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Abstract

It is widely known that increasing interest in porous ceramics is due to their special proper-
ties, which comprise high volumetric porosity (up to 90%) with open or closed pores, and a
broad range of pore sizes (micropores: d < 2 nm; mesopores: 50 nm > d > 2 nm and
macropores: d > 50 nm). These properties have many uses comprehending macroscaled
devices, mesoscaled materials and microscaled pieces. During their usage, these materials
are usually submitted to thermal and/or mechanical loading stresses. Therefore, it is a
premise to understand how these porous structures behave under thermomechanical
stresses to design materials that show adequate properties for the required application. In
this context, the aim of this chapter is to review the mechanical properties of macroporous
ceramics.

Keywords: porous ceramics, foams, mechanical properties, elastic modulus, fracture
energy

1. Introduction

It is widely known that increasing interest in porous ceramics is due to their special properties,

which comprise high volumetric porosity (up to 90%) with open and interconnected or closed

and isolated pores, and a broad range of pore sizes (micropores: d < 2 nm; mesopores:

50 nm > d > 2 nm andmacropores: d > 50 nm). These properties have many uses comprehending

macroscaled devices (filters for liquid metals [1, 2], thermal insulating refractories [3, 4], bio-

ceramics for bone regeneration [5–7], filters for water treatment [8], acoustic insulating tiles [9]),

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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mesoscaled materials (membranes for catalysis [10], drug release substrates [11, 12]) and

microscaled pieces (e.g., multifunctional materials where gravimetric properties are critical as

batteries [13] and electronic sensors [14]).

During their usage, these materials are usually submitted to thermal and/or mechanical load-

ing stresses. Therefore, it is a premise to understand how these porous structures behave under

thermomechanical stresses to design materials that show adequate properties for the required

application.

Despite the importance of porosity for application of these materials, there is not a general

consensus about the dependence of mechanical properties on porosity parameters. In other

words, the real data of the mechanical properties of these materials indicate that their mechan-

ical behavior depends on more than just porosity of the materials.

Since its introduction to the ceramic community in the 1970s, the area of fracture mechanics

has made significant contributions to improving ceramics. As an example, the combination of

fracture toughness, fracture statistics and fractography has made it possible to identify critical

flaws in material and, consequently develop better and reliable advanced ceramics. In addi-

tion, the contribution of fracture mechanics was fundamental in understanding the fracture

process in brittle materials.

Recognizing that the area behind a crack was responsible for the increase in the R-curve in

ceramics was particularly relevant. One issue concerning the uses of brittle ceramics is associ-

ated with the statistical and size-dependence of their fracture properties, which can make

reliable prediction, a difficult task. Two other problems are the absence of design methodology

for brittle ceramics and the high costs of producing the ceramic components [15].

Nowadays, the ceramic community is witnessing a “boom” of nature inspired materials using

hierarchical structures that should have the same behavior or qualities as the natural ones.

Various papers [16–20] in the literature show beautiful structures of natural materials and their

mimicked copies by researchers. The capacity of a human being’s observation, also a charac-

teristic controlled by nature, has been the driving force to imitate natural hierarchical struc-

tures and their qualities.

In this context, the aim of this chapter is to review the mechanical properties of macroporous

ceramics. The following issues are of particular interest to this chapter:

1. Which microstructural parameters affect the mechanical strength of the porous ceramic

material besides its porosity?

2. To what extent do the pores affect the fracture toughness of the porous ceramic material?

Does it make sense to measure the fracture toughness of porous material knowing that the

stress intensity factor at the notch tip is decreased by the presence of surrounding pores?

Or, instead of this, would the total fracture energy be a more realistic measure?

3. What is the elastic modulus behavior of porous ceramics as a function of temperature?

All these questions need to be considered in order to advance not only the processing of

porous ceramic materials but also to design their structures for specific applications.
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2. Influence of microstructural parameters on the mechanical strength of

porous ceramic materials

The objective here is not to carry out an extensive revision of the fracture of brittle porous

materials, but to present results which serve as a basis to the authors´ proposal in this chapter.

First of all, fracture of porous ceramics is better described by the quasi-brittle behavior as their

ultimate fracture is triggered by many local events (different from essentially brittle behavior

of glass ceramics), yet they are not preceded by highly dissipative processes associated with

plastic deformation and strain hardening (as observed in ductile metals) [21]. Quasi-brittle

fracture behavior is also observed in rocks, bones and ceramic composites.

As mentioned earlier, the real data of the mechanical properties of porous materials indicate

that their mechanical behavior depends on more than just porosity of the materials.

Questions have been raised about the models proposed by Gibson and Ashby (GA) [22, 23],

which indicate that the relative strength of a porous material is a function of its relative density

as follows:

σ

σs
¼ C

r

rs

� �m

(1)

where σ and r are, respectively, the fracture strength and the density of porous material; σS
and rS are the fracture strength and the density of solid material, respectively; C is a dimen-

sionless constant and the exponent m depends on the pore morphology (m = 3/2 for open pores

or m = 2 for closed ones). The Gibson and Ashby (GA) models are based on the bending or

buckling of cell edges.

Figure 1 shows the relative strength predicted by the Gibson and Ashby models plotted

together with experimental data of porous ceramics from different researchers. It can be seen

a disagreement between the theoretical curves of GA models and the experimental results.

Colombo et al. [24] attributed microstructural factors for the lack of fitting data to the Gibson

and Ashby models, as shown in Figure 1, as they do not consider the distribution of pore sizes,

neither have mixed pores (open and closed) nor flaws in the pore wall (struts).

Seeber et al. [25] also noted that the drop in mechanical properties of foamed ceramics was

disproportionately greater than what was to be expected solely from increasing the porosity.

These authors suggested this behavior must be an influence of the pore size or the strut

thickness, as reported by Brezny and Green [26] in a previous paper.

Nevertheless, Salvini et al. [27] suggested that a parameter which expresses the processing

method to produce the porous structure should be considered by the mechanical models. For

instance, porous ceramics with similar porosity and density ranges can be produced using

different ceramic methods such as sacrificial fugitives, replica templates and directing foaming.

However, each method provides a different number of struts (ligaments) of distinct solid particle

packing, which influences the final mechanical behavior of the material.
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In this context, Lichtner et al. [28] produced porous ceramics of same porosity but different

pore arrangement using the freeze casting and the slip casting processing methods. They have

noted a strong influence of processing on the mechanical properties, and attributed to the

differences of orientation and connectivity of macropores.

Brezny et al. [29] also reported that strength of the struts is an important parameter controlling

the properties of porous ceramics. According to them, an increase in the strut strength would

be expected as a result of the reduced probability of finding a critical flaw in a smaller volume

of material as predicted by Weibull, the weakest link hypothesis for strength variability.

Additionally, Genet et al. [21] pointed out that the Gibson and Ashby’s approach cannot

directly deal with the statistical and size-dependent aspects of fracture.

In 1996, Rice [30] had already drawn attention to this debate considering some problems with

micromechanics-based models. The first concern mentioned by Rice was the assumption that

porous bodies are represented by packing of hollow spherical particles of an infinite range of

sizes. Then, it is assumed the application of a hydrostatic pressure is uniformly distributed in

all particles so the resulting strain response can be calculated. Moreover, a common approach

to improving the agreement between these models is to let some parameter, for example, the

Poisson ratio, depends on the porosity, that is, using it as an adjustable parameter. Another

concern is that these models assume that porosity will remain fixed during applications.

Then, Rice has proposed that the mechanical strength of porous ceramics should depend not

only on the relative density but also on the minimum solid area fraction, as depicted in

Figure 2. That is because the solid area is required for transmission of mechanical stresses and

thermal and electrical fluxes. This concept is schematically presented in Figure 3.

As can be seen in Figure 2, each specific model has the following three characteristics: (1) a

nearly linear slope of the first half to three-quarters of the porosity range, (2) the approximate
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Figure 1. Plot of relative strength as a function of relative porosity for Gibson and Ashby (GA) models [22, 23] and for

experimental data obtained by Salvini et al. [27], Colombo et al. [24] and Seeber et al. [25].
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porosity value where properties start to be damaged more significantly than the linear slope

and (3) the critical porosity PC where properties go to zero.

However, as pointed out by Rice, these characteristics are useful in distinguishing the basic

porosity character of each stacking model, but their utility varies. For instance, PC values can be

accurately defined theoretically, but obtaining reliable experimental data can be a difficult task.

Moreover, the approximated linear slopes are unique for the basic stacking models, and they

have been the most widely available factor for polycrystalline materials. However, as clearly

shown in Figure 2, they can be applied for the restricted porosity range only.

More recently, Bruno et al. [31] reviewedmicromechanics aiming the development ofmicrostructure-

property relations for porous microcracked ceramics. They focused on specific issues for porous

ceramics as the nonlinear stress–strain behavior and the thermal-induced microcracking.

Zheng et al. [32] considered that the fracture strength of brittle porous material is nonlinear

and, therefore, there is a percolation failure phenomenon at the fracture of these materials.

Therefore, their model considers the porosity (P) and the elastic percolation (ϕ), which

depends on the Poisson’s ratio of material, as shown:

σ

σS
¼

ϕ� P

ϕ

� �1þν

: 1� ϕ2=3
� �

" #1=2

(2)

ϕ ¼ 1�
1þ υ

3 1� υð Þ

� �

¼
2 1� 2υð Þ

3 1� υð Þ
(3)
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Figure 2. Models from the literature showing the effects of the minimum solid area and porosity on the strength for three

basic sphere stackings (cubic, rhombohedral and a mixture of them) and for cylindrical or spherical pores, as well as their

mixture, in cubic stacking. The nearly linear portion of curves is represented by the semilogarithmic expression

σ ¼ σS e
�bP, with b values ranging from 1 to 3 for stacked pores and from 3 to 9 for stacked particles [30].
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where ν is the scaling exponent for tridimensional solids and υ is the Poisson ratio of

materials. In general, for ceramics υ = 0.2 and ϕ = 0.5, for metals υ = 0.3 and ϕ = 0.38, and for

polymers υ = 0.33 and ϕ = 0.338. Zheng et al. [32] validated the proposed model for polymers

using different porosities and experimentally measured them using the three-point-bending

strength test.

In order to check the validity of Zheng’s model, Salvini et al. [27] considered the fracture

flexure strength data of foamed Al2O3 with porosity of 76%. Nevertheless, the results must be

interpreted with caution, as Zheng’s model overestimated the flexure strength indicating

values around 25 MPa, while the average experimental value obtained by Salvini et al. [27]

was 10 MPa.

Regarding the failure patterns, Genet et al. [21] investigated the fracture mechanism across

scales of porous ceramic scaffold applying a computational method. Figure 4 shows the

Figure 3. Diagram of the minimum solid area concept. (a) Cross section of a dense material showing the uniform

transmission among layers normal to a uniform mechanical stress or conductive flux. (b) Cross section of material

showing some layers were removed, leaving only small continuous areas (MSA) for transmission of stress or flux. (c)

Cross section of stacked particles and (d) cross section of stacked pores where again the minimum areas of solid will

control the transmission of stress or flux normal to the plane of slab [30].
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scanning electron microscopy (SEM) image of the porous scaffold made by freeze casting and

the respective idealized geometry.

Genet et al. [21] found that for very small-sized samples (r = 1 � 1 RVEs), the fracture is brittle

and is triggered by the first strut to break. For intermediate-sized samples (r = 5 � 5 RVEs),

however, the fracture is controlled by the percolation of several strut breaks, and is mainly

governed by the stress redistribution after each break. For large-sized samples (r = 256 � 256

RVEs), they found that the failure process appears to be different, and it is divided into two

stages.

The initial stage consists of a widespread development of damage due to the failure of the

weakest local defects. But, the stress redistribution caused by these failures is not high enough

to make the neighboring cells break or initiate a macrocrack. Instead, a critical defect is

activated, rapidly leading to the development of a macrocrack, which leads to the final fracture

of the material. Then, the “fatal” macrocrack in large samples does not result from the perco-

lation of previously damaged cells/pores.

Nevertheless, there are some limitations in this study. Firstly, the computational analyses were

based on the assumption that porous scaffold material presents isotropic Young’s modulus

and Poisson’s ratio. Another limitation of this study is that the fracture behavior was evaluated

under one loading direction only (pure traction).

Although using high resolution tomography to evaluate the failure behavior of porous

ceramics, Berek et al. [33] and Petit et al. [34] independently identified the same fracture

pattern as proposed by Genet et al. [21]. Recently, Cui et al. [35] also found the nonlinear

mechanical behavior due to the accumulation of local damage in porous ceramics.

In different works, Brezny et al. [26] and Morgan et al. [36] studied the effect of the cell size of

glassy porous ceramics on their mechanical properties. Both authors reported the mechanical

Figure 4. SEM image of a porous ceramic scaffold made by the freeze casting method and its associated idealized geometry,

which consists of walls connected by bridges positioned in staggered rows. The geometrical parameters are as follows: The

distance between the walls, dw (dw = 25 μm), the distance between the bridges, db (db = 75 μm), and the thickness of the walls

and bridges, e (e = 5 μm). A microcell is defined by r � r RVEs (representative volume elements) [21].
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strength of cellular ceramics increased with decreasing cell sizes. They attributed this behavior to

a reduction in the critical flaw size as well as the increasing strut strength in smaller cell sizes.

Meanwhile, Deng et al. [37] investigated the reinforcement mechanisms of fine- and coarse-

grain porous SiC and found that the crack-tip blunting mechanism in porous material, as

shown in Figure 5, increases the fracture toughness of the material. They also noted that the

larger the pore size in front of the crack, the more the fracture toughness of the porous ceramic

is relative to its fracture strength. However, a detailed discussion about the fracture toughness

of porous ceramics is provided in the next section.

Based on the Stress Concentration Design Factors, Peterson [38], Deng et al. [37] and Rice [39]

attributed this behavior to the interactions between pores. Rice [39] combined Peterson’s data

in Figure 6 to show that the stress concentration diminishes significantly as the pores become

closer and the pore interactions begin to no longer be negligible when the center-to-center

distance between them is around two times their diameter. Specifically, for the case where

pores touch each other, in porosity of 78%, Figure 6 shows that the stress concentrations

become very low.

In reviewing the literature about mechanical properties of porous ceramics, it can be summa-

rized which parameters affect, and to what extent, the strength of this class of ceramic materials.

On the one hand, there are researches considering the pores as the stress concentrations for the

material fracture. Therefore, these researches consider the mechanical properties of porous

ceramics depend only on the relative porosity.

On the other hand, other researches have considered the interactions among pores as low as

10% of porosity, which reduce the stress concentration factor for fracture. Then, they take into

account the mechanical properties of porous ceramics depend on pores-stress interactions.

Figure 5. Representation of a crack propagated in (a) dense ceramic with a sharp crack-tip and in (b) porous ceramic

where the crack-tip becomes blunt [37].
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Regarding pore-stress interactions, there is strong evidence in the literature [40–42] concerning

the mechanical behavior of human bones (also a quasi-brittle material) to support the hypoth-

esis that microstructural changes in material may be essential in controlling its strength. The

considered microstructural parameters are the porosity, size of pores, number and thickness of

struts connecting the pores.

In human bodies, the mechanical properties of natural bone change with their biological

location because the crystallinity, porosity and composition of bone adjust to the biological

and biomechanical environment. For these materials, the bone volume fraction (bone volume

BV/total volume TV) is given as a function of the thickness-to-length ratio, that is, t=ℓ, as

shown in the following expression:

BV

TV
¼ 33 π

80
ffiffiffi

2
p t

ℓ

� �2

(4)

Changes in the microstructure of the vertebral trabecular bone with aging have been quanti-

fied by histomorphometric analysis and also simulated by a computer using finite element

software in two-dimensional (2D) [41] and three-dimensional (3D) [42] microstructural

models. The microstructural changes of the bone include reductions in the trabecular thickness

(tÞ and number (N), as shown in Figure 7. Both changes are strongly correlated with reduc-

tions in bone volume fraction and represent the two fundamental changes in microstructure

associated with reduced bone volume [40–42].

Silva et al. [41] showed, using a 2D model, that once significant numbers of trabeculae (liga-

ments) are lost, it is impossible to recover the original mechanical properties of bone merely by

increasing the trabeculae thickness, indicating the importance of the trabeculae number (N)

and the integrity of its microstructure.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8 9 10 11

S
tr

e
ss

 c
o

n
c

e
n

tr
a

ti
o

n
 f

a
c

to
r 

(K
)

b/a

K=
σmax

σ

b b

a

σmax

σσ

σ

b b

a σσ

σ

Figure 6. Stress concentration factors for a chain of holes in either uniaxial or in biaxial tension [38].

Mechanical Properties of Porous Ceramics
http://dx.doi.org/10.5772/intechopen.71612

179



Considering the different types of trabeculae microstructures in 3D (rod-like and plate-like as

shown in Figure 8), Guo et al. [42] quantified the changes in the Young’s modulus and mechan-

ical strength due to the trabecular bone loss. They considered the arrangement of tetrakaide-

cahedral cells as a 3D model for trabecular bones as shown in Figure 8. The cells filled in the 3D

space were connected by either all beams (rod-like model) or all plates (plate-like model).

For each case of trabeculae loss simulation, the apparent Young’s modulus and mechanical

strength were normalized by the values of corresponding initial intact models (E0 = 15 GPa,

σ0 = 100 MPa, Poisson’s ratio of 0.3 at t=ℓ ¼ 0:1).

Quantitative relationships between mechanical strength and bone volume fraction (BV/TV) for

the two types of bone loss in rod-like and plate-like models are presented in Table 1 and Figure 9.

In the case of the rod-like model (Figure 9a), the loss of oblique trabeculae showed that the

reductions in mechanical strength were more severe when the trabeculae thickness was

reduced. In addition, after 13% loss of bone volume fraction (BV/TV), there was a dramatic

reduction in strength due to the loss of the horizontal trabeculae.

For the plate-like model (Figure 9b), the reductions in mechanical strength due to trabeculae loss

were also much more significant than those due to uniform trabeculae thinning. The quantitative

relationships between the mechanical strength and bone volume fraction (BV/TV) due to trabec-

ulae loss were dramatically different from those for trabeculae thinning (see Table 1).

These results suggest the importance of microstructural integrity such as the connectivity of

the trabeculae bone architecture to maintain the mechanical integrity of bones. Besides, the

extent of reduction in the mechanical properties due to trabeculae loss depends on the types of

microstructures in the bone.

Figure 7. Simulated images of the trabecular bone showing two types of bone loss. Top right: thinning of trabeculae

(ligaments) and bottom right: loss of trabeculae [42].
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Thus, for the natural bones, the number of ligaments (trabeculae) between pores appears to be

much more effective to increase the strength of the material in comparison to the ligament

thickness.

Figure 8. The 3D microstructural model of the trabecular bone. Each single cell has an edge of equal length, ℓ. θ = 45� for

an isotropic structure. The entire model consists of arrays of 5 � 5 � 5 cells [42].

Model type Bone loss type Mechanical strength

Rod-like Trabeculae thinning σ
∗

σ0
¼ 0:592 BV

TV

	 
1:60
, r2 = 0.99

Plate-like Trabeculae thinning σ
∗

σ0
¼ 0:378 BV

TV

	 
1:10
, r2 = 0.99

Rod-like Horizontal trabeculae loss σ
∗

σ0
¼ 1:65x103 BV

TV

	 
3:27
, r2 = 0.85

Oblique trabeculae loss σ
∗

σ0
¼ 4:69x1010 BV

TV

	 
6:94
, r2 = 0.99

Plate-like Trabeculae loss σ
∗

σ0
¼ 1:36x102 BV

TV

	 
3:36
, r2 = 0.99

Table 1 Relationships between mechanical strength and bone volume (BV/TV) for two types of bone loss in rod-like and

plate-like models [42].
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Lichtner et al. [28] also found the mechanical properties of freeze casting porous ceramics that

are controlled by the connectivity of pore walls.

Similar mechanical behavior was reported by Salvini [43] for SiC ceramic filters of the same

porosity (85%) but with different pores per inch (ppi), number of struts and average pore sizes

(Figure 10). It can be seen in Figure 10 that there is a rise in the number of connecting struts

when the pore per inch (ppi) increases.
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thinning and trabeculae loss) represented by solid lines. Strength recovery by subsequent treatment with thickening
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Moreover, differences were found between the strut number and pore size tendencies as a

function of pores per inch (ppi). Interestingly, the number of connecting struts is sensitive to

the variation of the number of pores (ppi).
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The high number of connecting struts in the SiC filters of high pores per inch (ppi) is more

probably contributed to their increasing mechanical strength, as depicted in Figure 11.

A possible explanation for this mechanical behavior in SiC ceramic filters, as well as in

trabeculae bones, might be the diminution of the stress concentration factor due to the stress-

pore interactions, which is very low for porosity higher than 78% (see Figure 6).

One of the more significant findings to emerge from this section is that, in addition to the

porosity of porous ceramics, the number of connecting struts between the cells/pores in the

microstructure plays a fundamental role in their mechanical strength behavior.

3. Fracture toughness of porous ceramics

A requirement for almost structural materials is that they are both strong and tough yet

invariably, in most materials, the properties of strength and toughness are mutually exclusive

[44]. Whereas strength of material is a stress indicating its resistance to nonrecovery deforma-

tion, toughness is the resistance of material to the propagation of a crack and, then is measured

as the energy required to cause fracture.

The ability of material to experience limited plastic deformation is a critical aspect to tough-

ness, as this characteristic enables the local dissipation of high stress that would otherwise

cause the fracture of material. That is the reason why the design methodology based on yield

strength of materials is a common practice in the engineering [45].

Concerning fracture toughness (KIC) methods for brittle ceramics, there are several tests which

have been used such as the precrack by indentation, the single-edge notch beam (SENB) and
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Chevron notch (CV) methods, which are the most common tests. All methods involve appli-

cation of force to a beam test specimen in three or four point flexures.

Each method has limitations and the major problem is that significant effects due to the

microstructure, for example, grain size and porosity, are not addressed in the continuum

mechanics basis of these tests.

As proposed by Rice [46], the microstructural dependence of fracture energy (γ) comprehends

the grain size (G), the composition, the porosity (P) and the combined effects of them.

Concerning the grain size effect, the crystalline structure of material is important when evalu-

ating behavior between G and γ. Overall, the cubic materials present less variation of γwith G.

On the other hand, as shown in Figure 12 for some noncubic ceramics, they present rising

values of fracture energy (γ) until the maximum and, then, there is a decrease as the grain size

(G) increases. This effect is attributed to the thermal expansion anisotropy, which occurs only

in noncubic materials, but the intensity of it varies among materials [47].

Changes in the ceramic composition can also lead to a similar effect related to the grain size.

These changes can be due to chemical composition or by introducing a more compliant grain

boundary phase; both changes can modify the thermal expansion anisotropy affecting the

fracture energy (γ) behavior of the material. There are several examples in the literature

showing this behavior for Al2O3-ZrO2 system, and SiC and Si3N4 with additions of oxides.

Although there are more limited data about the relation between fracture energy and porosity

(γ � P) in comparison to fracture energy and grain size γð � G), some tendencies can be

mentioned.
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At first, in single-phase ceramics with fine-to-medium-grain size, the fracture energy (γÞ

decreases as porosity (P) increases, following a similar tendency to the one found for mechan-

ical strength (see Figure 2). Overall, this tendency has been shown in many advanced ceramics

with porosity up to 50% [47].

Nevertheless, there are some works indicating the rate of fracture energy decrease can be

reduced or even reversed [37, 47]. For instance, porous-fused SiO2 (P~13–20%) provided

fracture energy (γÞ equal to or greater than the obtained value for dense SiO2 glass.

Additional examples comprehend porous composite SiC-Al2O3-C (P~30–40%) and reaction

sintered Si3N4 (P~45%). However, in all cases, the fracture energy (γÞ decreased again at high

porosity level (P) because the γ value goes to zero as P achieves 100%.

Considering there is not a consensus concerning the relation between fracture energy and

porosity, we would like to propose a discussion about the influence of porosity on the fracture

energy measurements of porous ceramics and, consequently, on their fracture toughness

values.

Recently, Salvini et al.43 have shown that fracture energy values for macroporous foamed

Al2O3 can vary significantly depending on the test conditions. According to them, this is

because of the following two factors: (1) the stress intensity factor at the notch tip may be

decreased by the presence of surrounding pores (crack-tip blunting mechanism) as shown in

Figure 13 and (2) there is a strong interaction of cracks with the pores in the microstructure.

Although many researchers use a single test sample, Salvini et al. [48] carried out tests on

separated notched macroporous samples for the two energy measurements γeff and γWOF. The

Figure 13. Macroporous foamed Al2O3 sample notched with a 300-μm thick diamond blade where the crack-tip blunting

mechanism is shown [58].
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γeff represents the fracture surface energy to initiate crack propagation, as proposed by Evans

[49], whereas the total work-of-fracture γWOF expresses the energy to propagate a crack

through the specimen thickness, as suggested by Nakayma [50]. A similar approach has been

applied in evaluating fracture energy in materials with coarse microstructures, for example, in

refractory ceramics [51, 52].

The fracture toughness (KIC) was determined according to the ASTM E-399 at room tempera-

ture in a three-point bend test applying the equation:

KIC ¼
F� S

B�W3=2
� f

a

W

� �

(5)

where F is the fracture load (N), S is the span (m), B is the specimen width, W is the specimen

thickness, a corresponds to the crack size, and f (a/W) is obtained by the following expression:

f
a

W

� �

¼ 3

ffiffiffiffiffi

a

W

r

�
1:99� a

W

	 


� 1� a
W

	 


2:15� 3:93 a
W þ 2:7 a

W

	 
2
h i

2 1þ 2 a
W

	 


1� a
W

	 
3=2
(6)

The bar samples were center-notched to one-half of their thickness a=W ≈ 0:5ð Þ with a 300-μm

thick diamond blade for the KIC measurements. All fracture energy tests were performed on a

MTS 180 machine in three-point bending over a span of 125 mm. For KIC, fracture surface

energy (γeff) measurements were carried out at a stress loading rate of 1.5 kN/s.

This measured value of KIC was then used to calculate the energy for crack initiation (γeffÞ by

the expression:

KIC ¼ 2γeffE
	 
1=2 (7)

where E is Young’s elastic modulus measured by a sonic technique in foamed Al2O3 bar

samples (E = 18 GPa). Further details about this technique can be found in Ref. [53].

For the total work-of-fracture (γWOFÞ measurements, the foamed Al2O3 bar samples were also

center-notched with a 300-μm thick diamond blade so that one-half of their thickness cross

section remained. The samples were loaded in three-point bending at a crosshead speed of

0.001 mm/min to ensure stable crack growth (ASTM C1368–10). The total work-of-fracture

(γWOFÞ values were then calculated by:

γWOF ¼

Ð

F dx

2 A
(8)

where
Ð

F dx represents the required work for new surfaces’ generation and A is the projected

area of the new fracture surfaces, as determined directly from the individual specimen notched

areas.

Table 2 shows the obtained experimental results of the fracture energies (γeff and γWOF) and

the fracture toughness (KIC) for the foamed Al2O3.
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The KIC values in Table 2 were the expected ones for highly porous ceramics and they were

compatible with data from the literature [24, 54, 55]. However, these results must be

interpreted carefully, because of the crack-tip blunting mechanism due to the presence of

surrounding pores (see Figure 13). This mechanism may decrease the stress intensity factor at

the notch tip. Consequently, the crack propagation should not follow the required linear-elastic

conditions for the fracture toughness measurement.

Based on that, we would like to raise the following issues: Does it make sense to measure the

fracture toughness (KIC) of porous ceramics knowing that the stress intensity factor at the

notch tip is decreased by the crack-tip blunting? Or, instead of this, would the total work-of-

fracture energy be a more realistic measure for these materials?

The results of total work-of-fracture energy (γWOF) presented in Table 2 agree with the values

obtained for Al2O3 produced using intermediate grain sizes (10–50 μm) [56].

Density, r (g/cm3) γeff (J/m
2) γWOF (J/m2) KIC (MPa.m1/2)

0.86 � 0.02 4.68 � 0.5 15.81 � 0.8 0.42 � 0.03

0.87 � 0.01 3.62 � 0.3 14.46 � 0.95 0.35 � 0.05

0.90 � 0.02 3.72 � 0.6 15.39 � 1.0 0.37 � 0.02

0.92 � 0.02 4.15 � 0.8 12.27 � 1.1 0.36 � 0.02

0.94 � 0.03 3.55 � 0.35 13.32 � 0.9 0.34 � 0.09

Table 2 Results of fracture energies (γeff and γWOF) and the fracture toughness (KIC) for macroporous foamed Al2O3 [58].

Figure 14. Fracture surface of macroporous foamed Al2O3 showing the characteristics of the fracture and notched

surfaces [58].
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Nevertheless, there is few data in the literature concerning fracture energies of porous ceramics.

Kanhed et al. [57] found fracture toughness values in the range of 0.55–0.86MPa m
1=2 for porous

hydroxyapatite.

Considering the fracture surface microstructure of foamed Al2O3 presented in Figure 14, it

seems that the fracture energy increase induced by porosity and the fracture energy reduction

caused by decreased solid concentration are combined to describe the total work-of-fracture

energy of material. However, more research on this topic is therefore recommended.

4. Elastic modulus behavior of porous ceramics

As well known, accurate elastic moduli are measured dynamically by measuring the fre-

quency of natural vibrations of a beam, or by measuring the velocity of sound waves in the

material. Both depend on
ffiffiffiffiffiffiffiffi

E=r
p

, so if density (r) is known, E can be determined. These

properties (r, E) reflect the mass of atoms, the way they are packed in material and the stiffness

of the bonds that hold them together. For instance, Table 3 presents the literature data of elastic

modulus for several synthetic and natural porous brittle materials.

Considering that microscaled damage in ceramics can be caused in processing as well as

during their application, a technique that detects the in situ microcracks evolution is important

to estimate the life operation of them [65].

The in situ elastic modulus measurement as a function of temperature may identify the causes

of microcracks in material, which is very helpful to adjust ceramic processing and design the

material microstructure for an extended period of use.

Material Porosity (%) Elastic modulus (GPa)

Porous hydroxyapatite (HA) [5] 82–86 0.002–0.83

Cortical bone [5, 59, 60] 5–15 7–18

Cancellous bone [5, 59, 60] ~90 0.1–5

Cordierite diesel particulate filter (DPF) [54] ~50 12–13

Porous clay ceramics [55] 35–50 1–3

Silicon oxycarbide ceramic foams [24] 70–85 1–7

Porous SiC preforms [61] 30–65 30–120

Porous Si3N4 [62, 63] 35–55 45–105

Gelcasting Al2O3 foams [63] 60–85 10–65

Foamed Al2O3 [48] 76–80 15–18

SiC filters for metals [64] 85–92 2–3

Table 3. Elastic modulus values for porous and brittle materials.
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In this context, this section is divided into two parts. In the first part, a review about theoretical

models to describe the effect of porosity on the elastic modulus of porous ceramics is

presented. Then, the second part presents and discusses the elastic modulus behavior as a

function of temperature for the foamed Al2O3 ceramics.

Much research over the last decades was dedicated to understanding the influence of the

porosity on the elastic modulus of ceramics. Table 4 shows the most common theoretical

models concerning the elastic modulus (E) and the porosity (P) correlations.

The Knudsen [66] and Rice [28] models fit well with real data of materials with porosity lower

than 50%, as reported by Boccaccini et al. [67] and Ohji et al. [62, 63].

The model proposed by MacKenzie [68] and Kingery [69] is also defined for a lower level of

closed pores.

Gibson and Ashby (GA) models [22, 23] indicated that the elastic modulus of a porous material

depends only on its relative density and pore morphology.

Boccaccini model [67] introduced the s parameter to indicate the porosity geometry effect on

the elastic modulus, that is, the pore shape and its orientation. However, it is valid only for low

porosity level (P < 0.4) of closed pores.

In another work Boccaccini et al. [70] also included the topological parameters of highly

porous microstructure to the model, besides the geometrical ones. Topological characterization

comprehends the separation, the separated volume and the degree of contact and separation in

two-phase microstructures. However, an issue that was addressed by the authors in this model

is the necessity of a well-characterized porous structure of material, besides its porosity, to

achieve rigorous verification of the model.

Model Characteristics

E ¼ E0e
�bP

Refs. [28, 66]

Dependent on P and on extent of contact

between solids

Valid for P < 0:5 and isotropic

material

E ¼ E0 1� 1:9Pþ 0:9P2
	 


, P ≤ 0:5

Refs. [67, 68]

Dependent on the closed pores’

concentration

Valid for P < 0:5 and isotropic

material

E ¼ C E0
r

rs

� �n

, C ≈ 1 and 1 < n < 2

Refs. [22, 23]

Dependent on relative density and pore

type

Valid for open porous and

isotropic material

E ¼ E0 1� P2=3
� �s

s ¼ 1:21 z
x

	 
1=3
1þ z

x

	 
�2
� 1

h in o1=2
cos 2θ

Ref. [67]

Dependent on P and on porosity geometry

of closed pores

Valid for P < 0:4 and anisotropic

material

E ¼ E0
1�Pð Þ2R

Pþ 1�Pð ÞR

R ¼
dβ

dα
, size ratio

Ref. [69]

Dependent on P, on geometry and on

topology of porosity

Valid for R < 1 and anisotropic

material

Table 4 Summary of the elastic modulus (E) and porosity (P) models, where E0 refers to the elastic modulus of solid

material.
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Overall, little research in the literature considers porous ceramics as anisotropic material in the

evaluation of their elastic modulus behavior.

For instance, Rodrigues et al. [71] compared experimental data of the elastic moduli of Al2O3

foams (P: 60–90%) to several models proposed in the literature, as depicted in Figure 15. These

authors considered the Al2O3 foams as isotropic material and, therefore, the experimental data

fitted well with the MacKenzie [68] and Gibson and Ashby (GA) [22, 23] models.

This analysis, however, needs to be considered carefully because the foamed ceramics of high

porosity (P > 60%) are usually anisotropic material and the mentioned models are valid only

for homogeneous and isotropic ones.

Roy et al. [61], Wu et al. [59] and Lichtner [28] clearly showed that the extent of anisotropy, and

its effect on the elastic modulus measurements, is strongly dependent on the porosity level,

mainly for porosities higher than 40%, which is the case of the most foamed ceramics and

natural porous materials.

Moving to the elastic modulus behavior at heating, Salvini et al. [48] evaluated the in situ

elastic modulus behavior of foamed Al2O3 to identify the changes at the curing, drying and

sintering stages of material.

The tests of elastic modulus were carried out in the range of temperature from 50 to 1400�C in

air with heating and cooling rates of 2�C/min and a holding time of 4 h at 1400�C. After that,

additional thermal cycles of elastic modulus measurements were carried out up to 1400�C.

Green bar samples (25 mm � 25 mm � 150 mm) of foamed Al2O3 containing 5 wt% of high

alumina cement were considered for the in situ elastic modulus evaluation. The measurements

Figure 15. Theoretical models predicting the effect of porosity on the relative Young’s modulus (continuous lines) and

experimental data of gelcasting Al2O3 foams [71].
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were carried out according to ASTM C1198–91 using the resonance bar technique (Scanelastic

equipment, ATCP, Brazil).

Figure 16 depicts the in situ elastic modulus evolution (first and second cycles) up to 1400�C,

in addition to results of the as-sintered foamed Al2O3 at 1500�C/4 h. Table 5 presents the

crystalline phase changes obtained by X-ray diffraction as a function of temperature for

ceramic composition.

The foaming and casting processes of Al2O3 suspension were carried out at room tempera-

ture (~25�C). As reported by the literature [72], the main cement hydrate phase formed at

room temperature is CAH10 (CaO.Al2O3.10H2O). When the temperature increases, this

phase partially dehydrates ~110�C into a mixture of gibbsite, AH3 (Al2O3.3H2O) and

tricalcium aluminate hydrate, C3AH6 (CaO.Al2O3.6H2O). This suggests that the drop of
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Figure 16. In situ elastic modulus of macroporous Al2O3: blue curve corresponds to the first cycle up to 1400�C of the

green sample; the red curve is the measurement after the first cycle, and the green curve corresponds to the measurement

after sintering up to 1500�C/4 h. The arrows indicate the discontinuities in the curve caused by decomposition or

formation reactions of specific ceramic phases [48].

Crystalline phases 110�C 1000�C 1200�C 1400�C 1500�C

α-Al2O3 ****** ****** ****** ****** ******

Al2O3.3H2O, AH3 **

CaO. Al2O3.6H2O, C3AH6 **

CaO.Al2O3, CA *** *

CaO.2Al2O3, CA2 * *** **** *

CaO.6Al2O3, CA6 ***

Table 5 Phase changes obtained by X-ray diffraction in alumina composition containing 5 wt% of high alumina cement.

The concentration of phases is qualitatively defined by the number of asterisks (*) displayed [48].
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modulus curve observed in the initial stage of heating of the first cycle was caused by the

conversion of CAH10.

At higher temperatures, the discontinuities in the temperature range of 200–400�C were prob-

ably due to dehydration of the phases AH3 (Al2O3.3H2O) and C3AH6 (CaO.Al2O3.6H2O),

besides the decomposition of the organic additives (surfactants).

After dehydration, the elastic modulus remains stable at a low value until sintering starts at

~900�C. After 1100�C, the modulus increases rapidly due to sintering involving phase changes

and formation of strong atomic bonds, which are characteristics of ceramic compositions.

At ~900�C, the CA (CaO.Al2O3) is the first crystalline phase formed, then it reacts with Al2O3

giving CA2 (CaO.2Al2O3) at around 1100�C. The formation of CA2 from CA and Al2O3 is

expansive as a result of anisotropic growth of crystals [72].

At higher temperatures, the following two competitive phenomena occur: (1) expansion due to

the formation of CA2 phase and (2) shrinkage due to sintering of Al2O3 particles.

In the second cycle of measurement, no significant difference in the modulus curve was found

in comparison with the first one.

In contrast, in case of sintering at 1500�C/4 h, the calcium hexa-aluminate CA6 (CaO.6Al2O3)

phase is additionally formed due to a reaction of CA2 with Al2O3, which starts at ~1450�C. The

formation of CA6 is also expansive, leading to a superior elastic modulus of material.

Finally, when cooling the modulus curves remained stable without discontinuities, indicating

an absence of microcracking of material.

These findings enhance the understanding not only about the role of specific additives (surfactants

and inorganic binders) but also about the crystalline phase transformations and corresponding

dimensional changes at sintering of macroporous ceramics. These results have important implica-

tions for developing porous ceramics with superior mechanical properties.

5. Summary

This chapter reviews the mechanical properties of porous ceramics with special interest on the

mechanical strength, fracture toughness and elastic modulus of these materials.

One of the more significant findings to emerge from analysis of mechanical strength section is

that, in addition to the porosity of porous ceramics, the number of connecting struts between

the cells/pores in the microstructure plays a fundamental role in their mechanical strength

behavior. Data from the literature support that once the connecting struts are lost in the porous

structure, it is impossible to recover the original mechanical strength of it by merely increasing

the struts thickness.

Regarding to fracture toughness of porous ceramics, two factors appear to control this prop-

erty: the presence of surrounding pores at the crack front and the interaction of cracks with the

pores in the microstructure.
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Finally, the in situ hot elastic modulus analysis appears as an important method to better

understand the processing steps as well as for predicting the life operation of this class of

ceramic materials.
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