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Abstract

Due to the fact of global warming, air quality deterioration and health concern over the
past few decades, great demands and tremendous efforts for new technology to detect
hazard gases such as CH4, CO2, CO, H2S, and HONO have been performed. Tunable
diode laser absorption spectroscopy (TDLAS) is a kind of technology with advantages of
high sensitivity, high selectivity, and fast responsivity. It has been widely used in the
applications of greenhouse gas measurements, industrial process control, combustion gas
measurements, medicine, and so on. In this chapter, we will briefly summarize the most
recent progress on TDLAS technology and present several kinds of gas sensors developed
mainly by our group for various field applications. These could expand from energy,
environment, and public safety to medical science.

Keywords: TDLAS, wavelength modulation, hazard gases, HONO, δ13C

1. Introduction

Over the past few decades, environmental pollution problem has occurred to different degrees

in the whole world, such as atmospheric pollution, marine pollution, and urban environmental

problems. With the globalization of economy and trade, environmental pollution is becoming

more and more internationalized [1]. In order to control environmental pollution, great

demands and tremendous efforts for new technology to detect hazard gases such as CH4,
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CO2, CO, HONO, H2S, and HCl have been performed. This would be beneficial for the

implementation of global environmental protection policies for the reduction of gas pollution

and for a general environmental management [2].

Several optical techniques have been developed to detect these hazard gases in the atmosphere

[3–10]. Cavity-enhanced spectroscopy (CEAS) or cavity ring-down spectroscopy (CRDS) has

been demonstrated to enable measurements of multiple gases with a low detection limit of

sub-ppb [4–6]. However, these two technologies require critical optical alignment and regular

cleaning of mirrors of the external cavity which affects continuous monitoring of atmospheric

species in the field. Quartz-enhanced photoacoustic spectroscopy (QEPAS) technique was also

developed for environmental and biomedical measurements [7, 8]. Nevertheless, the high

modulation frequencies used in QEPAS may represent a problem for multicomponent gas

mixtures containing varying amounts of water vapor such as ambient air, due to the strong

influence of water vapor on the molecular vibrational-translational (V-T) relaxation times.

Other spectroscopic methods such as open path Fourier transform infrared spectrometry

(FTIR) and differential optical absorption spectroscopy (DOAS) have been reported for atmo-

spheric molecule detection [9, 10]. But the minimum detection limits (MDLs) of FTIR usually

exceed the requirements for high sensitivity measurements of the atmospheric species. The

main disadvantage of the DOAS system is that its spatial resolution is rather poor with a path

length generally greater than 1 km.

The technique based on tunable diode laser absorption spectroscopy (TDLAS) is an effective

method to measure gas mixing ratios and multiple parameters with high selectivity, high

sensitivity, high precision, and high response time [11–18]. Especially, with the development

of multi-pass absorption cells, the effective optical path length can be extended from a few

meters to several hundred meters; the sensitivity is significantly improved [19–21]. In order to

further improve the signal-to-noise ratio (SNR), the wavelength modulation spectroscopy

(WMS) technology with second harmonic (2f) signals is usually employed in the TDLAS

system to measure the gas concentration.

The first commercial TDLAS gas sensor was introduced on the market in 1995 using the

trademark laser gas by Norsk Elektro Optikk Company. Over the past decades, TDLAS has

been extensively investigated potentially as an effective method to measure multiple gas

parameters and is widely used in various areas such as gas mixing ratio detection, vehicle emis-

sions, gas exhaust temperature monitoring, carbon isotope measurements, and so on [22–37].

Now NEO Monitors is one of the world leading suppliers of the TDLAS-based gas analyzers

and dust monitors. Its products are widely used in the field of industrial process control and

emission monitoring; nearly 6000 sets of laser gas analyzers were installed in more than 40

countries and regions in the world currently. We are also developing instruments based on

TDLAS technology to satisfy the needs of environmental monitoring and industrial process

control in China. Figure 1 shows several pictures of the gas sensors developed by our research

team. In this chapter, we will briefly present several kinds of gas sensors developed by our

research group for various field applications, which could expand from environment and

public safety to medical science.
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2. Basic principles of TDLAS

Based on the Beer-Lambert law, the relationship between the incident intensity I0 and the

transmitted intensity I can be expressed as

I ¼ I0 exp �kLð Þ (1)

where k is the absorption coefficient and L denotes the path length (in cm). In the near-infrared

region, the gas absorption coefficient is usually very small, i.e., kL ≤ 0.05 [38]. Eq. (1) can thus

be simplified as

I ¼ I0 1� kLð Þ ¼ I0 1� σ νð ÞCL½ � (2)

Figure 1. Several pictures of the TDLAS system developed by our research team.
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where σ(ν) is the absorption cross section (in [cm2/molecule]) at frequency ν and C is the gas

mixing ratio. The integrated absorbance AI (in [cm�1]) can be written as

AI ¼

ð

A νð Þdν ¼

ð

ln I0 νð Þ=I νð Þð Þdν ¼ NL

ð

σ νð Þdν ¼ NLS (3)

N is the number of absorbing molecules (in [molecules/cm3]); S is the molecule absorption line

strength (in [cm2/(mol cm)]). Based on Eq. (3), the gas species mixing ratio can be retrieved

from the integrated absorbance AI measured at temperature T and pressure P [39]:

C ppm
� �

¼
N

NT
� 106 ¼

AIP0T

NLPT0LS
� 106 (4)

where NL = 2.6868 � 1019 mol/cm3 represents the Loschmidt number at T0 = 273.15 K and

P0 = 760 Torr.

For gas mixing ratio detection, WMS is often adopted. The intensity of 2f signal can be

expressed as [40]

I2f ∝ I0σ0CL (5)

When the reference signal and nonlinear least square multiplication method are introduced to

fit the 2f signals of the target gas [41], Eq. (5) can be rewritten as

CMea ¼ a
IMeaCRefLRef

IRefLMea
(6)

where a is fitting coefficient; CMea and CRef are the mixing ratios of the target gas to be measured

and reference gas in the calibration cell, respectively; IRef and IMea denote the intensities of the two

split laser beams; and LRef and LMea represent the calibration cell and the measurement optical

path length, respectively. In general, the ratio of the 2f and 1f signals can be used to cancel any

laser intensity differences. In this case, the mixing ratio from the following equation could be

easily obtained:

CMea ¼

I2f
I1f

� �

Mea
CRefLRef

I2f
I
1f

1f

� �

Ref

LMea

(7)

where
I2f
I1f

� �

Ref
and

I2f
I1f

� �

Mea
represent the 2f/1f ratio value of the reference and target gas signals,

respectively.

3. Methane (CH4) monitoring

3.1. Introduction

With the increasing attention to environment, energy, and safety, natural gas has gradually

replaced coal as the main energy source in China, and its use has been increasing year by year.
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The extraction, transportation, and storage of natural gas have become an important part of

social development. Equipment safety and high efficiency operation in gas transmission sta-

tion are the keys to ensure the natural gas transportation. Once it is released, the serious safety

accidents such as energy waste, environmental pollution, fire, and explosion will happen [42],

which would directly threaten the safety of life and property of the countries and people [43].

The main component of natural gas is methane, accounting for 90%, and also contains a small

amount of ethane, acetylene, butane, carbon dioxide, carbon monoxide, hydrogen sulfide, and

so on. Traditional natural gas leakage detectors include flame ion detectors (FID), electronic

detectors, electrochemical catalytic combustion detectors, and infrared absorption detectors

[44]. However, these detectors are self-charging and have potential safety problems in the

application of flammable, explosive, and other special environments. Moreover, these sensors

are short in life, low in precision, poor in stability, and difficult in adjustment and often give

the wrong results of measurements and misinformation. Recently, TDLAS technology has been

widely used with the rapid development of narrow linewidth semiconductor laser technology

[45]. The SRI International (Menlo Park, CA) company in America has developed a vehicular

natural gas pipeline leakage detector, which improves the efficiency of pipeline leakage detec-

tion. However, they are all limited to the detection of methane and do not involve the detection

of other gases in natural gas.

In view of the area of natural gas, gathering station is large, and the pipeline system of natural

gas is gathered; point and portable measurement is not suitable in this situation. We designed

an open, continuous detection and alarm system which has the characteristics of fast response

speed and high detection precision based on TDLAS technology. Moreover, this system also

detects ethylene, acetylene, and other gases, which improves the measurement precision and

reduces the probability of false alarm.

3.2. Absorption line selection

The near-infrared absorption band matches with the low loss window of optical fiber and is

convenient for long-distance transmission and multipoint distributed detection by using fiber

and fiber devices. Therefore, the absorption lines of selected CH4, C2H2, and C2H4 are 1653.72,

1531.59, and 1621.36 nm, respectively. There are three adjacent absorption lines at 1653.72 nm

for CH4, which are close to each other and cannot be separated in the atmospheric pressure by

consulting the HITRAN 2008 database. In the experiment, they are processed as one absorp-

tion line. The C2H4 absorption lines are not included in HITRAN database. A large amount of

absorption lines of C2H4 from 1600 to 1650 nm can be found from the PNNL25C (Northwest

Pacific National Laboratory) database which have been already experimentally verified in the

literature [46]. The parameters of three gases absorption lines are shown in Table 1.

3.3. DFB-based experimental platform

The system is designed mainly aimed at the gas gathering station, and the schematic diagram

of the system is shown in Figure 2. Three butterfly-packaged distributed feedback (DFB) lasers

are selected to detect CH4, C2H2, and C2H4 with the center output wavelengths of 1653, 1531,

and 1621 nm, respectively. The light sources are controlled by the corresponding temperature,

Environmental Application of High Sensitive Gas Sensors with Tunable Diode Laser Absorption Spectroscopy
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current driver module, and signal generator module, respectively. Three modulation light

beams are time-sharing output through a 3 � 1 optical switch which is controlled by a

microprocessor and then the collimator and beam expander of the transmitter (THORLABS

GBE10-C: ten times beam expander, 1050–1650 nm antireflective coating), passing through the

measurement area to the corner cube mirror at the reflecting end. Then, returning to the

receiving end along the parallel light path, the light beam containing the absorption signal is

focused on the photosensitive surface of the photoelectric detector through an aspherical

focusing lens and converted into electrical signals before entering the host control section. The

amplified electrical signals are collected by the data acquisition card and transmitted to the

microprocessor system after amplification by the preamplifier circuit. Finally, the online inver-

sion of spectral data is carried out to obtain the gas concentration. Meanwhile, the early

warning will be carried out according to the setting of the alarm limit. If the value exceeds the

setting one; the system will send out light and sound alerting signal.

In order to decide the detection limit of the system, a calibration experiment was designed and

shown in Figure 3. A calibrated absorption cell with a length of 1 m was placed on the laser

path. In the calibration experiment, three gases CH4, C2H2, and C2H4 with the mixing ratios of

1%, 500, and 500 ppm are mixed in the absorption cell, and the corresponding absorption

signals are displayed in Figure 4. The absorption lines of CH4 and C2H2 are independent, and

there are no other spectral interferences, but there is a relatively weak absorption spectral line

Molecule Wavenumber (nm) Line strength at 300 K (cm�2 atm�1) Δν (cm�1)

CH4 1653.7282

1653.7256

1653.7225

0.0206

0.0206

0.0368

0.14

C2H2 1531.5878 0.2916 0.23

C2H4 1621.3600

Table 1. The parameters of absorption lines.

Figure 2. Schematic diagram of the experimental system.
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on the left of the absorption line of C2H4. Therefore, the absorption lines of CH4 and C2H2 are

fitted using a single peak, and the absorption line of C2H4 is fitted by double peak in the fitting

process. The absorbance A values of CH4, C2H2, and C2H4 absorption spectral lines are 0.076,

0.012, and 0.014 cm�1, respectively. The SNR of the absorption signals are 100, 12, and 10,

respectively. According to the linear relationship between the direct absorbance and gas con-

centration, the obtained MDLs of CH4, C2H2, and C2H4 were 100, 40, and 50 ppm-m, respec-

tively, which completely satisfied the gas gathering station leakage test requirements [47].

Figure 3. Schematic diagram of calibration principle.

Figure 4. Direct absorption signal and fitting results.
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3.4. Results and discussion

The system had been field-tested at the testing ground of China Petroleum Pipeline Bureau.

The environment temperature was 35�C, air relative humidity was 45%, and wind speed was

1 m/s during the experiment. We used the gas which was mixed with 90% methane, 5%

ethylene, and 5% acetylene to simulate gas pipeline leakage in the experiment. The leakage

position was about 2 m below the side of the laser beam. In order to measure the three gases

simultaneously, lasers were switched every 10 seconds using an optical switch. Three kinds of

gases were detected circularly in the order of CH4 ! C2H2 ! C2H4. The mixing ratios of the

gases are exhausted 1 minute each time which was displayed in Figure 5. The reason for

fluctuations is that the measured concentrations are the average of the paths along the line of

sight. Due to the uncertainty of wind speed and gas diffusion in the measurement field, the

concentration on the beam path fluctuates greatly. Meanwhile, this system is also equipped

with an alarm limit for each gas, and the veracity of fire alarming system achieved 100%.

The system includes three DFB lasers which have an output power of about 20 mW higher

than the other semiconductor lasers. Moreover, the optical fiber loss is less than 0.25 dB/km in

this waveband. So the system can connect four pairs of transmitter and receiver units simulta-

neously. According to the requirements and distribution of gas pipeline, gas gathering device,

housing, and other special places in the gas gathering station, the installation scheme including

a host control machine and two pairs of transmitter and receiver units was designed and

displayed in Figure 6. This system can be used to monitor the leakage of natural gas station

in the range of 100 � 100 m.

The leakage detection system based on TDLAS can detect methane, ethylene, and acetylene

rapidly and effectively in the open environment, and the response time of the three gases is less

than 2 s. The accuracy of giving an alarm is 100%, which can be used in natural gas station and

valve room gas leakage. Compared to other techniques, this technique has the advantages of

safety in nature, no calibration, high accuracy, and little environmental effects. The MDLs for

methane, acetylene, and ethylene gas are 100, 40, and 50 ppm-m, respectively, which meet the

requirements for the detection of natural gas leakage in the petrochemical industry.

Figure 5. Concentration curves of experiment results.
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4. Carbon monoxide (CO) monitoring

4.1. Introduction

CO is a kind of toxic, combustible, explosive gas and brings lots of hidden danger to the

production and life of human beings. The research of coal spontaneous combustion suggests

that a series of gases which could indicate the degree of oxidation and combustion of coal will

be produced when coal seam is on fire. Using the relationship between the amount of indicator

gases and the rate of change could predict coal seam fire at an early stage. Nowadays, CO is

widely used as the main indicator gas for early warning of coal seam fire because the quantity

of CO is closely related to the temperature of coal seam and the concentration change is

obvious. In addition, the safety production under the mine has attracted much attention. In

order to avoid accidents, gas monitoring has become a necessary means. The detection devices

of the main gas constituents such as methane and carbon dioxide have been improved and

widely used. With the improvement of security awareness, people have higher requirements

on the accuracy of gas monitoring [48].

4.2. Absorption line selection

The absorption intensity of CO in the mid-infrared region is two orders of magnitude higher

than that of overtone band in the near infrared. With the development of mid-infrared lasers,

high sensitivity detection of CO has been obtained by some researchers [49]. But for the long-

Figure 6. Installation scheme of natural gas gathering and transferring station.
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distance optical fiber transmission signals, the use of the mid-infrared laser is limited because

the current optical fiber communication windows are mainly concentrated in the near infrared.

The intensity of CO absorption line in the near infrared is weak, and the SNR is poor when low

concentration is detected, which requires higher stability of the measurement system. At

present, the stability research of high sensitivity detection of CO in the near infrared has not

been reported. But there are some reports about measurement techniques such as the stability

of DFB lasers [50], the application of signal processing in CO2 and NO2, and other gas

measurements [51]. Therefore, it is of great practical significance to study the stability of whole

measurement system and realize the high sensitivity detection of CO in the communication

windows.

To select a unique gas absorption line usually adopts the following guide rules: (1) strong

absorption line strength with good line profile and (2) free of interference from other gases.

The second overtone band near 1.566 μm of CO was selected in this work to avoid interfer-

ences from other major ambient gases in the mixture. Figure 7 shows the absorption spectrum

of CO, CO2, and H2O near the wavelength range of 1.566 μm [52].

4.3. Experimental system design

The experimental system is shown in Figure 8. The system adopts balanced optical path

detection method. The 2 * 1 beam combiner couples the collimated light and the measuring

beam to the 1*3 beam splitter, after that the first beam through a multi-pass absorption cell

filled with CO gas, marked as S (measuring light path); the second beam through a high

Figure 7. The absorption lines of CO, CO2, and H2O near the wavelength range of 1.566 μm (HITRAN 2008 database).
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concentration reference cell with 100% CO, used to determine and control the position of

absorption wavelength, marked as H; and the third beam is a reference light through the free

space, used to monitor the changes of the laser background, marked as R. The three detection

signals are sequential controlled by the switching circuit simultaneously. The wavelength is

scanned with 100 Hz sawtooth wave and modulated with 10 kHz sine wave. More details

about the electronics setup for the experiment could be found in [53]. Three modulation signals

enter the lock-in amplifier through the switching circuit. In the lock-in amplifier, the detector

output is mixed with the reference signal (10 kHz) to demodulate the 2f spectral signal. Then

the 2f signal is simultaneously processed by a data acquisition card installed on a computer.

A new type of multi-pass absorption cell was developed and effectively improved the detec-

tion ability of the system. The new absorption cell has the advantages of simple structure,

stable performance, effective use of the surface area, and solving the contradiction between the

small volume and long-path length. The optical path length of 56.7 m was achieved in the

volume of 1 L. At the same time, the optical path is adjustable; the spot array is uniform and in

order, so that the optical path calculation is convenient; and the free spectral range is very

narrow. The possible interference fringes in the cell are distributed in the high frequency

region. By means of the digital averaging method, the influence of interference fringes on the

second harmonic signals can be removed effectively and simply. The base length of the multi-

pass absorption cell used in the system is 24.6 cm; the diameter of the mirror is 60 mm.

According to the needs of TDLAS system for CO gas measurement, the mirror is coated with

a dielectric film with a high reflectivity (typically 0.999) for wavelengths 532 and 1567 nm,

wherein 532 nm is the collimated light during the alignment of the optical path. Figure 9

shows the spot distribution of the mirrors at both ends of the absorption cell.

Figure 8. Schematic diagram of the TDLAS experimental system.
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4.4. Results and discussion

The CO standard gases of 10 and 200 ppmwere measured in the laboratory by using the above

described TDLAS system. The stability and detection limit of the system were analyzed. The

linearity of the system was tested by measuring the CO standard gas at different concentra-

tions. Figures 10 and 11 display the measurement results of 10 and 200 ppm CO standard

gases, respectively. After continuous measurements of 14 h, the average concentrations are

10.57 and 200.36 ppm, and the standard variance is 0.5 and 2.1 ppm, which can be found

in Table 2. The standard variance reflects the stability of the system to a certain extent.

Figure 9. Light spot distribution of the mirrors at the both ends of the absorption cell.

Figure 10. The measurement results of 10 ppm CO standard gas.

Green Electronics218



The measured concentration fluctuations of 10 and 200 ppm CO standard gas are 4.7 and 1% of

the mean value, respectively. This illustrates that different concentration ranges should be

divided when measuring low concentration gas with high sensitivity, such as 0–20, 20–50,

50–100 ppm, and so on, and different ranges have different stability indexes.

The results of Allan variance analysis of 10 ppm CO sample gas are shown in Figure 12. The

corresponding integration time of the system is 30 s, the Allan variance is 0.067, and the

predicted detection limit is 0.25 ppm. Moreover, if we continue to increase the integration time

until the intersection with the slope of 1/2, the Allan variance decreases to 0.02, the

corresponding detection limit is 0.14 ppm, but the long integration time will affect the sensi-

tivity of the system [54]. Therefore, the integration time should be properly controlled when

the requirement of detection limit is not very high. The measurement results of CO gas at

different concentrations are shown in Figure 13, and the linear relationship between different

concentrations and the peak values of second harmonic signal is displayed in Figure 14. The

results illuminate that the measurement concentrations have a good linearity in the range of

10–250 ppm.

Figure 11. The measurement results of 200 ppm CO standard gas.

CO standard gas (ppm) Mean value (ppm) Standard deviation (ppm) Fluctuation (%)

10 10.57 0.5 4.7

200 200.36 2.1 1

Table 2. Measured deviation of CO standard gas.
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The system of CO high sensitivity detection based on TDLAS technology combined with the

new type of multi-pass absorption cell basically realizes the high sensitivity detection of CO in

the near infrared. The system exhibits good stability and high linearity after long-term mea-

surement experiments. According to the Allan variance analysis, the detection limit of the

system is 0.25 ppm with an integration time of 30 s. The system meets the requirements for

Figure 12. The Allan variance of 10 ppm CO.

Figure 13. The 2f signals with different concentrations of CO.
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those situations which have a higher measurement requirement of CO such as alarming of coal

spontaneous combustion and mine safety production. But it is only the results of experimental

measurement under the laboratory conditions. For the mine environments with high temper-

ature and humidity, the performances of the experimental relevant components need to be

further tested.

5. Hydrogen sulfide (H2S) monitoring

5.1. Introduction

Hydrogen sulfide (H2S) is an important potential dangerous gas in oil drilling. It is colorless,

highly toxic, and acidic; there is a special smell of rotten eggs; the olfactory threshold is

0.00041 ppm. Even low concentrations of H2S can also damage people’s sense of smell and

have effects on the eye, respiratory system, and central nervous system. It is lethal to detect this

kind of gas using a nose [55]. Because there is no smell when the concentration is high (high

concentrations of hydrogen sulfide can paralyze olfactory nerves). Hence, sensitive H2S detec-

tion is necessary in practical applications. In this part, a 1.578 μm distributed feedback (DFB)

laser is used to detect H2S of low concentration [56].

5.2. Wavelength modulation spectroscopy system

The WMS technique is used in the H2S detection system, as shown in Figure 15. The used multi-

pass absorption cell in this experiment is also homemade with a total optical path length of 56 m

and a total volume of 0.8 L. A single-mode pigtailed DFB laser with a central wavelength of

Figure 14. The linear relationship between different concentrations.
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1.578 μm is employed in this system. The wavelength of the laser is controlled by a temperature

and current controller, which can vary the laser wavelength with a magnitude of about

0.014 cm�1/mA. The laser wavelength is scanned by a triangular wave of 30 Hz. A 20 kHz sine

wave is used to modulate the laser output wavelength. The transmission signal was sent to the

preamplifier system whose bias amplifier enhances the weak absorption signals. The parallel

circuits amplify the signal and direct it to a lock-in amplifier for demodulation and to a low pass

filter for obtaining the triangular wave after passing through the cell. Both signals are directed to

a personal computer (PC) for signal processing via an A/D converter.

5.3. H2S concentration measurements

5.3.1. Stability of the background signals

In order to improve the measurement accuracy and the detection limit, it is important to

subtract the background spectrum in the spectral measurements. The background and the

initial 2f signal are shown in Figure 16. Obviously, the symmetry of the demodulated signal

was considerably improved after the background correction.

5.3.2. Linearity and response time

Linearity is an important parameter in measuring instruments. In this TDLAS system, certified

H2S gases with mixing ratios of 5, 10, 20, and 45 ppm were tested successively to check the

linearity. Figure 17 displays the corresponding background corrected signals at different mixing

ratios. Furthermore, the mixing ratios and the peak-to-peak values are linearly fitted in Figure 18.

The results illustrate that the system has a good linearity with a fitting coefficient of 0.998.

The fitting is given by y = 0.00143 + 7.52459x with a fitting coefficient of 0.998.

Figure 15. Sketch of the experimental setup for WMS system.
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The repeatability and the response time are also very important for H2S detection. In the

extraction system, a 1-L gasbag is used to get different H2S standard gases into the multi-pass

absorption cell successively. The response time depends on both the volume of the multi-pass

absorption cell and the speed of releasing the airbag. The response time for filling 5 ppm H2S

standard gas mixture into the 0.8 L cell with an evacuation flow rate of 3 L/min is plotted in

Figure 19. Obviously, the response is accurate and fast. In the system, the data sampling rate is

90 Hz, so the response time is about 4 s.

Figure 16. Background baseline.

Figure 17. 2f signals with background correction for different H2S concentrations.
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Figure 18. Linearity of the measurement system.

Figure 19. Response time of the measurement system.
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5.3.3. System stability and detection limit

The Allan variance is usually used to analyze the temporal stability of the instrument perfor-

mance. H2S standard gas of 5 ppm was measured for a period time of 11 h and shown in

Figure 20 with the fluctuations of less than 1 ppm. Moreover, the Allan variance in Figure 21

indicates a detection limit of 240 ppb with an integration time of 24 s for eliminating the white

noise. When the time is increased to 60 s, the detection limit is reduced to 140 ppb for removing

the 1/f noise.

Figure 20. Measurement of 5 ppm H2S standard gas.

Figure 21. The Allan variance for 5 ppm H2S.
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The experimental results indicate that the system has good linearity, stability, and repeatability,

combined with a quick response time and a low detection limit. The H2S detection system

based on TDLAS has the feasibility of online monitoring in many applications.

6. CO2 isotope measurements

6.1. Introduction

Global warming is a serious problem that may lead to natural disasters, destroys the biological

chain, and thus threats the existence and development of human beings. As one of the most

important greenhouse gases, releasing of carbon dioxide must be controlled. Measuring and

analyzing stable isotopes of atmospheric carbon dioxide are very useful to search sources and

sinks of carbon dioxide in this area and seek the processes which are caused by human’s

activities. Moreover, human enzyme activities assessment, organ functions, and transport

processes in the medical area could be achieved by noninvasive 13C-breath analysis. For

example, possible Helicobacter pylori infection of the stomach or the duodenum can be detected

via 13C-breath analysis. Thus 13C-breath test can be easily performed and have a high patient

acceptance [57].

The primary technology for determination isotopic ratio is isotope ratio mass spectrometry

(IRMS) with a measurement precision from 0.01 to 0.1‰ by testing the mass of each isotope of

samples. Although this method has high precision, the disadvantages of IRMS are obvious. For

example, the instrument of IRMS is too large to move easily, and the sample must be pre-

treated in the case of the influence of other substances whose numbers of molecules are same

with those need to be tested. These drawbacks make it impossible to measure the isotopic ratio

in situ or online. TDLAS is a popular way to measure concentrations of gases. According to

direct absorption, concentration and isotope ratio can be easily calculated when temperature,

pressure, optical path length, and absorption line strength of gases are certain.

6.2. Experimental setup

The experimental setup is depicted in Figure 22. The laser source is a room temperature

operated DFB laser (nanoplus GmbH) with a center wavelength of 2.74 μm and a tuning range

of 5 cm�1. A visible He-Ne laser beam was used to do coalignment of the optical path since the

mid-infrared light is not visible to human eyes. Positions of water vapor absorption lines from

the HITRAN 2008 database provided an absolute frequency reference for frequency calibra-

tion. The laser beam was directed to a homemade multi-pass absorption cell with an optical

path length of 107 m. In order to avoid the absorption line intensity fluctuation caused by the

absorption cell temperature variation, the temperature of the multi-pass absorption cell was

maintained at 30�C by the use of a heater band and a temperature controller. The emerging

absorption signal from the cell was focused onto a thermoelectrically cooled (TEC) photovol-

taic VIGO detector (PVI-4TE-3). The detector output was sampled with a fast data acquisition

card and then transferred to a personal computer for further data processing.
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6.3. Absorption line selection

For high-precision isotopic-ratio determination, it is necessary to select absorption lines which

simultaneously fulfill the following conditions: (1) they should be located within the scanning

range of the laser; (2) there should be no interferences from other atmospheric species, primar-

ily water vapor; (3) the isotopologues of interest should have similar absorption strength to

obtain an optimal SNR [58, 59].

Using the above requirements, it is rather straightforward to identify spectral regions that may

contain suitable sets of isotopic absorption lines. Spectra simulation of 5% H2O and 500 ppm

CO2 based on line positions and line strengths reported in the HITRAN 2008 database in the

spectral range of the DFB laser scanned is displayed in Figure 23. The two absorption lines of

Figure 22. Three-dimensional view of the experimental setup.

Figure 23. (a) Simulated absorption spectrum of 5% H2O and 500 ppm CO2 in the spectral range of 3639–3645 cm�1. (b)

Signal simulation of 500 ppm 12CO2 and
13CO2 based on HITRAN 2008 database with a path length of 107 m at a pressure

of 20 mbar. 12CO2,
13CO2, and H2O absorption lines are shown in black, red, and gray, respectively.
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3641.0311 cm�1 for 13CO2 and 3641.1338 cm�1 for 12CO2 were selected for isotope analysis of

CO2 and free of interferences of water vapor absorption lines.

6.4. Results and discussion

Figure 24 shows an experimental spectrum of 12CO2 and
13CO2 in ambient air at 20 mbar with

an optical path length of 107 m within a narrow scanned range of 0.1 cm�1. Spectroscopic

parameters of the selected absorption lines are provided in Table 3.

The instrument performance in terms of detection limit and long-term stability was tested

using the Allan variance. The mixing ratios of CO2 were measured with 1 s collection time

from a standard gas cylinder with 197 ppm CO2. Time series of this data is shown in Figure 25.

From the associated Allan variance plot, an optimum averaging time of 130 s can be derived.

This instrument was used to measure the isotope ratios of CO2 in the ambient air. Time series

of CO2 mixing ratio profiles and the derived δ
13C values with 1 s average time are shown in

Figure 26. The measured mean value of CO2 mixing ratios and δ
13C is 454 ppm and �98.75‰,

respectively. The 1σ standard deviation of δ13C is 1.8‰. According to the Allan variance, the

optimum integration time is 130 s; the corresponding measurement precision can reach to

Figure 24. Direct absorption signals of 12CO2 and
13CO2 in ambient air at 20 mbar with an optical path length of 107 m.

Isotopologue Wavenumber (cm�1) Line strength (10�21 cm�1 cm2/molecule)

16O12C16O 3641.1338 5.637

16O13C16O 3641.0311 0.641

Table 3. Spectroscopic parameters of the selected absorption lines for this work.
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Figure 25. Time series and Allan plot of CO2 from a standard gas cylinder.

Figure 26. Time series of CO2 mixing ratios and δ
13C measured by the DFB spectrometer.
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0.2‰. For our CO2 isotopologue measurement system based on TDLAS, high measurement

precision has been obtained; the next step is to further improve the long-term stability of the

system and perform calibration to get the correct isotope ratios and after that apply it to the

medical area.

7. HONO measurements

7.1. Introduction

Gaseous nitrous acid (HONO) is a highly reactive short-lived species playing a significant

role in tropospheric photochemistry. The photolysis of HONO in the wavelength range of

300–400 nm is an important source of the primary hydroxyl free radical (OH) in the lower

atmosphere, up to 80% of the integrated source strength [60, 61]:

HONOþ hν 300 nm < λ < 400 nmð Þ ! OHþNO (8)

The OH radical governs the oxidation and removal of most pollutants from the atmosphere

and is also a key species in photochemical cycles responsible for ozone formation leading to

the so-called “photochemical smog” pollution. Therefore, HONO directly affects the oxidative

capacity of the troposphere and indirectly contributes to production of secondary pollutants

via the oxidation. Knowledge of atmospheric HONO concentration is very important for

precise estimation of the OH radical budget and hence precise prediction of the impact on

climate and air quality [62, 63]. In the lower atmosphere, the following formation pathways of

gaseous HONO are commonly considered: (1) homogenous reaction [64, 65], (2) direct emis-

sion (i.e., by traffic) [66], and (3) heterogeneous conversion of NO2 to HONO on the ground

and other surfaces [67–71]. Homogeneous reaction and direct emissions have been identified,

but these two sources are not sufficient to explain the observed atmospheric concentrations of

HONO. At present, it is generally considered that HONO is mainly produced from heteroge-

neous process, namely, the heterogeneous reactions of NO2 on wet surfaces as well as on

surface of reducing substances such as carbon black aerosol surface [72–74]. Despite a large

amount of research, the sources and the formation mechanisms of HONO in the atmosphere

are still not well understood and identified due to the lack of accurate local measurements [75].

Good understanding of HONO sources and sinks requires instruments capable of performing

high sensitivity, high precision, high specificity, high spatial resolution, and fast in situ measure-

ments. Among various analytical instruments developed for field HONO monitoring [76–78],

spectroscopic detection techniques capable of performing in situ measurements without any

sample preparation have been increasingly developed since last decade as an attractive alterna-

tive for quantitative assessments of HONO in the atmosphere. Methods such as DOAS, incoher-

ent broadband cavity-enhanced absorption spectroscopy (IBBCEAS), and the long-path

absorption photometer (LOPAP) used in the ultraviolet region usually can get several hundred

ppt-level detection limits, but the integration time of several minutes is long and cannot satisfy

the requirement of fast measurements [6, 79]. In the mid-infrared region, the continuous-wave
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quantum cascade lasers (cw-QCL) combined with a multi-pass absorption cell based on TDLAS

technology were applied to the measurement of atmospheric HONO with a sub-ppb detection

limit [80–85]. The advantages of using cw-QCLs in TDLAS over lead salt lasers are better mode

stability, higher laser output power, and room temperature operation without the need for

cryogenic cooling, which facilitates long-term field measurements.

7.2. QCL-based instrumental platform

The developed QCL instrumental approach is depicted in Figure 27. It was based on a room

temperature operation cw distributed feedback (DFB) quantum cascade laser (DQ7-M776H,

Maxion Technologies, Inc.). It emitted single-mode laser power of up to 35 mW. The wavelength

tuning of ~2 cm�1 around 1254 cm�1might be achieved by ramping laser injection current and/or

temperature tuning. The pre-collimated laser beam from the QCL was first coupled to a beam

splitter (with 90% transmission and 10% reflection). In order to make the optical alignment easy,

a visible He-Ne laser beam was adjusted to be coaxial with the invisible infrared beam from the

QCL. The transmitted light was directed to a multi-pass cell with a base length of 0.8 m and a

folded path length of 158 m. The emerging absorption signal from the multi-pass cell was

focused onto a thermoelectrically cooled (TEC) photovoltaic VIGO detector (detector 1: PVI-

4TE-10.6). The reflected beamwas directed to a homemade Fabry-Perot etalonwith a free spectral

range of 0.03 cm�1. The optical fringe signal was recorded with another VIGO detector (detector

2: PVMI-10.6) and used for relativewavelengthmetrology. The pressure in themulti-pass cell was

Figure 27. Schematic diagram of the experimental setup. Lens: f = 50 mm. PM (parabolic mirror): f = 25 mm. M: Mirror.
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measuredwith a pressure transducer (Pfeiffer Vacuum, CMR 361). Temperature of themulti-pass

cell was maintained at 30�C (within�0.1�C) in order to avoid deposit of aqueous nitrous acid on

the optical cell wall (especially on the cell mirrors) and to avoid any artifact production due to

heterogeneous reaction inside the cell. The two detector outputs were sampled with a fast data

acquisition digital oscilloscope (LeCroyWavesurfer 104Xs-A). The data was then transferred to a

personal computer for further data processing.

7.3. Results and discussion

7.3.1. Continuous monitoring of atmospheric HONO

The developed QCL instrument was employed for monitoring daytime and nighttime varia-

tion of HONO in an urban environment near a road with moderate traffic. Continuous

monitoring of HONO mixing ratio variation was performed during a campaign of several

days. Figure 28 shows time series of the mixing ratios of 15 min averages of HONO and NO2

and the corresponding ratios of HONO/NO2 along with the solar radiation for the field

measurements from 14 to 18 January 2013 (16–18 of them are snowy days). NO2 was measured

by a NOx analyzer (Environmental SA). The solar radiation was recorded by a weather station

(Davis Vantage Pro2, Montanay). The measured HONOmixing ratios ranged from 1.40 ppb to

Figure 28. Time series of HONO, NO2, the solar radiation, and HONO/NO2 during the field measurements from 14 to 18

January 2013.
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6.76 ppb, with a mean value of 3.33� 1.03 ppb, whereas the mean and maximummixing ratios

of NO2 were 21.32 � 7.36 ppb and 50.70 ppb, respectively.

7.3.2. Possible sources of HONO

NO2 is known to be an important precursor for the formation of HONO or to have a common

source. As mentioned in the introduction, the mixing ratios of HONO and NO2 were found to

be highly correlated in many field observations [77, 86]. The regression analysis (shown in

Figure 29) of the combined data sets indicates good correlation between HONO and NO2

mixing ratios, displaying an intercept of 0.83, slope of 0.12, and R2 of 0.70. This slope can be

interpreted as an upper limit for estimate of the HONO exhaust fraction of NO2 emissions. The

two parts marked with purple rectangles in Figure 28 implied other sources of HONO forma-

tion, because of the increasing fraction of HONO/NO2 with decreasing NO2 mixing ratios. The

higher mixing ratios of HONO in the morning are considered as products of heterogeneous

reactions of NO2 on wet surfaces during nighttime. The two green rectangles in Figure 28

show a record of HONO mixing ratio variation with solar radiation on snow days. A photo-

chemically enhanced HONO production from snowpack under solar radiation can be seen

[73]. Finding the missing sources and the formation mechanism of HONO in the atmosphere is

still the actual topic for tropospheric HONO chemistry.

8. Summary and outlook

In conclusion, we overviewed our recent developments of several gas sensors based on TDLAS

technology for in situ monitoring of hazard gases, including CH4, CO2, CO, HONO, H2S, and
13CO2/

12CO2. Good understanding of the sources and sinks of these hazard gases requires

Figure 29. Correlation between HONO and NO2 during the measurement period.
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instruments capable of performing high sensitivity, high precision, high specificity, high spatial

resolution, and fast in situ measurements. TDLAS is an effective method to measure these

gases’ mixing ratios and multiple parameters with these advantages. The methane detection

system based on TDLAS can simultaneously detect CH4, C2H2, and C2H4 rapidly and effec-

tively in open environment, and the response time is less than 2 s. The MDLs of these three

gases can meet the requirements for the detection of natural gas leakage to petrochemical

industry. The accuracy of making an alarm is 100%, which can be used in natural gas station

and valve room gas leakage detection. The detection limit of CO detection system based on

TDLAS technology is 0.25 ppm with an integration time of 30 s, which basically realizes the

high sensitivity detection of CO in the near infrared and satisfies the requirements for those

situation that have a higher measurement requirement of CO such as alarming of coal sponta-

neous combustion and mine safety production. The experimental results of H2S show that the

system based on TDLAS has a good linearity and stability with a quick response time of 24 s

and a low detection limit of 240 ppb. This indicates that the system has the feasibility of real-

time online monitoring in many applications. The measurement system of CO2 isotopologues

has realized the high measurement precision of 0.2‰ for δ13C; the next step is to carry out

calibration to get the correct isotope ratios and achieve long-term stability measurements.

Good understanding of the important roles of HONO in the key chemical processes of

hydroxyl radicals and the sources of HONO requires correct detection of the HONO mixing

ratios. A QCL-based instrumental system was designed to measure the atmospheric HONO.

The regression analysis indicates good correlation between HONO and NO2. But increasing

HONO mixing ratios with decreasing NO2 also indicates other sources of HONO formation.

Finding the missing sources and the formation mechanism of HONO in the atmosphere is still

a great challenge for tropospheric HONO chemistry.

Although parts of these gas analysis experiments are just results under laboratory conditions,

we are improving the stability and SNR of these systems with the aim of putting them into

practical application. To date we have developed all-fiber gas sensor to detect CH4, O2, C2H2,

and C2H4, portable CH4 sensors, CO2 analyzer, CO analyzer, and so on. Some of them have

been put into the application. The development of these gas sensors would be beneficial for the

implementation of environmental protection policies and expand their application in energy,

public safety, and medical science. The TDLAS technology also shows high potential for

monitoring all kinds of hazardous gases in the atmosphere from surface layer to troposphere

combined with a wide spectral application range from the near infrared to mid-infrared.
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