
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 6

Astrocytes’ Role in Alzheimer’s Disease
Neurodegeneration

Ilaria Dal Prà, Ubaldo Armato and Anna Chiarini

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.72974

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

Ilaria Dal Prà, Ubaldo Armato and Anna Chiarini

Additional information is available at the end of the chapter

Abstract

Central nervous system (CNS) astrocytes are glial cells performing crucial tasks encom-
passing energy metabolism, neurotransmission, ion and water stable levels, and immune 
defense and control local blood flow/oxygen levels. Arising from neural stem cells, astro-
cytes differentiate into subtypes that vary according to animal species. Human cerebral cor-
tex astrocytes are sturdier and cytologically and functionally more complex, control wider 
domains, and spread calcium signals more quickly than their rodents’ counterparts. They 
actively partake in CNS homeostasis maintenance and functioning by teaming up with 
their client neurons, other glial cell types, and cerebrovascular cells. Alterations of astro-
cytes’ activities deeply impact on age-related chronic ailments like Alzheimer’s disease 
(AD), the commonest senile dementia; AD involves the growing accumulation of amyloid-β 
peptides (Aβs) and hyperphosphorylated Tau proteins the astrocytes, and neurons supply 
following the interaction of their calcium-sensing receptors (CaSRs) with exogenous Aβs. 
The activated Aβ∙CaSR signaling triggers a self-propagating mechanism that spreads the 
neuropathology among adjacent and far away astrocytes and their neuronal clients caus-
ing neurons’ death. CaSR antagonists or calcilytics suppress these noxious effects in vitro. 
Hence, calcilytics are potential therapeutics that could halt the spread of AD neuropathol-
ogy and safeguard the patients’ neuronal viability, cognition, memory, and ultimately life.

Keywords: human, astrocyte, Alzheimer’s disease, amyloid-β, tau protein, calcium-
sensing receptor, calcilytics

1. Introduction

Between the 16th and 18th week of intrauterine life, a pool of stem cells of the neural plate gener-
ates every neural cell type, excepting microglia, in humans. Once differentiated, the astrocytes 
undergo a complex maturing process through which they acquire their specific morpho-functional 
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characteristics. When these processes achieve completion, human astrocytes account for up to 50%, 
if not more, of the entire CNS cell population. These cells are larger in size and endowed with more 
numerous branches than their much less abundant (<20% of all CNS cells) rodents’ counterparts 
[1]. Being so plentiful, astrocytes have a relevant role in brain environment homeostasis mainte-

nance [2, 3]. They metabolically sustain neurons, recycle neurotransmitters, affect synapse activity, 
control local blood flow, and partake in blood-brain barrier functional integrity (see for details 
[2–4] and below). Aging and CNS diseases, neurodegenerative ones included, can induce an acti-
vated or inflammatory or reactive condition in the astrocytes [5, 6].

2. Human astrocytes’ varieties

As their designation indicates, astrocytes have a typical star-shaped morphology as they emit 
different numbers of cytoplasmic branches according to their subtype. Astrocytes of several 
subtypes dwell in the human CNS. Some of them display locational predilections, e.g., fibrous 
astrocytes for the white matter and protoplasmic astrocytes for the gray matter. More recently, 
it has been realized that the classical protoplasmic and fibrous astrocytes can be differentiated 
into several subtypes, some of which proper only of the human cerebral cortex. Such subtypes 
share a specific marker, the glial fibrillary acidic protein (GFAP), which is an intermediate 
filaments’ constituent expressed by all the astrocytes cultured in vitro. However, in vivo only 
the fibrous astrocytes express GFAP in the white matter (see for Ref. [7]). Recent studies have 
singled out a novel marker expressed by both protoplasmic and fibrous astrocytes, the alde-

hyde dehydrogenase-1 family member L-1 (Aldh1L1) [1, 8, 9].

2.1. Radial astrocytes

Radial astrocytes are the first ones to appear in the course of embryogenesis. At that point in 
time, they aid neurons’ migration by acting as scaffolds [10]. Later, they differentiate becom-

ing stellate astrocytes. However, after birth, radial astrocytes persist as such in the cerebellum 
(Bergmann glia) and the retina (Müller glia).

2.2. Fibrous astrocytes

These white-matter-located astrocytes present very long and thin processes which mostly do 
not emit branches. The processes’ terminal end-feet envelope the axonal nodes of Ranvier and 
also gets in touch with the walls of cerebral vessels. Most notably, fibrous astrocytes partake 
in the repair of injured brain tissue, especially at the spinal cord level [11].

2.3. Protoplasmic astrocytes

They are the most abundant astrocytic type. Their somata give out numerous (up to 200) 
long branches, which end up with leafy feet or end-feet in part touching the blood vessels’ 
walls and in part enwrapping several thousands of synapses [1, 8]. Near the pia mater’s inner 
surface, the astrocytes’ end-feet cluster together forms the CNS limiting peripheral membrane. 
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The astrocytes’ end-feet in contact with the outer wall of cerebral arteries and veins make up 
the glia limitans, a space in which the glymphatic drainage allows the influx and efflux of the 
brain interstitial fluid (lymph). Such fluxes are crucially assisted by the astrocytes’ water-
transporting aquaporin-4 channels. Via these paravascular pathways, nutrients reach the 
neurons and glial cells, while toxic metabolites and soluble amyloid-β peptides (sAβs) are 
removed from the CNS tissue [12]. In addition, the early connection between the endothelial 
cells of the brain’s nascent blood vessels and the astrocytes derived from radial glia results 
in a tight interaction between the end-feet of mature astrocytes and the capillary endothelial 
cells which presides over the normal function of the blood-brain barrier (BBB) [13].

It is worth recalling here that both Golgi silver staining and GFAP immunolabeling of brain 
tissue sections make the astrocytes appear as star-like cells. However, the astrocytes are 
the possessors of a certain number of cytoplasmic branches these methods do not stain. 
Therefore, such methods do not reveal the astrocytes’ true morphology as visible under the 
light and/or fluorescence microscope. Another concept of old is that during development the 
astrocytes’ branches form an interdigitated scaffold permitting the organization of the neu-

rons. Recently, it has become clear that independent and distinct astrocytic domains develop 
with no connection with similar neighboring domains within the hippocampus [14]. As 
abovementioned, the morpho-functional features of human protoplasmic and fibrous astro-

cytes differ from rodents’ ones. For instance, the diameters of gray matter-located human 
protoplasmic astrocytes are 2.6-fold longer, and their GFAP-positive processes are 10-fold 
more abundant. A single protoplasmic astrocyte can control from 270,000 to 2.0 million syn-

apses placed inside its spatial domain. Most important, the branches of a single astrocyte 
touch, envelop, and regulate not only a huge number of synapses but also the capillary ves-

sels controlling the blood flow going to those same synapses. This organized structure has 
been interpreted as the indication of a control of synaptic activity by the astrocytes indepen-

dently of neuronal activity. Although unable to transmit neural impulses, human astrocytes 
propagate calcium ion [Ca2+] waves at speeds of up to 36 μm/s, i.e., 4–10-fold faster than 
rodents’ astrocytes do [15–17].

2.4. Additional astrocytes’ subtypes

Besides the above-described canonical kinds, several other astrocyte subtypes have been 
recognized. Emsley and Macklis [17] have used a combined approach consisting of S100β 
immunostaining, GFAP expression, and human GFAP promoter-prodded enhanced green 
fluorescent protein (eGFP) expression in transgenic mice, to identify within several subtypes 
of CNS astrocytes. The latter incorporate radial glia, protoplasmic astrocytes, fibrous astro-

cytes, ependymal glia, tanycytes, Bergmann glia, and velate glia. The cytoarchitectonics and 
functional requirements of their local placements mainly determine the morphological fea-

tures, growth rates, and relative densities of these subtypes [17]. NG2 cells are an additional 
CNS glial cell type likely possessed of stem cell features and hence capable of giving raise to 
astrocytes, neurons, and oligodendrocytes (OLGs) during both intra- and extrauterine life. 
NG2 glial cells functionally interact with neurons at the level of synapses. Studies are under 
way to clarify the heterogeneity of NG2 glia [18].
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2.5. Human cortex-specific astrocytic subtypes

At variance with other mammalian species, humans have developed two novel cerebral cor-

tical astroglia subtypes: the astrocytes with varicose projections and the interlaminar astrocytes. 
The latter are plentiful in the cortical layer 1, whereas the former inhabit cortical layers 5 and 
6. The somata of both subtypes give out prominent cytoplasmic branches. In the case of the 
astrocytes with varicose projections, such branches are up to 1 mm long and terminate on the 
cerebral vessels walls or in the neuropil. After twisting courses, the also lengthy branches of 
the interlaminar astrocytes end up like varicose projections in contact with vascular walls or 
in the neuropil. Hitherto, the specific roles of such recently identified cerebral cortical astro-

cytic subtypes are not understood. Anyhow, the lengthy processes of the human interlaminar 
astrocytes can propagate Ca2+ waves [15–17].

3. Astrocytes’ physiology

In the past and still now, some scientists have been holding astrocytes as neuron-supporting 
and at the same time debris-scavenging cells protectively regulating the homeostasis of a 
microenvironment from which neurons derive the necessary nutrients [12, 19]. Astrocytes 
also control the workings of “tripartite synapses” by enveloping them with their branches, 
thus barring the diffusion of released neurotransmitters and preventing the firing activity 
of one neuron from altering that of adjacent neurons [20]. In addition, astrocytes’ synaptic 
regulation does not influence only the tripartite synapses their branches envelop but also far 
away synapses via astrocytes’ signals, a process named lateral astrocyte synaptic regulation [21]. 
Astrocytes can do this and also communicate with neighboring neurons, with which they 
form astrocyte-neuron gangs with a ratio of one “master” astrocyte and 20–30 “client” neu-

rons [22] and adjust local blood flow by secreting various compounds called gliotransmitters 
[23]. Surges in intracellular Ca2+ levels drive the release of several gliotransmitters, compris-

ing adenosine, ATP, D-serine, eicosanoids, glutamate, and TNF-α, which would adjust the 
activities of the astrocytes themselves, the far away synapses, and the surrounding cells [24].

Since astrocytes cannot be electrically excited, their plasma membranes do not propagate 
action potentials as instead neurons do. The membrane potential of astrocytes at rest has very 
low values, ranging from −85 to −90 mV. This is due to their intense expression of TREK-1 and 
TWIK-1 potassium ion [K+] channels [25]. As recent lines of evidence show, astrocytes resid-

ing in separate brain areas express dissimilar types and levels of ion channels and hence are 
equipped with distinctive electrophysiological characteristics. The huge group of ion channels 
implicated is also differently expressed during astrocytes’ developmental stages [26].

In addition, astrocytes express various kinds of metabotropic receptors, which are coupled to a 
number of intracellular second messenger systems. For example, astroglia are known to adjust 
neuronal excitability and synaptic transmission through the metabotropic glutamatergic receptor 
subtype 5 (mGluR5). The results of experiments using brain slices showed that in response to an 
assortment of neurotransmitters, comprising acetylcholine, adenosine, ATP, endocannabinoids, 
GABA, glutamate, norepinephrine, and prostaglandins, metabotropic receptors could raise the 
intracellular Ca2+ levels ([Ca2+]

i
) via phospholipase C (PLC)- and inositol (1,4,5)-triphosphate 

(IP3)-dependent activities [27].
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4. Astrocytes and AD neuropathology

An aberrant reactivity of astrocytes is a telltale sign of chronic neurodegenerative ailments 
like AD and Parkinson’s disease [1, 3, 5]. While AD advances an astrogliosis emerges as a 

sign of astrocytes’ dysfunction. However, astrogliosis is a common event in all kinds of CNS 
injury or ailment and is marked by persistent scar-like structures made by proliferating and 
migrating reactive astrocytes [5, 11]. Two types of reactive astrocytes, the A1 and the A2, have 
been latterly identified, whose specific activities could result advantageous or detrimental 
according to the type of neuropathology considered. In fact, reactive astrocytes of the A2 type 
advance healing of ischemic injuries (e.g., stroke). Conversely, reactive astrocytes of the A1 
type could either stop their physiological activities and next degenerate or become involved 
in detrimental activities [28]. Reportedly, astrocytes mediate Aβ neurotoxicity and Tau phos-

phorylation in primary cocultures with rat embryo neurons [29].

AD hits nearly 2% of the people of the Western world particularly after 60 years of age [30]. 
AD’s clinical course can be dissected into (a) a quite protracted (~20–40 years) asymptom-

atic phase, the early diagnosis of which is hard to make because of the present lack of spe-

cific markers, (b) an amnestic minor cognitive impairment phase (aMCI; ~3–6 years) in which 
amnesia’s severity progressively grows, and (c) a full-blown symptomatic phase (~6–8 years) 
typified by escalating losses of memory and cognitive abilities and ending up with patients’ 
obit [31, 32]. Controversies still rage about the pathophysiological mechanisms promoting 
the opening and unforgiving progression of the sporadic or late-onset AD (SAD or LOAD) 
[33]. The neuropathology unhurriedly yet progressively destroys the neuronal networks. As 
shown by high-resolution fMRI studies, LOAD starts in the lateral entorhinal cortex of the 
hippocampus, the brain’s memory-recording place, and next spreads along the extended pro-

jection circuits connecting the hippocampus with cognition-crucial wider and wider cogni-
tion-crucial areas of the upper cerebral cortex [34].

In the healthy brain, neurons produce and release at their synapses tiny amounts of non-

toxic Aβ42 monomers, the intra- and extracellular amounts of which remain at low (i.e., pM), 
physiological values owing to a set of removing mechanisms operated by several proteases, 
phagocytosis by microglia and astrocytes, and disposal into the blood circulation [35]. In aged 
brains, the ability to clear the Aβs from the CNS increasingly plummets likely because of local 
microcirculation problems. Consequently, as the amyloid cascade hypothesis posits, the accu-

mulating Aβ42 monomers start forming agglomerates first of toxic soluble oligomers (Aβ42-os) 

and protofibrils [35] and next of insoluble, fibrils, and senile plaques, thereby driving the neu-

ropathology progression [33, 36]. According to this Aβs first hypothesis, the hyperphosphory-

lated Tau (p-Tau) protein, the second main driver of AD, enters the stage some time later.

Conversely, as the brainstem-Tau first hypothesis posits, AD starts within a brainstem nucleus, 
the locus coeruleus, and its surroundings. There, presumably mutated accumulating p-Taues 
group into neurotoxic oligomers (p-Tau-os) which next steadily spread out across the cerebral 
cortex along lengthy and circuitous neural pathways that also reach the hippocampus, leaving 
as their aftermaths intra-neuronal neurofibrillary tangles (NFTs) [37–40]. Later, p-Tau-os can 
also prompt the production of Aβ42 surpluses which too diffuse and accumulate intracerebrally  
[37, 39, 41]. A colocalization of Aβs and NFTs within the cytoplasm of human astrocytes can 
also occur [42]. Whatever is the temporal order of manifestation of the two main AD drivers [on 
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this topic, see also below], their joined toxic activities do speed up the occurrence of synapses 
loss, neuroinflammation, mitochondrial damage and dysfunction, oxidative stress, astrocytes’ 
and microglia’s reactivation, senile plaques’ deposition, cerebral amyloid angiopathy (CAA), 
NFTs, and progressive oligodendroglia and neurons death—all hallmarks of AD’s neuropa-

thology—and therefore accelerate the clinical course of AD [37, 39].

Moreover, Aβ42-os and Aβ42 fibrillar aggregates bind various plasma membrane receptors, 
comprising the calcium-sensing receptors (CaSRs) and the receptors for advanced glycation 
end products (RAGEs) which can activate the astrocytes (see for further details [3, 11, 43, 

44]). Such multiple receptor interactions with Aβs stir up astrocytes’ JAK2 and MEK1/MEK2/
ERK-1/ERK-2 signaling pathways stimulate the direct binding of STAT1 and HIF-1α/HIF-1β 
complexes to the BACE1 and VEGF-A gene promoters and activate the microglia triggering 
synthesis and secretion of proinflammatory cytokines like IL-1β, TNF-α and INF-γ [37, 43, 

44]. Such cytokines critically advance the formation of Aβ-os and fibrils [45, 46].

5. The CaSR

A highly conserved gene, the CASR is a member of family C of the G-protein-coupled recep-

tors (GPCRs). Family C GPCRs do not share any DNA sequence homology with the members 
of other GPCR families. However, the CaSR exhibits topological and sequence homology 
to the metabotropic glutamate receptors (mGluRs) [47]. The CaSR protein has seven trans-

membrane α-helices (TM1–TM7) linked by extra- and intracellular loops altogether making 
the 7TM region. The CaSR protein has a massive (612 amino acids) extracellular N-terminal 
domain, the so-called Venus flytrap (VFT), and a much tinier intracellular C-terminal tail, 
which makes up the G-protein-binding domain [22, 48]. In their membrane-bound form, 
CaSRs form homodimers (CaSR/CaSR) or heterodimers (e.g., CaSR/mGluR) [22, 48]. CaSR 
dimers are put together at the endoplasmic reticulum (ER) and next are conveyed and fitted 
into the plasma membrane [49]. Once there, the CaSR senses minute changes in extracellu-

lar Ca2+ concentration ([Ca2+]
e
). However, the CaSR is not a ligand-discriminating receptor. 

Rather, it may be better described without changing its acronym as a cation-sensing receptor. 
In point of fact, its ligands can be distinguished in (a) VFT-binding CaSR-activating ortho-

steric ligands, comprising Ca2, several di- and trivalent cations, aminoglycoside antibiotics, 

and the polyamine spermine, and (b) allosteric ligands which bind different sections of the 
7TM domain, including aromatic L-α-amino acids, extracellular Na+, and pharmacological 
agonists and antagonists (see below) [22]. The activation of CaSR encompasses a complex set 
of interactions among amino acids, Ca2+ and conceivably anions like PO

4
3− ions. Recently, 

Geng et al. [50] demonstrated that the CaSR can display an inactive state both in the absence 
and in the presence of Ca2+ ions and adopts the active state only when one L-amino acid, 
and one or more Ca2+ ions are bound to it. L-amino acids like L-Trp and Ca2+ ions are co-

agonists of the CaSR, operating together to elicit the receptor’s activation. Finally, it should 
be mentioned that in human adult astrocytes, CaSR expression increases in proliferatively 
quiescent cells with respect to actively growing ones, but is not affected by high or low 
levels of [Ca2+]

e
 [51].
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Notably, being positively charged, both soluble or fibrillar Aβs specifically form complexes with 
the plasma membrane CaSRs. Subsequently, the Aβs∙CaSR complexes coalesce into patches 
which are rapidly endocytosed and can be detected within EEA1-positive early endosomes in the 
cytoplasm (Figure 1) [54, 55]. However, it has not been ascertained whether Aβs’ binding site[s] is 
[are] of the orthosteric or allosteric kind or both [22, 44].

Various species of G-proteins mediate CaSR’s intracellular signaling by (a) activating a set of 

enzymes such as protein kinases (e.g., AKT, JNK, PKCs, and MAPKs like MEK/ERK) and lipid 
kinases (e.g., phospholipase A2, C, D), (b) triggering gene expression through transcription 
factors, (c) inhibiting adenylyl cyclase, and (d) inducing Ca2+ influx via TCPC6-encoded chan-

nels [56]. The relevant consequences are modifications to enzyme activities (e.g., proteases), 
cell proliferation, cell secretion, and/or cell death. In addition, CaSR-expressing neurons and 
all types of glial cells expressing the CaSR are liable to be harmed by the cytotoxic effects of 
CaSR-binding and CaSR-activating soluble Aβ oligomers [sAβ-os] and/or insoluble fibrillar Aβ 
(fAβ) aggregates [22, 44].

CaSR’s expression occurs in every portion of the rat and human brain. By using the in situ 
hybridization method, Yano et al. [57] demonstrated that the CaSR is intensely expressed 
in several areas of the adult rat CNS. In relation to AD, we recall here that CaSR’s expres-

sion abounds in the hippocampus especially at the level of the somata and axon terminals of 
the pyramidal neurons, suggesting the functional modulation of such cells by CaSR’s signal-
ing [47, 58]. Notably, the N-methyl-D-aspartate receptor (NMDAR) brain location is super-

imposable on the CaSR’s. Both NMDARs and CaSRs play crucial roles in the induction of 

Figure 1. Cultured untransformed adult human astrocytes CaSRs bind Aβ25–35 and internalize the Aβ25–35∙CaSR complexes 
within in EEA1-positive cytoplasmic early endosomes. Cells were incubated for 15 min at 37°C with Aβ25–35 [5.0 μM] and 
next fixed and permeabilized using the in situ proximity ligation assay (PLA) (see for details [52, 53]), it is possible to 

specifically reveal the Aβ25–35∙CaSR complexes as red dots. Using an antibody against the EEA1 antigen marker, early 
endosomes [54] can be seen as green dots. The yellow fluorescence reveals the discrete colocalization of the Aβ25–35∙CaSR 
complexes with the EEA1-positive early endosomes. Top panel magnification, 600×. The other two panels are zoomed 
from the middle (middle panel) and left (bottom panel) rectangles in the top panels.
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long-term potentiation (LTP) [59]. Typically, CaSR’s expression occurs not only in neurons 
but also in human primary astrocytes, astrocytoma cell lines, oligodendroglia, and microg-

lial cells [57]. Interestingly, total CaSR protein levels increase significantly though transiently 
in Aβ-exposed NAHAs [44]. Furthermore, the intensity of CaSR’s immunoreactivity signifi-

cantly increases with age in the hippocampus of 3xTg AD-model mice [60], particularly where 
Aβs and p-Taues also accumulate, a clear indication of the involvement of this receptor in AD 
pathophysiology in vivo (see also below).

The intracellular Ca2+ concentration ([Ca2+]
i
) can vary widely under both normal and pathologi-

cal conditions. The Ca2+ influx into cultured astrocytes is linear and normally increases only up 
to 1.8 mM, suggesting that CaSR signaling controls it [61, 62]. In the past, aberrations of cell sur-

face and intracellular Ca2+-controlling mechanisms were posited to happen in various neurode-

generative ailments, AD included [61–65]. Reportedly, exogenous Aβ42 and its well-established 
proxy, Aβ25–35, trigger [Ca2+]

i
 surges and oscillations which persist for hours in the neurons and 

astrocytes too and concur with the loss of the inner mitochondrial membrane potential. This in 
turn promotes the release of reactive oxygen species (ROS) and oxidative stress in both neurons 
and astrocytes. Coculturing such reactive astrocytes with neurons caused the neurons’ death 
within 24 h unless the Aβ-elicited [Ca2+]

i
 surges were forestalled [61].

Recent findings from our laboratory lend credence to the view that the CaSR, one of the recep-

tors astrocytes express, drives the pathogenic mechanisms of AD [48, 66–69].

6. Human cortical astrocytes, CaSRs, and AD promotion

It is time for us to zoom in on our preclinical model of cortical untransformed phenotypically 
stable, i.e., normal adult human astrocytes (NAHAs) obtained from temporal cortex surgical 
leftovers of motorbike accident victims with perforating skull trauma. After culturing and 
expanding the numbers of the NAHAs in vitro and next inducing them into proliferative qui-
escence, we have been investigating their metabolic responses to added exogenous Aβ-os or Aβ 
fibrils either in the presence or absence of a microglial cytokine mixture (i.e. IL-1β, TNF-α, and 
INF-γ) [44, 55, 70, 71].

As we recalled above, CaSR’s expression takes place with dissimilar intensities, in every CNS 
cell type, astrocytes included [44, 57]. Recent studies have brought to light some of the physi-
ological roles the CaSR plays in the human CNS, like modulation of neurons’ dendrites and 
axons growth and of OLGs development [57, 72]. Using the NAHAs as our experimental sys-

tem, we first demonstrated that exogenous Aβ25–35—instigated CaSR signaling elicits the con-

current expression of nitric oxide synthase-2 (NOS-2) and of GTP cyclohydrolase-1 (GCH-1). 
GCH-1 makes the BH4 [tetrahydrobiopterin] cofactor that dimerizes and activates the NOS-2 
moieties, thus allowing the synthesis of nitric oxide (NO) to occur [44, 73, 74]. Exogenous fibrillar 
Aβs also induce via direct CaSR signaling activation the cytoplasmic stabilization and nuclear 
translocation of the hypoxia-inducible HIF-1α•HIF-1β transcription complex in NAHAs. This 
elicits the vascular endothelial growth factor-A (VEGF-A) gene expression and the de novo 
synthesis of three splice protein variants (i.e., VEGF-A121, VEGF-A165, and VEGF-A189) and the 
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secretion mainly of the VEGF-A165 variant [55, 70]. A typical feature of AD is an overproduc-

tion and release of VEGF-A from neurons, glial cells, and cerebrovascular endothelium. Such 
VEGF-A surpluses are toxic for neurons, astrocytes, and endothelial cells, the constituents of 
the neurovascular units, and result in BBB’s functional impairment (see for Refs. [75–78]). In 
vivo, an Aβ∙CaSR-mediated VEGF-A165 oversecretion from the human astrocytes’ end-feet of 
their blood-vessel contacting processes could drive local surges of the blood flow in the hippo-

campus of aMCI stage patients [79, 80]. This event could be revealed as unexpected intensified 
blood oxygen level-dependent (BOLD) signals by means of high-resolution functional magnetic 
resonance imaging [fMRI] analysis [81, 82]. Hence, such BOLD signal is not due, as would be 
wrongly expected, to a presumptive hyperactivity of overtasked neurons in shrunken dentate 
gyrus/CA3 Aβ-damaged hippocampal areas of aMCI patients [80–82]. The increased VEGF-A 
release elicits a greater local vascular density via neoangiogenesis which augments blood oxy-

gen delivery and BOLD signal intensity of these hippocampal areas once they are functionally 
activated. Yet, the progression of AD neuropathology destroys the overgrown local vessels, 
thus reducing the blood flow to the point that the fMRI-intensified BOLD signal vanishes. At 
any rate, this boosted BOLD signal at the hippocampal level of aMCI subjects is a harbinger of 
the impending symptomatic stage of AD [79].

However, the most exciting discoveries were subsequently made possible by the advent of very 
sensitive ELISA kits assaying Aβs. In untreated NAHAs, the metabolic processing of amyloid 
precursor holoprotein (APP) takes place along the nonamyloidogenic pathway [NAP] being 
mediated by the activity of the α-secretases (mainly ADAM10) and extracellularly sheds all the 
soluble sAPPα it produces. Notably, sAPPα is a neurotrophic and neuroprotective compound 
positively affecting neurons’ functions and viability. Moreover, sAPPα synthesis precludes any 
Aβ40/42 production from APP as it is cut from the middle amino acid sequence of Aβ40/42. Therefore, 
NAP largely prevails over APP’s amyloidogenic processing [AP] in the untreated astrocytes, 
which secrete only very low basal Aβ40/42 amounts [71]. Conversely, adding fibrillar Aβ25–35 by 

itself and hence stirring off Aβ25–35∙CaSR signaling remarkably reduces sAPPα’s extracellular 
shedding while driving an overproduction and oversecretion of neurotoxic Aβ42/Aβ42-os owing 

to concurrent raises in the sequential activities of BACE-1 and γ-secretase. The further addition 
of a microglial cytokine mixture only accelerates but not increases the total amount of Aβ42/
Aβ42-os secretion by the NAHAs despite a concurring APP overexpression [44, 71]. Thus, these 
events could start of self-sustaining vicious cycle of Aβ42/Aβ42-os spreading within the brain [37, 

44]. The same Aβ∙CaSR-induced signaling mechanism stimulates the secretion of neurotoxic 
Aβ42/Aβ42-os from human cortical postnatal HCN-1A neurons [44]. Thereafter, the neurons start 
dying slowly like they do in vivo [44]. Most important, we also gained preliminary evidence 
indicating that Tau and hyperphosphorylated (p)-Tau are both expressed by untreated NAHAs 
in culture and that their exposure to the usual Aβ42 proxy, Aβ25–35, significantly increases via 
Aβ∙CaSR-induced signaling the activity of GSK-3β [83], the main Tau protein kinase [84, 85]. 
The upshot is an increased production of p-Tau/p-Tau-os which both accumulate inside the 
cells and are extracellularly released inside exosomes [83]. Novel lines of evidence suggest that 
extracellular vesicles, which comprise exosomes, play important physiological and pathologi-
cal roles in the CNS [86]. The above mechanism could promote the concurrent diffusion of both 
p-Tau/p-Tau-os and Aβ42-os, the two main AD drivers, within the brain, though the tauopathy’s 
noxious effects will take longer to manifest [37, 83].
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Figure 2. Cartoon depicting the calcilytic-suppressible differences between healthy and AD brain tissue brought about 
by Aβ-os∙CaSR signaling. (A) Under healthy conditions, human astrocytes and neurons of the astrocyte-neuron gangs 
mutually interact to upkeep the environment’s homeostasis. Via the prevailing nonamyloidogenic processing of APP 
the astrocytes release the neurotrophic and neuroprotective sAPPα, the synthesis of which obliterates any excess 
production and release of toxic Aβ-os and hence of Aβ fibrillar polymers. In parallel, multiple fully working clearance 
systems help keep the nontoxic but trophic Aβ42 monomers at very low levels (not shown). The astrocytes release 
exosomes which enclose minimal amounts of p-Tau (not shown). No accumulation of Aβ-os or p-Tau-os occurs within 
the neurons and astrocytes. (B) Ongoing AD neuropathology involves several changes brought about by Aβ-os∙CaSR 
signaling in the activated human astrocytes and neurons. The now prevailing amyloidogenic processing of APP leads 
to the overproduction of Aβ42-os in both cell types at the expense of the NAP which severely curtails the extracellular 
shedding and beneficial activities of sAPPα. Thus Aβ42-os both accumulate inside the cells and are oversecreted: this 
allows Aβ42-os diffusion and interaction with the CaSRs of adjacent and far off neurons and astrocytes. This mechanism 
spreads the neuropathology promoting the progression of AD. Fibrillar polymers of oversecreted Aβ42 also accumulate 

extracellularly giving raise to either diffuse or mature Aβ plaques, which can also release Aβ-os. Moreover, Aβ-os∙CaSR 
signaling increases Tau protein phosphorylation by GSK-3β and the accumulation of p-Tau inside the astrocytes (and 
likely neurons). In the neurons, toxic p-Tau accumulates as NFTs, which cause severe dysfunctions. Moreover, the 
astrocytes release significantly increased amounts of p-Tau enclosed within membrane-bound exosomes, an activity 
which can aid a later emergence of the tauopathy. The Aβ-os∙CaSR signaling also increases the production and release 
of NO and VEGF-A surpluses from the astrocytes [not shown]. Remarkably, administering a calcilytic-like NPS 2143 
upkeeps the physiological condition shown in (A), thus disclosing its anti-AD therapeutic potential.
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Given the relevance of the roles that the several upshots of the Aβ∙CaSR-elicited signaling 
could have on the promotion of AD, we were enticed to test whether an allosteric highly spe-

cific CaSR antagonist [short-termed as calcilytic] could have any anti-AD therapeutic poten-

tial. Thus, we demonstrated that calcilytic NPS 2143 [87, 88] can persistently downregulate 

CaSR protein expression thus not only antagonizing but also curbing Aβ∙CaSR signaling [44]. 
And the calcilytic enhances the proteolysis of endogenously amassing Aβ42 by enhancing the 
20S chymotrypsin-like activity of the proteasome. Moreover, NPS 2143 keeps down the Golgi/
trans-Golgi network transport of endogenous Aβ42/Aβ42-os and, consequently, fully suppresses 

any oversecretion of the latter driven by the Aβ∙CaSR signaling both in the case of NAHAs 
and of cortical human neurons [37, 44]. In addition, calcilytic NPS 2143 also wholly curbs the 
concurrent Aβ∙CaSR signaling-elicited surplus production and secretion of NO and VEGF-A165 

from the NAHAs [37, 44, 55]. Conversely, the CaSR allosteric agonist or calcimimetic NPS R-568 
enhances the surplus release of Aβ42/Aβ42-os, NO, and VEGF-A from the NAHAs confirming 
the positive involvement of the CaSR in these metabolic changes [44]. Also, NPS 2143 promotes 
APP and ADAM10 α-secretase translocation to the NAHAs plasma membrane, thereby restor-

ing the extracellular shedding of neurotrophic and neuroprotective sAPPα to nearly normal 
(i.e., untreated) levels. Yet, NPS 2143 does not change the concurrent APP’s increased expres-

sion suggesting its promotion via mechanisms involving Aβs and other receptors but not the 
Aβ∙CaSR signaling [76]. Notably, NPS 2143 remains beneficially effective even when a mix-

ture of microglial proinflammatory cytokines is added to the Aβs treatment, indicating that 
a calcilytic could keep its beneficial effects even under AD-typical neuroinflammatory condi-
tions [71]. Most important, NPS 2143 also fully suppresses the Aβ∙CaSR-induced concurrent 
increase in GSK-3β activity and, consequently, the surges in both intracellular p-Tau/p-Tau-os 
levels and exosomal p-Tau/p-Tau-os release [83]. Extracellular vesicles, including exosomes, 
are likely to play both physiological and pathological roles in the CNS [86]. And, last but not 
least, adding NPS 2143 keeps the human cortical neurons alive and kicking notwithstanding 
the simultaneous presence of otherwise toxic levels of exogenous Aβs [44].

We wish to stress that these results could be gained by using untransformed human cortical 
adult astrocytes and postnatal neurons, arguably the preclinical experimental models which at 

present are the closest one to human AD patients. Our findings show that calcilytics terminate 
both stimulatory effects of pathological Aβ∙CaSR signaling on Aβ42 and p-Tau, the two AD’s 
main drivers, surplus production and extracellular diffusion. On these grounds, we posit that 
such highly selective CaSR antagonists could effectively halt AD’s progressive spread and 
preserve patients’ cognition and life quality even when a neuroinflammation has already 
been ignited (Figure 2).

7. Conclusions and future perspectives

Mounting lines of evidence lend credence to the view that the human astrocytes—the charac-

teristics of which remarkably differ from those of their rodent counterparts—play manifold 
roles in the molecular mechanisms associated with AD’s pathophysiology. A growing accu-

mulation of Aβs, p-Taues, NO, and VEGF-A hinges upon the signaling of Aβs∙CaSR com-

plexes. This initiates a self-spreading cascade of events which culminate in neuronal synaptic 
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disconnection, dysfunction, and death coupled with the oligodendrocyte dysfunction, axonal 
myelin sheaths damage and death, the activation of the microglia, the alteration of BBB perme-

ability, and the expression of all the other neuropathological hallmarks of AD. The upshot is 
a concurrent degeneration of the gray and white matters. Thus, the CNS will keep shrinking; 
AD clinical symptoms will emerge and increase in intensity until the patients having lost their 
memories and cognitive abilities die. It is obvious that given their mounting numbers, the 
care of LOAD patients does heavily impact on their relatives and, for the huge costs of their 
assistance, on their National Health Services. In this disheartening scenario, the repurposing 
of highly specific CaSR antagonists or calcilytics as anti-AD therapeutics has the potential for 
shining a ray of hope.
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