible and has been found safe 

in various preclinical and clinical settings, being a possible option for clinicians.

In fact, both in vitro and in vivo studies did confirm the safety and efficacy of the hydrogel 
coating with and without loaded antibacterials.

Clinical results also clearly point out the efficacy of the DAC® coating to significantly reduce 
early postsurgical infection after joint replacement or internal osteosynthesis, without any 

detectable local side effect both concerning wound and bone healing. Moreover, no changes 
in organ-specific serum markers or systemic unwanted effects were noted. The high biocom-

patibility of its basic constituents and the short time (less than 3 days) needed for a complete 

hydrogel resorption make the possible occurrence of longer term side effects quite unlikely.

Finally, economical consideration points out the high cost-to-benefit ratio of the large-scale 
use of DAC® coating, especially in a population with at least one risk factor for infection.

The versatility of the device and its safety profile may open the way to application in other 
surgical fields that share similar infection risk as orthopedics and trauma.

Author details

Gaetano Giammona1,2, Giovanna Pitarresi1, Fabio Salvatore Palumbo1, Susanna Maraldi3, 

Sara Scarponi3 and Carlo Luca Romanò3*

*Address all correspondence to: carlo.romano@grupposandonato.it

1 Department of Biological, Chemical and Pharmaceutical Science and Technologies, 
Universityà degli Studi di Palermo, Palermo, Italy

2 Institute of Biophysics at Palermo, Italian National Research Council, Palermo, Italy

3 Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, 
I.R.C.C.S. Galeazzi Orthopaedic Institute, Milano, Italy

References

[1] Roemling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative 
treatment strategies. Journal of Internal Medicine. 2012;272:541-561

[2] Romanò CL, Romanò D, Logoluso N, Drago L. Bone and joint infections in adults: A 
comprehensive classification proposal. European Orthopaedics and Traumatology. 2011; 
1(6):207-217

[3] Cats-Baril W, Gehrke T, Huff K, Kendoff D, Maltenfort M, Parvizi J. International con-

sensus on periprosthetic joint infection: Description of the consensus process. Clinical 

Orthopaedics and Related Research. 2013;471:4065-4075

Hydrogels194



[4] Drago L, Lidgren L, Bottinelli E, Villafañe JH, Berjano P, Banfi G, Romanò CL, Sculco TP. 
Mapping of microbiological procedures by the members of the International Society of 
Orthopaedic Centers (ISOC) for periprosthetic infections diagnosis. Journal of Clinical 
Microbiology. 2016;2016:1402-1403. Pii: JCM.00155-16

[5] Kamath AF, Ong KL, Lau E, Chan V, Vail TP, Rubash HE, et al. Quantifying the burden of 
revision total joint arthroplasty for periprosthetic infection. The Journal of Arthroplasty. 

2015;30(9):1492-1497

[6] Romanò CL, Romanò D, Logoluso N, Meani E. Septic versus aseptic hip revision: How 
different ? Journal of Orthopaedics and Traumatology. 2010;11(3):167-174

[7] Parisi TJ, Konopka JF, Bedair HS. What is the long-term economic societal effect of peri-
prosthetic infections after THA? A Markov analysis. Clinical Orthopaedics and Related 
Research. 2017 Jul;475(7):1891-1900

[8] Bonnevialle P, Bonnomet F, Philippe R, Loubignac F, Rubens-Duval B, Talbi A, Le Gall 
C, Adam P. SOFCOT. Early surgical site infection in adult appendicular skeleton trauma 
surgery: A multicenter prospective series. Orthopaedics & Traumatology, Surgery & 
Research. 2012 Oct;98(6):684-689

[9] Berbari EF, Osmon DR, Lahr B, Eckel-Passow JE, Tsaras G, Hanssen AD, Mabry T, 
Steckelberg J, Thompson R. The Mayo prosthetic joint infection risk score: Implication 
for surgical site infection reporting and risk stratification. Infection Control and Hospital 
Epidemiology. 2012;33:774-781

[10] Heppert V Acute infection after osteosynthesis. European Instructional Lectures. Vol. 

12, 2012, 13th EFORT Congress, Berlin, Germany. Springer Science & Business Media 
Ed. 2012. pp. 25-31. ISBN: 3642272932, 9783642272936

[11] Keene DJ, Mistry D, Nam J, Tutton E, Handley R, Morgan L, Roberts E, Gray B, Briggs A, 
Lall R, Chesser TJ, Pallister I, Lamb SE, Willett K. The ankle injury management (AIM) 
trial: A pragmatic, multicentre, equivalence randomised controlled trial and economic 

evaluation comparing close contact casting with open surgical reduction and internal 

fixation in the treatment of unstable ankle fractures in patients aged over 60 years. 
Health Technology Assessment. 2016 Oct;20(75):1-158

[12] Oliveira PR, Carvalho VC, da Silva Felix C, de Paula AP, Santos-Silva J, Lima AL. The inci-
dence and microbiological profile of surgical site infections following internal fixation 
of closed and open fractures. Revista Brasileira de Ortopedia. 2016 Feb 2;51(4):396-399

[13] Poultsides LA, Liaropoulos LL, Malizos KN. The socioeconomic impact of musculoskel-
etal infections. The Journal of Bone and Joint Surgery. American Volume. 2010;92:e13

[14] Gristina AG, Naylor P, Myrvik Q. Infections from biomaterials and implants: A race for 
the surface. Medical Progress through Technology. 1988;14(3-4):205-224

[15] Gristina AG, Shibata Y, Giridhar G, Kreger A, Myrvik QN. The glycocalyx, biofilm, 
microbes, and resistant infection. Seminars in Arthroplasty. 1994;5(4):160-170

Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics…
http://dx.doi.org/10.5772/intechopen.73203

195



[16] Dastgheyb S, Parvizi J, Shapiro IM, Hickok NJ, Otto M. Effect of biofilms on recalcitrance 
of staphylococcal joint infection to antibiotic treatment. Journal of Infectious Diseases. 

2015;211:641-650

[17] Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA, 
et al. Biomaterial-associated infection: Locating the finish line in the race for the surface. 
Science Translational Medicine. 2012;4(153):153rv10

[18] Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L. Antibacterial coating of 
implants in orthopaedics and trauma: A classification proposal in an evolving pan-

orama. Journal of Orthopaedic Surgery and Research. 2015;10:157

[19] Moriarty TF, Grainger DW, Richards RG. Challenges in linking preclinical anti-micro-

bial research strategies with clinical outcomes for device-associated infections. European 

Cells & Materials. 2014;28:112-128

[20] Leach JB, Schmidt CE. Hyaluronan. Encyclopedia of Biomaterials and Biomedical Engi-
neering. New York: Marcel Dekker; 2004. pp. 779-789

[21] Liao YH, Jones SA, Forbes B, Martin GP, Brown MB. Hyaluronan: Pharmaceutical char-

acterization and drug delivery. Drug Delivery. 2005;12:327-342

[22] Volpi N, Schiller J, Stern R, Solt_es L. Role, metabolism, chemical modifications and 
applications of hyaluronan. Current Medicinal Chemistry. 2009;16:1718-1745

[23] Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E, et al. 
Influence of hyaluronic acid on bacterial and fungal species, including clinically rele-

vant opportunistic pathogens. Journal of Materials Science. Materials in Medicine. 2011; 
22:2329-2338

[24] Pitarresi G, Palumbo FS, Calascibetta F, Fiorica C, Di Stefano M, Giammona G. Medicated 
hydrogels of hyaluronic acid derivatives for use in orthopedic field. International Journal 
of Pharmaceutics. 2013 Jun 5;449(1-2):84-94. DOI: 10.1016/j.ijpharm.2013.03.059. Epub 

2013 Apr 12

[25] Laurencin C, Lane JM. Poly (lactic acid) and poly (glycolic acid): Orthopedic surgery 
applications. In: Brighton C, Friedlaender G, Lane JM, editors. Bone Formation and 
Repair, Rosemont, Am. Acad. Orthop. Surg. 1994. pp. 325-339

[26] Pavesio A, Renier D, Cassinelli C, Morra M. Anti-adhesive surfaces through hyaluronan 
coatings. Medical Device Technology. 1997 Sep;8(7):20-21 24-7

[27] Morra M, Cassineli C. Non-fouling properties of polysaccharide-coated surfaces. Journal 
of Biomaterials Science. Polymer Edition. 1999;10(10):1107-1124

[28] Cassinelli C, Morra M, Pavesio A, Renier D. Evaluation of interfacial properties of hyal-
uronan coated poly(methylmethacrylate) intraocular lenses. Journal of Biomaterials 

Science. Polymer Edition. 2000;11(9):961-977

[29] Kadry AA, Fouda SI, Shibl AM, Abu El-Asrar AA. Impact of slime dispersants and anti-
adhesives on in vitro biofilm formation of Staphylococcus Epidermidis on intraocular 

Hydrogels196



lenses and on antibiotic activities. The Journal of Antimicrobial Chemotherapy. 2009 

Mar;63(3):480-484

[30] Drago L, Cappelletti L, De Vecchi E, Pignataro L, Torretta S, Mattina R. Antiadhesive and 
antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract 
infections. APMIS. 2014 Oct;122(10):1013-1019

[31] Marcuzzo AV, Tofanelli M, Boscolo Nata F, Gatto A, Tirelli G. Hyaluronate effect on 
bacterial biofilm in ENT district infections: A review. APMIS. 2017 Sep;125(9):763-772

[32] Pirnazar P, Wolinsky L, Nachnani S, Haake S, Pilloni A, Bernard GW. Bacteriostatic 
effects of hyaluronic acid. Journal of Periodontology. 1999;70:370-374

[33] Carlson GA, Dragoo JL, Samimi B, Bruckner DA, Bernard GW, Hedrick M, Benhaim P.  
Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Bio-

chemical and Biophysical Research Communications. 2004 Aug 20;321(2):472-478

[34] Radaeva IF, Kostina GA, Il'ina SG, Kostyleva RN. Antimicrobial activity of hyaluronic 
acid. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii. Jan-Feb 2001;(1):74-75

[35] Harris LG, Richards RG. Staphylococcus aureus adhesion to different treated titanium sur-

faces. Journal of Materials Science. Materials in Medicine. 2004 Apr;15(4):311-314

[36] Junter GA, Thébault P, Lebrun L. Polysaccharide-based antibiofilm surfaces. Acta Bio-
materialia. 2016 Jan;30:13-25

[37] Romanò CL, De Vecchi E, Bortolin M, Morelli I, Drago L. Hyaluronic acid and its com-

posites as a local antimicrobial/antiadhesive barrier. Journal of Bone and Joint Infection. 

2017;2(1):63-72

[38] Torretta S, Marchisio P, Rinaldi V, Gaffuri M, Pascariello C, Drago L, Baggi E, Pignataro 
L. Topical administration of hyaluronic acid in children with recurrent or chronic mid-

dle ear inflammations. International Journal of Immunopathology and Pharmacology. 
2016 Sep;29(3):438-442

[39] Damiano R, Cicione A. The role of sodium hyaluronate and sodium chondroitin sul-
phate in the management of bladder disease. Therapeutic Advances in Urology. 2011 

Oct;3(5):223-232

[40] Constantinides C, Manousakas T, Nikolopoulos P, Stanitsas A, Haritopoulos K, 
Giannopoulos A. Prevention of recurrent bacterial cystitis by intravesical administration 

of hyaluronic acid: A pilot study. BJU International. 2004;93(9):1262-1266

[41] Shao Y, Shen ZJ, Rui WB, Zhou WL. Intravesical instillation of hyaluronic acid pro-

longed the effect of bladder hydrodistention in patients with severe interstitial cystitis. 
Urology. 2010;75(3):547-550

[42] Lipovac M, Kurz C, Reithmayr F, Verhoeven HC, Huber JC, Imhof M. Prevention of 
recurrent bacterial urinary tract infections by intravesical instillation of hyaluronic acid. 

International Journal of Gynaecology and Obstetrics. 2007;96:192-195

Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics…
http://dx.doi.org/10.5772/intechopen.73203

197



[43] Damiano R, Quarto G, Bava I, Ucciero G, Palumbo MI, Autorino R, et al. Prevention 
of recurrent urinary tract infections by intravesical administration of hyaluronic acid 

and chondroitin sulphate: A placebo-controlled randomised trial. European Urology. 

2011;59:645-651

[44] Ciani O, Arendsen E, Romancik M, Lunik R, Costantini E, Di Biase M, Morgia G, Fragalà 
E, Roman T, Bernat M, Guazzoni G, Tarricone R, Lazzeri M. Intravesical administra-

tion of combined hyaluronic acid (HA) and chondroitin sulfate (CS) for the treatment 
of female recurrent urinary tract infections: A European multicentre nested case-control 

study. BMJ Open. 2016 Mar 31;6(3):e009669

[45] Johannsen A, Tellefsen M, Wikesjö U, Johannsen G. Local delivery of hyaluronan as an 
adjunct to scaling and root planing in the treatment of chronic periodontitis. Journal of 

Periodontology. 2009 Sep;80(9):1493-1497

[46] Sapna N, Vandana KL. Evaluation of hyaluronan gel (Gengigel(®) ) as a topical appli-
cant in the treatment of gingivitis. Journal of Investigative and Clinical Dentistry. 2011 

Aug;2(3):162-170

[47] Eick S, Renatus A, Heinicke M, Pfister W, Stratul SI, Jentsch H. Hyaluronic acid as an 
adjunct after scaling and root planing: A prospective randomized clinical trial. Journal 

of Periodontology. 2013 Jul;84(7):941-949

[48] Drago L, Boot W, Dimas K, Malizos K, Hänsch GM, Stuyck J, Gawlitta D, Romanò 
CL. Does implant coating with antibacterial-loaded hydrogel reduce bacterial coloniza-

tion and biofilm formation in vitro ? Clinical Orthopaedics and Related Research. 2014 
Nov;472(11):3311-3323

[49] Giammona G, Pitarresi G, Palumbo FS, Romanò CL, Meani E, Cremascoli E. Antibacterial 
hydrogel and use thereof in orthopedics. 2010. WO 2010/086421 A1.

[50] Pitarresi G, Palumbo FS, Albanese A, Fiorica C, Picone P, Giammona G. Self assembled 
amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. 

Journal of Drug Targeting. 2010;18:264-276

[51] Pitarresi G, Palumbo FS, Fiorica C, Calascibetta F, Di Stefano M, Giammona G. Injectable 
in situ forming microgels of hyaluronic acid-g-polylactic acid for methylprednisolone 

release. European Polymer Journal. 2013;49:718-725

[52] Palumbo FS, Pitarresi G, Mandracchia D, Tripodo G, Giammona G. New graft copoly-

mers of hyaluronic acid and polylactic acid: Synthesis and characterization. Carbohydrate 
Polymers. 2006;66:379-385

[53] Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: Challenges, perspectives, and 
opportunities. Trends in Biotechnology. 2015 Nov;33(11):637-652

[54] Hynes WL, Walton SL. Hyaluronidases of gram-positive bacteria. FEMS Microbiology 
Letters. 2000;183:201-207

[55] Giavaresi G, Meani E, Sartori M, Ferrari A, Bellini D, Sacchetta AC, Meraner J, Sambri A, 
Vocale C, Sambri V, Fini M, Romanò CL. Efficacy of antibacterial-loaded coating in an 

Hydrogels198



in vivo model of acutely highly contaminated implant. International Orthopaedics. 2014 

Jul;38(7):1505-1512

[56] Boot W, Vogely HC, Nikkels PGJ, Pouran B, van Rijen M, Dhert WJA, Gawlitta D. Local 
prophylaxis of implant-related infections using a hydrogel as carrier. European Cells 

and Materials. 2015;30(2):19

[57] Boot W, Gawlitta D, Nikkels PGJ, Pouran B, van Rijen MHP, Dhert WJA, Vogely 
HC. Hyaluronic acid-based hydrogel coating does not affect bone apposition at the 
implant surface in a rabbit model. Clinical Orthopaedics and Related Research. 2017 
Jul;475(7):1911-1919

[58] Lovati AB, Drago L, Bottagisio M, Bongio M, Ferrario M, Perego S, Sansoni V, De Vecchi 
E, Romanò CL. Systemic and local administration of antimicrobial and cell therapies 
to prevent methicillin-resistant Staphylococcus epidermidis-induced femoral nonunions in 

a rat model. Mediators of Inflammation. 2016;2016:9595706. DOI: 10.1155/2016/9595706

[59] Malizos K, Scarponi S, Simon K, Blauth M, Romanò C. Clinical results of an anti-bacte-

rial hydrogel coating of implants: A multi-centre, prospective, comparative study. Bone 

& Joint Journal. 2015, 2015;97-B(16):138

[60] Romanò CL, Malizos K, Capuano N, Mezzoprete R, D’Arienzo M, Van Der Straeten C, 
Scarponi S, Drago L. Does an antibiotic-loaded hydrogel coating reduce early post-sur-

gical infection after joint arthroplasty? Journal of Bone and Joint Infection. 2016;1:34-41

[61] Logoluso N, Malizos K, Blauth M, Danita A, Simon K, Romanò C. Anti-bacterial hydro-

gel coating of osteosynthesis implants: Early clinical results from a multi-center prospec-

tive trial. European Cells and Materials. 2015;30(2):35

[62] Malizos K, Blauth M, Danita A, Capuano N, Mezzoprete R, Logoluso N, Drago L, 
Romanò CL. Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgi-
cal infection after internal osteosynthesis: A multicenter randomized controlled trial. 

Journal of Orthopaedics and Traumatology. 2017 Jun;18(2):159-169. DOI: 10.1007/

s10195-017-0442-2

[63] Gallazzi E, Capuano N, Scarponi S, Morelli I, Romanò CL. Does one-stage exchange with 
antibacterial coating of implants provide similar results to a two-stage procedure for 

the treatment of peri-prosthetic joint infection? Bone & Joint Journal. 2017;99(Suppl. 1): 
19-19

[64] Parvizi J, Pawasarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KJ. Periprosthetic 
joint infection: The economic impact of methicillin-resistant infections. The Journal of 

Arthroplasty. 2010;25(6 Suppl):103-107

[65] Berend KR, Lombardi AV Jr, Morris MJ, Bergeson AG, Adams JB, Sneller MA. Two-
stage treatment of hip periprosthetic joint infection is associated with a high rate of 

infection control but high mortality. Clinical Orthopaedics and Related Research. 2013; 
471(2):510-518

[66] Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthro-

plasty in the United States from 2005 to 2030. The Journal of Bone and Joint Surgery. 
American Volume. 2007;89(4):780

Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics…
http://dx.doi.org/10.5772/intechopen.73203

199



[67] Kurtz SM, Ong KL, Schmier J, et al. Future clinical and economic impact of revision total 
hip and knee arthroplasty. The Journal of Bone and Joint Surgery. American Volume. 
2007;89(Suppl 3):144

[68] Diaz-Ledezma C, Lichstein PM, Dolan JG, Parvizi J. Diagnosis of periprosthetic joint 
infection in medicare patients: Multicriteria decision analysis. Clinical Orthopaedics and 
Related Research. 2014;472(11):3275-3284

[69] Kapadia BH, Johnson AJ, Issa K, Mont MA. Economic evaluation of chlorhexidine cloths 
on healthcare costs due to surgical site infections following total knee arthroplasty. The 

Journal of Arthroplasty. 2013 Aug;28(7):1061-1065

[70] Bozic KJ, Ong K, Lau E, et al. Estimating risk in Medicare patients with THA: An electronic 
risk calculator for periprosthetic joint infection and mortality. Clinical Orthopaedics and 

Related Research. 2013;471(2):574-583

[71] Eka A, Chen AF. Patient-related medical risk factors for periprosthetic joint infection of 

the hip and knee. Annals of Translational Medicine. 2015;3(16):233

[72] Barton AJ, Sagers RD, Pitt WG. Bacterial adhesion to orthopedic implant polymers. 
Journal of Biomedical Materials Research. 1996 Mar;30(3):403-410

[73] Birkenhauer E, Neethirajan S, Weese JS. Collagen and hyaluronan at wound sites influ-

ence early polymicrobial biofilm adhesive events. BMC Microbiology. 2014 Jul 16;14:191

[74] Garrido-Gómez J, Arrabal-Polo MA, Girón-Prieto MS, Cabello-Salas J, Torres-Barroso J, 
Parra-Ruiz J. Descriptive analysis of the economic costs of periprosthetic joint infec-

tion of the knee for the public health system of Andalusia. Journal of Arthroplasty. 

2013;28(7):1057-1060

Hydrogels200


