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1. General role of the regenerative medicine and dentistry

In many scientific centres, the World intensive research is under way related to the significant

development of science in the field of Materials Engineering in connection with cell biology,

thus expanding the new groups of advanced materials and technologies finding their applica-

tion in regenerative medicine and dentistry. The author has already published on this topic

studies [1–4] as well as books [5–9], monographs [10–24], scientific papers [25–76], patents [77–

84] awarded in international fairs and exhibitions of research, invention and innovation [85–

102]. In this area, several of author’s own scientific and research projects have also been

realised [103–107]; some are in progress [108], and others are planned for implementation

[109]. Generally, one of the main reasons of this activity is the dynamic growth of post-injury

defects, post-resection defects, as well as those originating from the operative treatment of

cancerous tumours, whereas the number of cases is systematically increasing, or inflammation

processes and as a result of other disorders of the human population, including the conse-

quences of tooth decay, in particular due to local and systemic complications. Surgical treat-

ment, often saving human lives, causes the necessity to replace losses in such organs or tissues,

including in the dental system, to prevent biological and social degradation of patients and to

restore their living functions. A growing number of road accidents and severe injuries of more

and more people frequently requires a surgical intervention with replacement or supplemen-

tation of losses in organs or tissues and numerous interventions in the stomatognathic system.

For example, the data of the Association for Improving Safety of Road Traffic reveal that about

1.7 million people suffer injuries in the EU every year. The growing number of sports accidents
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and bodily injuries frequently requires a surgical intervention with supplementation of lost

tissues, also in the dental system. For example, according to EU IDB catalogue, annually, an

average 6.1 million people in the EU are treated in hospitals for sports injuries. The number

of people aged over 65 will have systematically grown, e.g., in EU by 70% to 2050. System-

atically proceeding population ageing, which considerably increases the number of patients

requiring surgical intervention with supplementation of losses in organs or tissues, often in

the stomatognathic system.

One of the fundamental tasks globally, considered also to be one of the European Union’s

priorities, is to improve the society’s condition of health, medical care and health safety. The

numerous tasks related to this topic include the prevention of health risks, early recognition of

diseases, rapid and effective implementation of medical procedures, comprehensive and con-

tinued therapies leading to an improved health condition and the improved health condition

and improved quality of the society’s life [1]. For example, the European Health Strategy

regards health-related aspects to be a central focus of the Community’s policy and proposes a

programme of actions for citizens, by recognising their right to own health and healthcare and

through the promotion of the ageing society’s health, through the protection of citizens against

risks for their health and life and through supporting dynamic health care systems and new

technologies, related to technical support for medicine, including dentistry. The idea is to

protect against serious health risks, especially such as civilisational diseases, pandemics and

bioterrorism and to support research, especially such applying advanced technologies, to

ensure the fullest prophylactics of diseases and safe treatment of patients, taking into account

the relationships between health and economic well-being. A significant and costly problem of

modern medicine is the necessity to replace or supplement organs or tissues, in particular in

orthopaedics and traumatology and maxillofacial surgery and restorative dentistry, to prevent

the biological and social degradation of patients and to restore their living functions [1]. It also

applies mostly to the elimination of consequences of tooth decay, considered to be an excep-

tionally burdensome civilisational disease, also one of the costliest ones, in particular, due to

local and systemic complications [110–125].

A relatively new branch of medicine is regenerative medicine and dentistry. The achievements

of modern implantology depend not only on the knowledge and experience of medicals, but it

also requires the application of advanced engineering problems, both in the field of engineer-

ing design, material engineering, nanotechnology and material technology. These are very

responsible research, and the most avant-garde trends concern the offering of personalised

medical devices manufactured according to individual anatomical features of the patient,

according to complex and advanced original technologies and ever newer biomaterials used

for implantable devices. These issues are the subject of many years of scientific interest of the

Author, and they belong to the group of the most avant-garde, so far relatively little known,

but extremely promising technical problems for use in regenerative medicine and dentistry.

This study presents the results of previous studies and own research, derived from previously

published original own work done by the Author with a team of co-workers [1–19]. As in all

other cases, in material engineering and material science, in order to satisfy the functional

functions of implantable devices as well as all other products, it is necessary to design and

apply engineering materials that, subjected to the appropriate technological processes of
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shaping the geometric form, and especially the structure, will ensure appropriate physico-

chemical properties of the material. This book presents exhaustively the achievements of

numerous teams from different countries of the world, inscribing itself in the discussed Euro-

pean Health Strategy, in advanced research areas related to biomaterials used in regenerative

medicine and dentistry. In the overall analysis of the issue concerning biologically active

cellular structures and a substrate with an engineering composite material matrix used for

scaffolds and for newly developed implantable devices applied in regenerative medicine and

dentistry, further in this description all the aspects are analysed separately, because the lack of

holistic approach and general references is in the literature, apart from own works.

2. Importance of regenerative medicine and dentistry and tissue

engineering

The development of regenerativemedicine, whose technical aspects are covered by the bookwith

the first reports dating back to 1992 [126], is a relatively new field of medicine. Implantable

biomedical devices encompass numerous solutions eliminating various dysfunctions of a human

organism and are currently aggregately considered to be medical bionic implants. The develop-

ment of regenerative medicine, whose technical aspects are covered by the book, previously

described in author’s theoretical study [1], started with the first reports dating back to 1992

[126], as a relatively new field ofmedicine. Implantable biomedical devices encompass numerous

solutions eliminating various dysfunctions of a human organism and are currently aggregately

considered to be medical bionic implants. Bionics is understood as production and investigation

of biological systems to prepare and implement artificial engineering systems which can restore

the lost functions of biological systems [127, 128]. Autographs, allografts or metal devices or such

made of other engineering materials are primarily the current methods of organ and tissue

replacement employ [129]. The purpose of the regenerative medicine is treatment—by replacing

old and sick cells with young cells, also using tissue engineering methods and cell-based thera-

pies or organism regeneration using a gene therapy. It raises numerous new challenges, notably

in counteracting the symptoms and consequences of diseases, and even their causes [130–133].

The application of therapies based on living cells inmedicine is a relatively new concept. The first

successful allogeneic transplantation of human haematopoietic stem cells (HSC) was seen as late

as in 1968 [134] (29), then the cells were used for other therapeutic applications [135, 136]. The

therapies based on living cells were intensively developed in the 1990s [137], in particular for skin

and cartilage implants. Tissue engineering provides technical support for regenerative medicine

and is an interdisciplinary field employing the principles of engineering and life sciences for

development of biological substitutes, for restoration, maintenance and improvement of func-

tions of tissues or entire organs [138, 139]. Tissue engineering, introduced in 1985 [140], as a field

of technical sciences, utilises medical knowledge and materials engineering methods to develop

biological materials capable of restoring, maintaining or improving the functions of particular

tissues or organs [138] and to produce their functional substitutes [141, 142]. Tissue engineering is

based on understanding the principles of tissue growth and on applying this for functional

production of a replacement tissue for clinical use [143].
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An overview of the present situation points to a diversity of the currently available therapeutic

methods based on cells, undergoing the phase of clinical studies [144]. The global market of

cell-based therapies boasts a revenue of more than a billion USD per year [145]. Therapeutic

strategies include direct transplantation of the desired type of cells collected using biopsy or

such originating from cultures of stem cells, both in the autologous and allogeneic system.

Multipotent and self-renewing stem cells (MSCs), depending on the tissue development stage,

can be grouped into adult and embryonic cells [136, 146, 147]. Embryonic cells exist in umbil-

ical cord blood [148, 149], in the placenta [150], in amniotic fluid [151] or deciduous teeth pulp

in infants, termed as multipotent stromal cells (MSCs). The clinical application is most benefi-

cial, especially of autologous cells [136], as they do not cause an immunological response and

do not require immunosuppressive treatment [151–154], and, nevertheless, such application is

limited [155]. There is a much greater potential for somatic and especially haematopoietic stem

cells (HSC) from bone marrow stromal [156–158], supporting bone marrow stromal cells

(BMSCs) as a standard [136, 158]. Adult stem cells also occur, in particular, in synovial fluid,

tendons, skeletal muscles [158, 159] and adult muscles, fat tissue—ASCs (adipose-derived

stem cells ASCs) [158, 159], the stroma of cornea [149], peripheral blood, nervous tissue and

dermis and have an ability of transformation into multiple tissues.

The efficiency of cell-based therapies depends on the preservation of their viability after

implantation [160, 161], to prevent the ischaemia of tissues and necrosis [162–167]. Stem cells

originating from bone marrow and fatty tissue may be used for breeding mesenchymal cells

and tissues, in adipocytes, chondrocytes, osteoblasts and skeletal myocytes and can be used for

producing tissues, e.g., muscles fat, gristle and bones [168–171]. Stringent safety requirements

must be considered in cell-based therapies because raw materials of the animal origin are used,

which poses a potential threat of transmitting a pathogen to a recipient or of immunological

complications [172] and as post-production cleaning is required [173]. Progress in this domain

seen since 2004 requires further detailed considerations concerning the mechanism of in vivo

therapeutic activity, to facilitate the development and optimisation and for the development of

automated processes, with improved efficiency and with quality control and with reference

standards established [174–177]. About 100 companies specialised in this area are operating at

the American and European market. For better characterisation, the conditions of cell-based

therapies must be realised more intensive the basic research. The introduction of the new

clinical regenerative procedure having no competition requires the development of breeding

techniques of human stem cells. However, the adult stem cells could be used to a limited extent

[178]. The fabrication of the majority of therapeutically meaningful cell types (except the

mesenchymal stem cells) has not yet been mastered at a technologically satisfactory scale.

However, it should be emphasised that the outcomes achieved to date in this area be promis-

ing. Therefore, a wide commitment of the scientific environment is generated for the elabora-

tion and explanation of the phenomena accompanying the growth of tissue structures in

conditions allowing their industrial production. The purpose is the development of the ade-

quately organised therapeutic processes, introduction appropriate engineering materials and

obtaining the technological processes for them, including nanotechnology. A very important

cognitive task is the explanation the interaction between the surface structure of engineering

materials forming the substrate and the tissue structures deposited onto it and explication the

role of a substrate for culturing tissue structures.
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Opposite to pure therapies, in which stem cells are injected directly into peripheral circulation

or located in particular tissues, in numerous clinical cases it is necessary to use stem cells’

carriers to transport them, and especially scaffolds for their three-dimensional grouping in a

particular place of an organism, and such research is being constantly developed [179–188]. It

should be noted that the notion of scaffolds is quite comprehensive, as it may not only refer to

engineered extracellular matrices ‘scaffolds’, but also to rigid microporous materials into

which osteoblasts may grow, and also to microporous mats made of polymer nanofibres, into

which living cells are growing and may be used as specific plasters, to treat for example burns

or to reconstruct large fragments of skin [7]. The latest publications [5, 6] also note the

relevance and need of developing such therapeutic methods for the dental system. A micro-

scopic, porous structure of scaffolds is required, enabling the diffusion of nutrients and metab-

olism products through them. Scaffolds, including also bone scaffolds, must enable the

adhesion and migration of cells and facilitate their development to form a three-dimensional

tissue structure in conditions simulating a natural micro-environment [187, 189]. Scaffolds

should exhibit adequate mechanical properties for ensuring an appropriate environment of

development for cells and ensure the mechanical preservation of living tissues in a three-

dimensional structure. The task of scaffolds is to ensure also the necessary conditions of cells

growth by the creation of new blood vessels [190–193].

Two separate aspects need to be considered: a porous structure, especially the size of pores and

manufacturing technologies of appropriate porous materials, and the selection of engineering

materials of which scaffolds are produced. Both aspects are of primary importance for the

undertaking’s success, and hence each of them has been analysed based on the state-of-the-art.

3. Designing of geometric properties of porous materials

Porous materials have been used for not too long in orthopaedic procedures to replace dam-

aged bones, and porous scaffolds are geometrically similar to natural hard tissues made up of

a skeleton penetrated by interlinked pores [194], thus solid metals are unsuitable because they

are, by nature, non-permeable and prevent the adhesion and proliferation of living cells.

Porous materials, mainly metals, are implanted to repair damaged bones having a critical size

and in the majority of cases are used as carrying devices [195]. It is vital that an implant has

properties similar to a recipient bone and the surrounding tissue [196]. A human bone has a

hierarchical structure with three major anatomic cavities of different sizes which are Haversian

canals (50 μm) [197], osteocytic lacunae (few micrometres) [198–201] and canaliculi (<1 μm)

[201, 202]. All the three cavities play an important role in the mechanical integrity of the bones

and the processes reconstruction [203]. A porous structure ensures appropriate space for the

transport of nutrients and the growth of living cells [204, 205]. A bone elasticity modulus,

much smaller than for non-noble metals, is regarded to be one of the major problems in the

construction of implants because, as a result, the screening of stresses would often lead to

implant damages. Porous metals can duplicate bone properties if their structures are digitally

designed and are produced using advanced manufacturing technologies [205]. A bone, despite

its anisotropy [206], is being replaced by porous engineering materials with similar rigidity,
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making them efficient for transmitting loads and for alleviating the effect of stress screening

and for regeneration of bone tissue in the damaged place [195]. The following is therefore

required: (1) biocompatibility; (2) appropriate surface for adhesion, proliferation and differen-

tiation of cells; (3) a very porous structure with a network of open pores for the growth of cells

and for the transfer of nutrients and metabolic wastes; (4) mechanical properties adjusted to

the requirements of the surrounding cells to reduce or eliminate excessive stresses and meeting

anatomic requirements to avoid a mechanical damage [207–211]. The key features for the

design of porous metallic implants include careful selection of porosity, size of pores and

mutual connections between pores, aimed at achieving satisfactory clinical results. Such con-

structional features have a large effect on the mechanical properties and biological activity of

scaffolds [195]. Bone regeneration in vivo porous implants consists of recruitment and penetra-

tion of cells from the surrounding bone tissue and vascularisation [212]. Higher porosity may

facilitate such processes and enable bone growth [213, 214]. The influence of the pore size on

the growth of cells, e.g., bone cells, is, however, still controversial [195, 215]. Pore sizes of

artificially produced scaffolds should be adapted to the specific cell type. They should be

small, because then they ensure more space for cells’ growth, e.g., bone tissue [195], but small

enough to prevent the sealing of pores in a scaffold [187]. They should also be large enough to

prevent blood clots [216], enable the migration of cells and ensure conditions to fill up scaffold

pores by the reconstructed cells, guaranteeing neovascularisation [217]. For this reason, the

upper suggested limit is 400 μm [215], because it is no longer beneficial to increase it. It was

found, though, that for pores sized 600–900 μm, the growth of bone cells is higher than for the

pores sized 300 μm [195]. The permeability of a porous structure of a scaffold ensures the

transport of cells, nutrients and growth factors as a result of blood flow, and a blood pressure

gradient depends on the pore size and has also influence on vascularisation and accelerates the

osseointegration process [195], although this requires further studies. It is thought that the

optimum pore size for cells growth, and especially mineralised bone growth, is 100–400 μm

[195]. The aspect is still important, because although increased porosity, pore size and mutual

connection of pores are the key factors, which are having a large impact on facilitated bone

growth and the transport of cells and nutrients, evidently ameliorating the quality of biological

processes, nevertheless they may considerably reduce rigidity and strength of scaffolds [195].

Although the shape and size of pores can be adjusted by changing the conditions of even

traditional fabrication processes, e.g., casting or powders metallurgy; however, only a ran-

domly organised porous structure can then be obtained, which is not fully open or is not open

at all [218]. To produce porous scaffolds as well as other medical implants, including dental

ones, additive technologies are used most often in combination with prior CAD/CAM, as

highly competitive against traditional manufacturing methods, such as casting or machining

[219–224]. Such technologies can be applied for various engineering materials, not only metals

and alloys which are prepared, respectively, as powder or liquid, rolled material or thin fibres.

Additive technologies have been widely used for fabricating diverse, customised elements

applied in medicine, in particular, scaffolds with required porosity and strength with living

cells implanted into an organism [225–227], models of implants and dental bridges [228–230],

implants of individualised implants of the upper jaw bone, hip joint and skull fragments

[231–238]. Considering the additive technologies applied most widely, the following have

found their application for scaffold manufacturing, in implantology and prosthetics, i.e.,
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electron beam melting (EBM) [222, 239–243], and also 3D printing for production of indirect

models, although selective laser sintering/selective laser melting (SLS/SLM) and its technolog-

ical variants offers broadest opportunities [220, 222, 244–253], which was noted in discussing

each group of materials. SLS/SLM techniques permit to produce a structure with open pores,

e.g., with a lattice structure promoting osseointegration, while maintaining different external

shapes of the whole implant [254]. The determination of optimum geometric features of scaf-

folds as a result of computer-aided design in conjunction with the optimisation of technolog-

ical conditions of the applied additive technology, and broad experimental verification in the

engineering and biological aspect, is of key importance.

4. Selection of materials of implantable devices in regenerative medicine

and dentistry

The selection of appropriate materials for application in the regenerative medicine and den-

tistry, in conjunction with the optimisation of technological conditions of fabrication of

implantable devices, including porous scaffolds and implant-scaffolds, are the important

aspects of the analysed problems, previously just described in author’s own theoretical study

[2]. It occurs as a synergy of classical prosthetics/implantation of bone and organ post-injury or

post-resection losses together with the methods of tissue engineering in the connection (inter-

face) zone of bone or organ stumps with prosthetic elements/implants. It calls for the use of

porous and high-strength non-graded metal and/or composite and/or polymer materials

(which is strongly, but not exclusively, dependent on the specificity of the clinical application)

together with using at the same time biodegradable materials for tissue scaffolds. One of the

solutions strives to achieve bioactive connections, as most advantageous regarding bond

strength, which is formed between bone tissue and implants/scaffolds made or coated with

bioactive materials, considerably improving the stability and durability of connection, espe-

cially for porous scaffolds/implants. Another acceptable approach is a very durable biological

connection characteristic for porous implants/scaffolds whereby the bone tissue is growing

through the material pores and is mechanically “anchored” in the bone. Porous resorbable

bioglass may be used for scaffold fabrication [255], e.g., from the CaO-SiO2-P2O5 system,

Hench bioglass [256], produced both, with classical melting methods and with sol-gel

methods, and also bioglass from the SiO2-Al2O3 system endowed with silver, due to their

biocompatibility [257, 258] and bacteriocidity, and with pore walls coated with hydroxy car-

bonate apatite (HCA) [259], ensuring enhanced activity of osteoblasts [260] and expression of

genes connected with bones [261]. The formation methods of porous structures from ceramic

materials, in particular such as aluminium oxide, zirconium oxide, calcium carbonate, hydroxy-

apatite (HA), titanium oxide, include casting of sections from mass containing a fine-grained

ceramic material with additives facilitating foaming and then material sintering, and also the use

of other methods, e.g., an organic matrix and lyophilisation of ceramic slip [255]. The basic

bioactive ceramic materials used for scaffolds is calcium phosphate (CaPs), as the main compo-

nent of bone, and in hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) or a mixture of HA

and b-TCP, known as biphasic calcium phosphate [262–264]. A classical solution in the domain
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of ceramics, are porous scaffolds/corundum implants completely biocompatible, growing

through the fully valuable bone tissue. They possess mechanical strength sufficient for many

types of clinical procedures and ensuring freedom of manipulation during a surgical procedure.

After growing through, have an appropriate modulus of elasticity, which ensures their good

interworking with the bone and also allow for sterilisation with any method. Both, bioactive and

biodegradable polymers can be employed [193, 265, 266], including in particular natural poly-

mers such as: alginate, chitosan, collagen, fibrin, hyaluronic acid and silk, and used, e.g., for bone

reconstruction [267], as well as synthetic ones, such as poly(lactic acid) (PLA), poly(glycolic acid)

(PGA), and polycaprolactone (PCL) and poly(propylene fumarate) (PPF) with high compressive

strength, comparable to this of a cortical layer of bone [266]. Some of them, such as poly(lactic

acid) (PLA), poly(glycolic acid) (PGA) may cause negative tissue reactions [268]. Composite

materials satisfy mechanical and physiological requirements, e.g., CaP-polymer scaffolds,

interconnected tricalcium phosphate (TCP) scaffolds coated inside pores with polycaprolactone

(PCL) [269], hydroxyapatite HA/poly(ester-urethane)(PU) [270] or a nanocomposite of collagen

and Bioglass [271].

Metallic materials represent one of the largest groups of engineering materials used for this

purpose and comprise, among others, titanium, tantalum, niobium and their alloys, and in

dentistry also cobalt-matrix alloys and alloys of noble metals, for which, SLS/SLM technologies

were especially applied [272, 273], irrespective of stainless steels often used until now. The SLS/

SLM technique has been used successfully for production of complex porous and cellular

structures made of austenite stainless steels [218]. One of the main grades of stainless austenitic

steel which can be used for medical purposes is nickel, now thought to be one of the main

allergens [274], with 17% of adults [275] and 8% of children [276] being sensitised to it, approx.

50–60 million people altogether in the EU. Apart from many disorders [277, 278], this chemical

element causes rejection of orthopaedic gradients [279], and dental implants [280] and, for this

reason, Directive 94/27/EC [281] was put into force prohibiting the use of nickel and materials

containing it for prosthetic and implantological purposes. Co-matrix alloys such as Co-Cr-Mo,

Co-Cr-W and cast Co-Cr-W-Mo alloys, for machining or manufactured by powder metallurgy

methods, for which the SLS/SLM technology was successfully employed [272, 273, 282–289],

can be seen as the basic classical materials for dental prosthetic restorations [290–296], despite

their high density, which is more and more often considered as counter-indicative for their

application for such purposes.

Porous metal materials, though not biodegradable, are used for scaffolds, mainly Ti and Ta

[297], also after treatment of pores’ surface [298]. Therefore, interest in light metals and their

alloys have been on the rise. Ti and its alloys represent engineering materials which are

particularly suitable for use in additive technologies, e.g., for selective laser sintering [5, 6, 10,

77–81, 85–91, 299–305]. Porous Ti [297] can be utilised for non-biodegradable scaffolds, includ-

ing such after treatment of the pore surface, applied primarily due to relatively high compres-

sive strength and fatigue strength [193, 306]. It was proven that structures of porous Ti6Al4V

are also effective in aiding the growth of cells and bone tissue [307–311]. Ti and its alloys

with Al, Nb and Ta and Ti alloys with Al, V and Nb, well tolerated by a human organism,

are the metallic materials more and more often used these days for joint prostheses and for

various implants, also intramedullary wires and for prosthetic restorations and dental

Biomaterials in Regenerative Medicine8



implants [33, 312–322]. When used for dental crowns, though, they have a significant disad-

vantage, consisting of porcelain reactions with titanium oxide, causing bruising and colour

darkening, which - for aesthetic reasons - practically eliminates such prosthetic restorations,

but does not exclude their use for a root part of the implant [323]. Titanium-matrix materials do

not cause allergic reactions and are stainless and feature high strength and hardness, and also

thermal conductivity several times lower than traditional prosthetic materials [324]. Titanium is

a very thrombogenic material [240]. The biocompatibility, especially thrombocompatibility, of Ti

can be enhanced by introducing alloy elements [325]. Some publications [326–334] provide

limited information on the toxic activity of V as an alloy element in the Ti6Al4V alloy, because it

was found that V could be regarded as a potentially toxic factor [335, 336], which is, however,

true only for a considerable concentration of V in a body, due to development of its undesired

immunological response, when the freed V ionsmigrate from thematerial surface to a soft tissue,

binding with proteins [337, 338]. Some research on cells implies that Ti6Al4V exhibits high

cytotoxicity [307–311, 339]; there are reports that V may cause sterile abscesses, and Al may

cause scarring, while Ti, Zr, Nb and Ta show good biocompatibility [340]. Some publications

argue that a risk associated with an unfavourable effect of Ti alloys can be limited by replacing V,

as in, e.g., Ti6Al4V alloy, by Nb, e.g., in Ti6Al7Nb alloy, which would show better properties,

e.g., corrosion resistance and bioavailability [334, 341–346]. It was revealed, however, by direct

comparison in the same conditions that differences between Nb and V in Ti alloys are not too

high [334], and even that Ti6Al4V alloys exhibit better properties than Ti6Al7Nb alloy [334, 347–

349], such as thrombocompatibility, more intensive antibacterial activity and resistance to colo-

nisation of Gram-positive bacteria, although worse for colonisation of Gram-negative bacteria

[334]. Other alloys, with a higher concentration of Nb, are however employed successfully, e.g.,

Ti24Nb4Zr8Sn, including those manufactured by selective laser sintering, with an elasticity

modulus better adapted to a bone than Ti6Al4V alloy, which prevents bone resorption and does

not cause implant loosening in use [350]. Although porous Ti6Al4V was comprehensively

studied, the potential release of toxic ions has led to a search for alternative Ti alloys, including,

among others, Ti24Nb4Zr8Sn, Ti7.5Mo and Ti40Nb, with comparable mechanical properties as

their counterparts manufactured traditionally [350–353].

The concept of the synergic use, for this purpose, of the existing achievements in tissue

engineering in the scope of selection of materials and scaffold fabrication technologies, in

materials engineering and production engineering in the scope of design and manufacture of

prostheses/implants with different engineering materials, and in surgery and regenerative

medicine in the scope of prosthetics/implantation in the treatment of the above-mentioned

civilisational diseases and their effects have been outlined in the earlier works and projects by

the author [1–109].

Regeneration in a natural condition is forcing the removal of an artificial scaffold [354–356].

The topic of scaffolds and biodegradable implants, including porous ones, both made of poly-

mers [193], despite doubts of Mg-Ca alloys [357], and of composite materials [269–271], as well

as a concept of separating the redundant pieces of cell-based products after finishing a therapy

performed with their use [7], were thoroughly analysed in the own works [5, 6, 10]. Relatively

high compressive strength and fatigue strength [193, 306] are primarily the reason for the

application of Mg and its alloys [358–360]. Introducing pure Mg with interconnected porosity
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onto bearing plates, bolts and networks made by rapid pressure assisted densification

methods, such as rapid hot pressing/Spark Plasma Sintering (SPS) is an innovative approach

[361]. Due to Mg biocompatibility, and the manufacturing technology ensuring good mechan-

ical strength and recovery of the bone pure Mg gives an optimum solution. Mg with Ca, Zn

and Mn alloys can be used, to reduce the rate of in vivo corrosion and prevent necrosis and the

blocking of blood flow. A human organism well tolerates these alloys [362, 363] mainly with

coatings adapted to bioresorbable implants [364–367]. Reinforcements of magnesium MMCs

usually include, notably, HA [368–373], FA [374], calcium polyphosphate [375], and calcium

[374] and well affect biocompatibility. Mg and its alloys can be used for non-biodegradable

scaffolds [372]. Except for several studies, the application of Mg as a biomaterial has not won

popularity as late as until the end of the 1990s, because this pure metal cannot ensure appro-

priate mechanical properties or corrosion resistance in orthopaedic uses [376, 377]. Such

popularity, though, has risen exponentially since then [378], owing to major improvements in

Mg production [378] and various techniques elaborated, including the use of Mg alloys,

substrate surface treatment or coating technologies [379–381]. Generally speaking, such alloys

contain Al or rare-earth elements (REE) [382–384], although there are reports about studies

over additives of non-toxic elements, such as Ca, Mn, Zn and Zr, and even Li, Cd, Sn, Sr., Si,

Ag and Bi [378]. Al is a common additive for Mg alloys, as it is conceded that it improves

strength and resistance to Mg alloys’ corrosion Mg (258), although Al is shown in numerous

pathological conditions in humans [385–388]. The additives of rare-earth elements are used for

increasing strength, plasticity and wear resistance of Mg alloys and their corrosion resistance

[383] in environments with a high content of chlorides in connection with a passivation layer

rich in oxygen [389, 390]. The influence of such elements on the physiological system is

unknown, [378], although it was found that they possess both, anti-carcinogenic and anti-

coagulation properties [391], and when used as vascular stents without side effects [392], and

also without La and Ce, do not have an effect on cytotoxicity and have a positive effect on

cellular life [393], although quite the opposite was also found, that at least some REEs are

highly toxic [393, 394]. The value of the research carried out in this scope may be limited if it

turns out that such elements are too toxic in use for biomaterials [377] and this requires further

systematic studies. Magnesium synthesised by SLM is closely adapted to a human bone [395].

This technology was employed for producing complex porous/cellular structures of magne-

sium alloys [350, 396–398], although the results of such studies are normally not available in

the available literature [254]. A selective laser sintered Mg2Mn alloy is predisposed to use for

bone implants [254]. The use of Mn, as a component of Mg alloys, consists of the improvement

of corrosion resistance and may increase the plasticity of Mg alloys [383, 399]. Zn improves the

strength of Mg alloys [399, 400] and their corrosive resistance [401]. However, its influence on

increased cytotoxicity was identified [402, 403]. Magnesium and its alloys feature a high

potential for orthopaedic uses because it has proven to be fully bioresorbable, their mechanical

properties are adapted to bones and do not cause an inflammatory response; moreover, they

are osteoconductive, supportive to bone growth and play a positive role in the binding of cells

[404]. The application of biomaterials made of Mg highly increases a risk of hypomagnesia

and, probably, of the excessively stored and circulating Mg [378]. Corrosion analysis and Mg

concentration monitoring in serum must be an important aspect of Mg-based biomaterials’

assessment [378]. Due to an effect of diverse factors such as pH, concentration and type of ions,
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adsorption of proteins on orthopaedic implants and the biochemical activity of the surround-

ing cells in the presence of body fluids [405, 406], further research into biomedical uses of Mg is

indispensable. Powders are serially manufactured for, in particular, SLS/SLM [407].

Third-generation scaffolds made of CaP, Si-TCP/HA [408] and collagen hydrogel [409] are

osteoinductive and allow to create a new bone and also its biomineralisation. Substitute scaf-

folds of bones are often administered with medicines, including gentamycin, vancomycin,

alendronate, methotrexate and ibuprofen [410, 411] and with growth factors and transcription

factors [265, 412, 413].

5. Selection of technologies of implantable devices in regenerative

medicine and dentistry

The issue was previously considered in the Author’s own review work [2], and some of the

information compiled there was used here. The traditional, and also the oldest fabrication

technologies of scaffolds with a porous structure differentiate the method of emulsifying/

lyophilisation [414], to thermally induced phase separation (TIPS) [415], solvent casting &

particulate leaching (SCPL), where solvent residues may have an adverse effect on cellular

structures [416]. The aforementioned classical methods being unable to control accurately a

general shape of the scaffold as well as the size, shape, distribution and interconnections of

pores. Nevertheless, these methods have not been completely abandoned. They are used as a

modern method in tissue engineering replication technologies with micro-/nanopatterned-

surfaces [417–419]. The master moulds are produced using a hard or soft material,

for the reason of mould rigidity. The structures with small feature resolution and micro/

nanofabricated moulds, including for hot embossing (also known as nanoimprint lithography)

and soft lithography (micro-casting) for achieving patterns with dimensions about of 5 nm

[420–423] can be cast using synthetic and natural biodegradable polymers [424, 425]. Currently

used methods do not require moulds for fabrication of scaffolds (solid freeform fabrication

SFF) made not only polymer materials and hydrogels but also ceramic and metallic materials

[193, 426–429]. The particular fabrication methods find wide application for the processing

both the mentioned biocompatible engineering materials and biological materials [430]. The

particular layers of powder are sprayed with an adequate biocompatible binding agent, e.g.,

for merging powder to fabricate scaffold from collagen [431], and a 25% acrylic acid solution in

a mixture of water with glycerine [432] using the three-dimensional printing method (3DP)

[433]. This method is also used for the integration of hydroxyapatite used for bone regenera-

tion, and an aqueous citric acid solution is used for integration of ceramics based on calcium

phosphate [434]. A method of three-dimensional printing hot wax droplets [435] could be used

for manufacture a replica of the scaffold surface, e.g., bone and gristle substitutes fabricated

with the SFF method. The limitations of the method originate from wax impurities with

biologically incompatible solvents [436], which are not exhibited by new generation materials

such as BioBuild and BioSupport dissolving in ethanol or water [436]. The stereolithography

method permits to shape three-dimensional form of liquid polymer [437], in particular using

poly(propylene fumarate) (PPF) [438, 439], poly(ethylene glycol) (PEG) [440, 441]. Polymer
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materials without solvents, including poly(ε-caprolactone) PCL [429, 442], poly(ethylene gly-

col)–poly(ε-caprolactone)–poly(lactide), PEG-PCL-PLA [442, 443] acrylonitrile-butadiene-sty-

rene (ABS) and hydroxyapatite-poly(ε-caprolactone) HA-PCL [442, 444] are used in fused

deposition modelling (FDM) [445]. The particular layers are placed from a computer controller

and using computer-aided design (CAD) methods. Selective laser sintering (SLS) is similar to

3D printing. The process is starting with uniform spreading of a thin layer of powder onto the

surface and then followed by the merging of powder grains as a result of sintering with the

neighbouring grains with partial pre-melting. The next layers are manufactured subsequently

according to the same method until the full dimensions of the manufactured element are

achieved. The manufactured element, including the scaffolds, shows the assumed construc-

tional features. This technique, used commonly for additive manufacturing of products,

includes scaffolds and implants for the dental purpose, from metallic and ceramic materials

[5, 6, 10, 446]. This technology was also utilised for scaffolds preparation [426] from biode-

gradable polymers, e.g., polyether polymer, poly (vinyl alcohol), polycaprolactone [447] and

poly(L-lactic acid) [448], and also hydroxyapatite [449] and from composites composed of

some of such polymers and hydroxyapatite [448, 450, 451].

Nanofibrous scaffolds are manufactured by electrospinning, and the so obtained nanofibres with

the diameter of 5 nm to over 1 mm are continuous and randomly interconnected [452, 453]. Due

to the character of electrospinning, fibres are arranged in an orderly manner or are oriented

randomly [454]. They have a large specific surface area, exhibit high porosity, the small size of

pores and small density [453] and their structure is similar to the extracellular matrix (ECM).

Natural and engineering materials can be used as a material, including, in particular, collagen,

gelatin and chitosan [453]. Scaffolds are fabricated using of non-covalent interactions for sponta-

neous fabrication of a three-dimensional structure in response to the activity of environmental

factors [455]. The ability of peptides and nucleic acids, to self-organisation, is utilised for scaf-

folds fabrication. Such types of scaffolds were used, e.g., for regeneration of nervous tissue to

stop bleeding and repair infatuated myocardia, as well as in medical products for slow release of

a medicine [456, 457] and for DNA, where the branched DNA particles are hybridisingwith each

other in the presence of ligases in hydrogel [458]. The scaffold fabrication method employing

self-organisable nanofibres is one of few allowing to produce biocomponents with their proper-

ties similar to the natural extracellular matrix (ECM), and scaffolds containing hydrogel, made

using such technology, employ more advantageous toxicological properties and higher biocom-

patibility than traditional materials. Conventional hydrogels are particularly useful for three-

dimensional placement of cells [459]. Hydrogels used in tissue engineering should have low

viscosity before injection and should be gelling fast in the physiological environment of the

tissue, and the most important is gelling (sol-gel transition) by cross-linking, which may take

place when producing them in vitro and in vivo during injection. Physical cross-linking is used in

particular in the case of poly(N-isopropylacrylamide) (poly(NIPAAM)), which may be used in

tissue engineering after introducing acrylic acid (AAc) or PEG [460, 461] or biodegradable poly-

mers, including such as chitosan, gelation, hyaluronic acid and dextran [462–466] to block

copolymers, such as poly(ethylene oxide) PEO-PPO-PEO (Pluronic), poly(lactide-co-glycolide)

PLGA-PEG-PLGA, PEG-PLLA-PEG, polycaprolactone PCL-PEG-PCL and PEG-PCL-PEG [467–

471], and also agarose (a polysaccharide polymer material, extracted from seaweed as one of the

two principal components of agar) [459], as thermo-sensitive systems [472], to avoid the use of
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potentially cytotoxic ultraviolet radiation. Poly(NIPAAM) and block copolymer hydrogels may

undergo cross-linking as a consequence of temperature and pH acting at the same time, as in the

case of acrylates [473, 474], such as 2-(dimethylamino)ethyl-methacrylate (DMAEMA) or 2-

(diethylaminoethyl) methyl methacrylate. Self-assembling peptides hydrogels, including such

containing peptide amphiphiles (PAs), can form nanofibres [475, 476] used for three-dimensional

formation of tissue cultures [476–480].

Chemical cross-linking hydrogels having convalescent bonds include photo-cross-linkable

poly(ethylene glycol)-diacrylate (PEGDA), poly(ethylene glycol)-dimethacrylate (PEGDMA),

poly(propylene fumarate) (PPF) and oligo(poly(ethylene glyco) fumarate) (OPF) [481–485],

and also natural hydrogels such as dextran, alginate, chitosan and hyaluronic acid synthesised

from PEGDA/PEGDMA [486–489] and Michael-type addition reaction [490–492] and Schiff

base-cross-linked hydrogels [465, 493–495]. In the case of enzyme-mediated cross-linking

[458], transglutaminases (including Factor Xllla) and horseradish peroxidases (HRP) [459] are

used for the catalysis of star-shaped PEG hydrogels [496] and tissue transglutaminase

catalysed PEG hydrogels [497]. This also applies tyrosinase, phosphopantetheinyl transferase,

lysyl oxidase, plasma amine oxidase, and phosphatases [498]. It made it possible in particular

to develop new gels by engrafting tyramine groups into natural and synthetic polymers such

as dextran, hyaluronic acid, alginate, cellulose, gelatin, heparin and PEG-PPO [499–505, 509].

Ionic cross-linking hydrogels include calcium-cross-linked alginate [459] and chitosan-

polylysine, chitosan-glycerol phosphate salt and chitosan-alginate hydrogels [506–508]. Different

synthetic and natural polymers were used for this purpose, including polyethylene glycol (PEG),

and copolymers containing PEG [486, 510], hyaluronic acid (HA) [511] after an oxidation reac-

tion through HA-tyramine conjugates [505] and as a result of the formation between HA–SH

[492, 512] and Michael addition [491, 513], collagen and gelatin hydrogels mostly cross-linked

using glutaraldehyde, genipin or water- soluble carbodiimides [513–515], chitosan [516–519],

dextran 192 [520, 521] and alginate [522]. Hydrogels were used for reconstruction of the retina

[523], ligament [524], fatty tissue [465], kidneys [525], muscles [526], blood vessels [527, 528], and

also heart, neural cells, invertebral discs, bones and gristle [459]. Hydrogels were used to prevent

adhesions [529, 530, 531], to promote cellular adhesion [490, 532, 533]. So-called strong hydrogels

were developed to improve mechanical properties [534]. The three-dimensional representation is

possible of placement of cells with energy in the hydrogel to vascular structures using a laser

[535, 536], notably for recording directly the endothelial cell [535].

The general criteria of materials selection for tissue scaffolds relate to the material type and its

structure, osteoconductivity ability, mechanical strength, ease of production andmanipulation in

clinical applications. Table 1 presents numerous examples of the application of various bioactive

and engineering materials, and their respective materials processing and tissue engineering

technologies for manufacturing of the hybrid personalised implants and scaffolds [2].

Many layers of different types of cells at present can be three-dimensionally printed to directly

create an organ, ensuring the highest currently possible degree of control over the structure of

the regenerated tissues [537–542]. The first production system for three-dimensional printing

of tissues was delivered only in 2009 based on the NovoGen bioprinting technology [543]. China

has invested nearly 0.5 billion USD to establish 10 national institutes for development of organ
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printing [544], in which the printing of ears, liver and kidneys from living tissues was started in

2013. It is expected that fully functional printed organs can be achieved over the next dozens of

years or so [545, 546]. In the meanwhile, there were reports that an Australian team obtained a

kidney tissue print with this method for the first time [547]. An American team confirmed in

2014 it is ready to print a heart [548]. A three-dimensional structure is obtained by subsequent

formation of layers of living tissues on the gel or sugar matrix substrate [549]. To use the three-

dimensional printing technique, a polymer-cell mixture can be dosed, leading to the formation of

Fabrication stage Investigated materials Technologies applied Areas of application

Fabrication of

implant bearing

structure

Ti, Ti alloys with V or Nb, Mg

(possibly with additives of Ca, Zn

and Mn), ceramic materials Al2O3

and ZrO2, TiO2, resorbable

bioglass, e.g., Hench bioglass, from

the CaO-SiO2-P2O5 and SiO2-

Al2O3 system, hydroxyapatites,

polymers, composites

Selective laser sintering,

sintering, the use of organic

matrix, lyophilisation of

ceramic slip, rapid pressure

assisted densification

methods, such as rapid hot

pressing/spark plasma

sintering (SPS), skeletal

casting, plastic working,

cutting micro-treatment,

computer-aided

manufacturing, sol-gel

methods, 3D printing,

electrospinning, atomic

layer deposition, and

physical vapour deposition

Filling the losses of long bones, hip

and knee joints, facial-skull bone,

losses of joint cartilage cells,

oesophagus losses and/or blood

vessel losses, dental restorations,

and skin restorations

Fabrication of

porous implant

part

Ti, Ti alloys with V or Nb, Mg

(possibly with additives of Ca, Zn

and Mn), ceramic materials Al2O3

and ZrO2, TiO2, resorbable

bioglass, e.g., Hench bioglass, from

the CaO-SiO2-P2O5 I SiO2-Al2O3

system, hydroxyapatites,

polymers, composites

Fabrication of

coatings inside

pores of porous

implant part

A natural protein, synthetic and

polysaccharide polymers,

including thermosetting, including

collagen, fibrin, alginate, silk,

hyaluronic acid, chitosan, poly

(lactic acid) (PLA), poly(glycolic

acid) (PGA), polycaprolactone

(PCL) and poly(propylene

fumarate) (PPF), polyethylene

glycol, Al2O3, resorbable bioglass,

hydroxy carbonate apatite (HCA),

calcium phosphate (CaPs),

hydroxyapatite (HA), B-tricalcium

phosphate (B-TCP), biphasic

calcium phosphate, composites:

collagen + hydroxy - apatite CaP-

polymer tricalcium phosphate

(TCP)-polycaprolactone (PCL),

hydroxyapatite HA/poly(ester-

urethane)(PU), collagen-bioglass

Infiltration, 3D printing,

selective laser sintering,

electrospinning, atomic

layer deposition, physical

vapour deposition,

pressing, and sol-gel

methods

Fabrication and

application of

tissue cultures

Adipocytes, chondrocytes,

osteoblasts, fibroblasts and skeletal

myocytes

Cell transplantation, matrix

implantation, cell

implantation with matrix,

breeding of xenogeneic and

autologous cells and the

stage of clinical activities

Table 1. Examples of the application of various bioactive and engineering materials, and their respective material

processing and tissue engineering technologies for manufacturing of the hybrid personalised implants and scaffolds [2].
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cell hydrogel [550]. Microfluidics allows for the creation of three-dimensional systems of cells

[551]. It is possible to obtain such cell systems from hydrogels by photopolymerisation of

polymer solutions [552]. Using SFF techniques, including stereolithography techniques can

create scaffolds made of PEG hydrogels also [440]. Vascularisation for organ printing remains a

significant challenge in tissue engineering. The development of a vascular network in metabol-

ically functional tissues enables the transport of nutrients and removal of wastes, ensuring

maintenance of cells’ viability for a long time [553]. Micro-formation techniques, by the three-

dimensional printing of templates made of agarose fibres, are used for the creation of a

microchannel network inside hydrogel products, including, in particular, inside star poly(ethyl-

ene glycol-co-lactide)acrylate (SPELA), methacrylated gelatin (GelMA), poly(ethylene glycol)

dimethacrylate (PEGDMA) and poly(ethylene glycol) diacrylate (PEGDA) with different con-

centrations. In the last several years, the efficient formation of endothelial monolayers within the

fabricated channels has also been confirmed [554]. Unfortunately, the progress in vascularisation

control is limited, despite immense progress in the production of complicated tissue structures.

6. Contents of the book on regenerative medicine and dentistry

The book on Biomaterials in Regenerative Medicine contains a total of 18 chapters. Selected

issues discussed in the previous five sub-chapters were presented in it. The literature review, in

this first chapter, deals with technical, biological and medical aspects concerning materials and

technologies for medical and dental implantable devices. In the second chapter, the metallic

biomaterials and their application in regenerative medicine are presented in detail by the

literature review. In addition to these two chapters, all the rest contain the results of their

scientific research done by the authors of these chapters. Indeed, the originality of the

presented research results constitutes the real value of the book at this moment passed to the

readers’ hands. The next chapters contain issues about additive technologies and laser

manufacturing of materials used in regenerative medicine and mainly in regenerative den-

tistry. The third chapter is on microporous titanium-based materials located inside the pores by

biocompatible thin films to facilitate the implantation and proliferation of living cells in the

scaffolds thus produced. In turn, the fourth chapter includes mechanical properties compari-

son of engineering materials produced by additive and subtractive technologies for dental

prosthetic restoration application. It discusses both solid and milled sintered titanium and its

alloy, Co-Cr alloy, and sintered ZrO2. In the fifth and sixth chapters, properties of Co-Cr dental

alloys fabricated using an additive, technologies were presented. The progress of the applica-

tion of 3D printing for tissue regeneration in oral and maxillofacial surgery is presented in

chapter seven. In the eighth chapter, the issues of the tissue engineering and use of growth

factors in bone regeneration are discussed. Laser processing was analysed in chapter nine

concerning silicon for its synthesis as better biomaterials. Prospective of characterisation of

the skin models and associated with it measurements and simulation of permeation and

diffusion in 3D tissues are presented in the tenth chapter. The eleventh chapter also contains

the skin regeneration problems explanation and also a description of the biomaterials for

tendon and ligament regeneration. The next few chapters deal with natural and artificial gels

of polymeric materials. In the twelfth chapter, authors described the hydrogels for regenerative
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medicine. Natural rubber latex biomaterials in bone regenerative medicine are presented in the

thirteenth chapter. A systematic study of ethylene-vinyl acetate (EVA) in the manufacturing of

protector devices for the orofacial system was described in the fourteenth chapter. The next

few chapters outline other issues regarding regenerative medicine and tissue engineering. The

fifteenth chapter includes tailoring bioengineered scaffolds for regenerative medicine. Bioma-

terials and stem cells as promising tools in tissue engineering and biomedical applications are

the content of the sixteenth chapter. Identification of Fe3O4 nanoparticles biomedical purpose

by magnetometric methods is the title of the seventeenth chapter. The eighteenth chapter

applies to biomaterials for tissue engineering applications in diabetes mellitus.

The editor, publisher and the whole team of authors, by making this book available to the

readers, deeply believe that the detailed information collected in the book, largely deriving

from own and original research and R&D works pursued by the authors, will be beneficial for

the readers to develop their knowledge and harmonise specific information concerning these

topics, and will convince the engineers and medicals about the advantages of using the

manufacturing and tissue engineering and advanced biomaterials in regenerative medicine

and dentistry. On one hand, it makes possible gaining positive effects in the economic

manufacturing of biomaterials and implantable devices; on the other hand, it will ameliorate

the fate of many people affected by severe diseases. This awareness justifies the involvement in

the execution of research and the effort put in describing their results in this book.
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