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Abstract

This study determined the effect that the irrigation dosage and cluster thinning showed 
over the antioxidant activities and total phenols in grapes, and phenolic profile and chro-
matic characteristics of cv. Tempranillo wines. The experiment was carried out over two 
consecutive seasons at an experimental vineyard in Extremadura (Spain). The plants were 
subjected to two post-véraison irrigation treatments, one at 100% (R100) and the other at 25% 
(R25) of crop evapotranspiration (ETc). Two crop loads (C and T) were additionally estab-
lished for each irrigation treatment by cluster thinning at véraison. The winemaking process 
involved separate use of the grapes from each of the four resulting treatment groups (R100C, 
R100T, R25C and R25T) and followed a common protocol. In grapes, the effect of thinning 
enhanced when combined with water deficit, resulting in increases phenylpropanoids and 
flavonoids at the harvest, while leaving the polyphenol oxidase´s activity unaffected. In 
wines, the higher post-véraison water stress of the R25 treatments resulted in higher values 
of dimeric flavonol and flavanol concentrations. The wine hue was affected by water status. 
The cluster thinning caused additional increases in the concentrations of monomeric flava-
nols and anthocyanins, as well as resulting in stronger wine colour intensity.

Keywords: irrigation, crop load level, antioxidant activity, phenolic composition, 
wine, grapes

1. Introduction

Because of the high dependence of fruit quality on various environmental and endogenous fac-

tors [1, 2], several agronomic techniques have been used to improve the quality of the berries. 
Appropriate viticultural practices that enhance ripening, by creating favourable mesoclimates, 
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or by achieving adequate but not excessive vine vigour, will improve wine quality [3]. Soil water 
availability is a critical factor for vine performance and wine composition. Reports show that 
severe water stress can influence various physiological and metabolic plant processes, including 
growth, photosynthesis, and respiration and might be detrimental to fruit quality because of 
a poor canopy development and reduced leaf assimilation rate thus leading to an inadequate 
vine capacity to ripen the crop [4–6], particularly under high yield levels [7]. These, in turn, 
can affect the production, composition and characteristics of the must [8] and, in consequence, 
the quality of the resulting wine [9]. However, controversy remains as to whether there is any 
direct effect on berry metabolism other than inhibition of growth [10]. In semi-arid regions, 
irrigation is often applied as a technique to increase yield and in occasions to achieve a proper 
supply-demand vine balance. Regulated deficit irrigation (RDI) consists of applying short epi-
sodes of water restriction, typically starting after bloom (anthesis), whereby irrigation water is 
supplied at amounts below those lost to vineyard or crop evapotranspiration (ETc) [11]. Several 
studies have reported that water stress during the growing season has some beneficial effects 
(increasing anthocyanin and polyphenol concentrations and soluble solids content) on grape 
berry quality [12–15]. Water stress applied during the period from fruit set to véraison, heavily 
reduces fruit size [16] and in the late season water restriction may reduce fruit cell enlargement 
and water accumulation [17]. The timing and intensity of water deficits influence the extent of 
alterations occurring in berry metabolism and therefore in wine colour and flavour [18–20]. 
Irrigation is now a commonly used technique in vine-growing in Spain, where cv. Tempranillo 
is the most widespread cultivar for red wine production. Previous studies have been conducted 
to analyse the effect of irrigation in phenolic profile of grapes [9, 21–23]. In another hand, it is 
widely accepted that very high crop yields delay ripening and reduce fruit and wine quality 
[24]. This leads to increases in the required substrate levels for the synthesis and accumulation 
in thinned vine berries of, amongst others, phenolic substances [25–29]. Water restriction in 
Tempranillo grapes led to alterations in the levels of peroxidation and peroxidase activity [30].

In another hand, it is widely accepted that very high crop yields delay ripening and reduce 
fruit and wine quality [24]. The crop level is a determining factor in berry quality and one of 
the goals of modern viticulture is to establish field practices which are able to limit vineyard 
yield and improve grapevine composition [31, 32]. The cluster thinning is a common prac-
tice designed to control yield and ripening under adverse conditions of climate. This practice 
influences the sink-source ratio, restricting part of the yield without lowering leaf surface area. 
Thinning allows the plant to concentrate its activity on the remaining clusters, making it an 
effective method of regulating production and modifying the composition of the berries [31, 
33, 34]. Several authors have found that cluster thinning enhances berry ripening, affecting 
the contents of sugars, acids, polyphenols and aromas of the harvested grape and therefore 
positively affecting the quality of the wine [34, 35]. Cluster thinning is in cases applied to 
regulate the yield levels and to help ripening the crop under poor climatic conditions or exces-
sive crop demand. However, results presented in literature have reported contrasting results, 
with cluster thinning leading to better fruit quality in some cases [36, 37], but with no clear 
effect in some others [33, 38]. Studies on cluster thinning have also shown the importance of 
the time when it is performed. When thinning is performed at véraison, the effect on berry 
weight and cluster size is lower than when performed immediately after fruit set, since it is at 
véraison that potential berry size and the number of berries per cluster are determined, as well 
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as some compounds, such as the organic acids [39]. In addition, the result of cluster thinning 
can depend to a large extent on the climatological conditions during the season, with contrast-
ing and even opposite results being obtained depending on the varieties and yields [36, 37].

The overall effect of irrigation might change according to other cultural practices particu-
larly those affecting the crop level [24, 40]. Vines with higher crop level seem to benefit more 
of a higher amount of irrigation both in terms of yield [41] and of fruit composition [42]. 
Numerous studies exist in the effects of water deficit and control of yield by eliminating 
fruits (thinning) on berry composition, but less research has been developed to the combi-
nation of both techniques in its composition of wines. Determination of such relationships 
between composition and chromatic characteristics allow greater understanding of how 
interactions between cultural practices and chemical composition are reflected in the percep-
tion of colour. This type of study is particularly important in vineyards with resource limita-
tions, as would be the case in deficit irrigated grapevines with high crop loads. Such studies 
are also relevant in relation to red grapevine cultivars, since the repercussions of these prac-
tices on the phenolic and chromatic characteristics of the wines obtained need to be analysed. 
Up to new, few studies have analysed how the combined practice of these techniques affects 
wine phenolic composition, and the results are not conclusive as to how the water status of 
the vine impacts on the effect of cluster thinning or vice-versa [18, 19, 39, 43, 44].

The phenolic compounds from the grape are responsible for some of the main organolep-
tic characteristics of the resulting wine, including its colour, astringency and aroma. In the 
red wine making process, the phenolic compounds of the skin and seeds are transferred to 
the must during the fermentation and maceration process [45]. Phenolic compounds can be 
divided into flavonoid (anthocyanins, flavan-3-ols and flavonols) and non-flavonoid (stilbenes 
and hydroxybenzoic and hydroxycinnamic acids). Given the importance of colour in the quality of 
red wines, phenolic compound concentration can be used as a parameter for the evaluation of 
grape, must and wine quality [46]. Besides the variety, other factors such as location, climate, 
soil type, berry maturity and the vine-growing practices affect the phenolic composition of the 
grape berries [47]. Improved vine management techniques can therefore be used to modify 
phenolic content and enhance wine quality [48]. The question of grape berry size and its effect 
on wine composition has produced inconclusive results, and the relationship between grape 
berry size and the phenolic composition of wine remains unclear [49]. Wine colour is linked to 
the accumulation of anthocyanins in the grape berries and particularly in the skin. However, it 
is not only the anthocyanin concentration and profile that is responsible for wine colour: copig-
mentation can account for 30–50% of colour in young wines [50]. Copigmentation in wine 
results from molecular interactions between anthocyanic pigments and other organic mole-
cules, called cofactors, which form molecular associations or complexes. For  copigmentation 
in young wines to increase, there must be sufficient quantities of substances that can act as 
copigments. The most common cofactors are compounds such as phenolic acids, flavonoids, 
and in particular, flavonol and flavone derivatives [51]. Good quality grapes should have high 
concentrations of both stable pigments and substances that can act as cofactors.

In plants, increased synthesis of phenols is a common response to stress [52] and the 
same environmental conditions that cause oxidative stress are associated with the induc-
tion of phenylpropanoid metabolism. Phenylpropanoids and flavonoids are involved in the 
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 protection against oxidative stress [53]. The level of lipid peroxidation and how the total 
antioxidant capacity and the phenolic compound content evolve can both be used as indica-
tors of stress and the response to it. One response to stressors during ripening is an increase 
in the amount of phenolic compounds. These include flavonoids and phenylpropanoid gly-
cosides, compounds  that are part of the cellular antioxidant system, and which are involved 
in the elimination of ROS [52–55].

ROS have been implicated in plant growth and stress responses. The production and detoxi-
fication of ROS are both highly regulated processes, and ROS levels are kept under tight con-
trol. The antioxidant system plays an important part in ROS homeostasis [56, 57]. It includes 
such enzymes as peroxidase (POX), catalase (CAT) and superoxide dismutase (SOD). Stresses 
and physiological processes in plants both induce the development of a complex network of 
oxidant/antioxidant reactions that modulate the resulting oxidative response [58, 59]. Thus, a 
key role in the response to stresses is played by the activities involved in ROS production and 
elimination, and they are also involved in such physiological processes as ripening [60]. In this 
regard, while the participation of peroxidases, catalases and superoxide dismutase is crucial for 
the control of the production or elimination of ROS, their activities are affected by water stress 
and defoliation [30].

Tempranillo is the most common variety of red grape in Spain comprising a total of 
205,975 ha (20% of Spain’s total vineyard area), though most of these are cultivated under 
rainfed conditions with typically low yields (≤ 6500 kg ha−1). This cultivar is originally from 
northern, cool regions of Spain and today is the most widely cultivated for production of 
red wines all over Spain. It is reputedly to be sensitive to water stress and prone to early leaf 
senescence [61].

This chapter analyses and studies the effects of the combination of water deficit and thinning 
on the constitution and composition of the Tempranillo grape, namely on the lipid peroxida-
tion, oxidant and antioxidant enzymes activities and their interactions on phenolic profile and 
chromatic characteristic from the wines. Also, relations between wine chromatic parameters 
and phenolic substances have been investigated.

2. Materials and methods

2.1. Vineyard site and experimental design

The experiment was conducted in a Vitis vinifera L. cv. Tempranillo vineyard in Finca La Orden 
(owned by the Regional Government of Extremadura) in Extremadura, Spain, over the 2007 
and 2008 vintages. The vineyard was planted in 2001 on Richter 110 rootstock at a spacing of 
2.5 by 1.2 m (3333 vines ha−1). Row orientation was north-south and vines were trained to a 
bilateral cordon system and vertical trellis.

The experimental design was a complete randomised block with 16 experimental plots, 4 
replicates by 4 treatments (irrigation and cluster thinning). Experimental plots consisted of 
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48 vines across 6 rows. The experiment comprised 768 vines in total. The irrigation regimes, 
applied during véraison and maturation, were as follows:

• Full irrigation (R100), corresponding to 100% of crop evapotranspiration (ETc).

• Deficit irrigation (R25) corresponding to 25% of ETc

ETc was calculated using the equation ETc = ETo × Kc, where ETc was estimated as the prod-

uct of reference evapotranspiration (ETo), measured by a weather station at the site, and crop 
coefficient (Kc), following the methodology of Allen et al. [62]. Irrigation was initiated when 
stem water potential (Ψs) reached −0.5 MPa and stopped after harvest, in mid-September. 
Irrigation was applied with pressure-compensated emitters supplying 4 L h−1 and spaced 
120 cm apart. Two cluster load levels were established for each irrigation regime:

• Control treatment (C) without cluster thinning (7–9 clusters m−2 of planting area)

• Cluster-thinning treatments (T), in which the load was adjusted to 4–5 clusters m−2 of plant-
ing area by removing clusters at véraison.

Table 1 represents the ETo, ETc and Kc, as well as the irrigation amount applied in the R100 
and R25 treatments for each of the study years. Also shown is the water status of the plant 
during the growing period in the two campaigns (stem water potential during the flowering-
véraison and véraison-harvest periods) [18].

2.2. Physico-chemical composition of grapes and wine chromatic characteristics

Table 2 represents the physico-chemical characteristics of the grapes at harvest and the chro-

matic characteristics of the wines. The winemaking protocol and analytic methodology can be 
consulted in Gamero et al. [19].

2.3. Biochemical assay and enzymatic activities of the grapes

Phenols, flavonoids and phenylpropanoid glycosides were assayed colourimetrically. First, 
grapes were homogenised with methanol, chloroform and 1% NaCl (1:1:0.5). The homogenate 
was filtered and centrifuged at 3200 × g for 10 min. Total phenols (expressed as μg caffeic acid 
g−1 FW) were determined at 765 nm with Folin:Ciocalteu reagent according to the method of 
singleton et al. [63]. Total flavonoids (expressed as μg rutin g−1 FW) were determined accord-

ing to the method of Kim et al. [64], calculating the content on the basis of the rutin stan-

dard curve. Phenylpropanoids (expressed as μg verbascoside g−1 FW) were determined at 
525 nm based on estimating an O-dihydroxycinnamic derivative using the Arnow reagent as 
described in Gálvez et al. [65], calculating the content on the basis of the 3,4-dihydroxyphe-

nylalanine standard curve.

Lipid peroxidation was determined by measuring malondialdehyde (MDA) formation using 
the thiobarbituric acid (TBA) method as described by Madhava Rao and Sresty [66]. The MDA 
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concentration (expressed as nmol MDA g−1 FW) was calculated using an extinction coefficient 
of ε = 155 mM−1 cm−1.

Enzymatic activities were determined on a crude extract of the grapes. The grapes (2 g mL−1) 
were homogenised at 4°C in 50 mM phosphate buffer, pH 6.0. The homogenate was filtered 
and centrifuged at 39,000 × g for 30 min at 4°C. The pellet was discarded, and the superna-
tant filtered and collected for the enzyme assays. The protein content was determined by the 
method of Bradford [67].

Peroxidase (EC 1.11.1.7) activity, POX, was measured at 590 nm (ε = 47.6 mM−1 cm−1) [68], 
and the coniferyl alcohol (CA) peroxidase activity, CA-POX, was determined by measur-
ing the decrease in absorbance at 265 nm of a reaction medium consisting of the enzyme 
extract and 0.1 mM CA in 25 mM acetate buffer pH 5.0 (ε = 7.5 mM−1 cm−1). A unit of 
CA-POX is defined as the amount of enzyme required to cause the oxidation of 1 nmol 
CA per minute at 25°C, pH 5.0. The superoxide dismutase (SOD) (EC 1.15.1.1) activity was 
determined from the absorbance at 560 nm according to [69]. A unit of SOD is defined as 
the amount of enzyme required to cause 50% inhibition of NBT reduction. Polyphenol 
oxidase (PPO) (EC 1.14.18.1) activity was determined from the absorbance at 390 nm [70]. 
A unit of PPO is defined as the amount of enzyme required to cause a decrease in absorp-
tion of 0.001 units min−1.

2.4. Individual phenolic composition of the grapes analysed by HPLC-DAD-FLD

Low molecular weight phenols were analysed by HPLC-DAD, following the method 
described in Gómez-Alonso [71], though with some slight modifications to enhance the 
resolution. After filtering (0.25 m diameter Chromafil filters, Düren, Germany), 10 μl of 
wine were directly injected into a LC-Agilent 1200 (Agilent Technologies, Palo Alto, CA, 
USA) chromatographic system. Separation was performed in an Ace® 5 C18 250 × 4.6 mm 
(Advanced Chromatography Technologies, Aberdeen, Scotland) column used as station-
ary phase.

Year Seasonal measurements Irrigation 

(mm)

Ψs flowering-véraison 

(MPa)

Ψs véraison-harvest 

(MPa)

Rainfall 

(mm)

ETo 

(mm)

ETc 

(mm)

Kc R1001 R25 R100 R25 R100 R25

2007 182 975 508 0.52 172 62 −0.54

−0.81–0.51

−0.58 −0.56 −0.77

2008 129 1026 755 0.74 611 153 −0.52 −0.76 −0.49 −0.89

Effective seasonal rain, reference evapotranspiration (ETo), crop evapotranspiration (ETc), crop coefficient (Kc) from 
April to September and mean values in each season of stem water potential (Ψs). Irrigation: Volumes of water applied 
in the 2007 and 2008 treatments. In 2007 and 2008, the ETc values were obtained by means of a lysimeter installed in the 
vineyard.1R100 = Full irrigation (100% ETc); R25 = Water deficit (25% ETc)

Table 1. Water balance variables in Tempranillo vineyard, Extremadura (Spain).
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The various phenolic compounds were identified by order of elution and the retention times 
of their respective standards. A total of 42 phenolic compounds were identified, distributed 
between simple and conjugated anthocyanins and monomeric and dimeric flavonols and fla-
vanols. The anthocyanins were identified in the monoglucoside, acetyl-glucoside and p-cou-
maroyl-glucoside forms of delphinidin, cyanidin, petunidin, peonidin and malvidin. The 
quantified flavanols were (+)-catechin, (−)-epicatechin and the procyanidins (B1, B2 and B3). 
The analysed flavonols were myricetin, quercetin, kaempherol and isorhamnetin in free form 

Parameters Treatment Irrigation dosage1,3 Significance level2

R100 R25 R T R × T

Yield (kg ha−1) C 21403.75a 18749.58a ns ** ns

T 14987.03b 14704.16b

Berry weight (g) C 2.17a 2.00b ns ** ns

T 2.03b 1.90b

Total soluble solids (°Brix) C 22.75ab 21.93b ns *** *

T 23.87ab 24.37a

Titratable acidity (g tartaric acid L−1) C 6.43a 5.51ab *** *** ns

T 5.12ab 4.32b

Maturity index4 C 3.60b 4.08b * ** *

T 4.66ab 5.81a

Colour intensity (AU) C 6.69b 6.71b ns *** ***

T 9.51a 9.70a

Colour hue C 0.65a 0.62b * ns ns

T 0.67a 0.60b

% red C 52.81b 54.00a *** ns ns

T 52.06b 54.88a

% blue C 13.00a 12.31b * ns ns

T 13.20a 12.08b

% yellow C 34.18a 33.67b * ns ns

T 34.73a 33.02b

1R100C = Full irrigation (R100) without cluster thinning (C); R100A = Full irrigation with cluster thinning; R25C = Water 
deficit without cluster thinning and R25A = Water deficit with cluster thinning
2Significance level: ns = not significant; * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001
3Values followed by different letters indicate significant differences between them (p ≤ 0.5)
4Maturity index = Total soluble solids/titratable acidity

Table 2. Mean values of 2007 and 2008 seasons combined for yield, berry composition and wine chromatic characteristics 
of cv. Tempranillo wines, subjected to different irrigation dosage levels with cluster-thinning treatment (T) and without 
cluster-thinning treatment (C) in Extremadura (Spain).
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and their respective 3-glucosides. Also quantified were the quercetin and kaempherol rutino-
sides, quercetin-3-glucuronide and quercetin-3-galactoside.

The concentration was calculated in mg L−1 of malvidin-3-glucoside, myricetin-3-glucoside 
and catechin for anthocyanins, flavonols and flavanols, respectively.

2.5. Wine colour composition

Wine colour was evaluated using the indices proposed by Glories [72]: colour intensity (CI) 
was calculated by adding the absorbance readings at 420, 520 and 620 nm, while hue (CT) 
was determined as the ratio of absorbance readings at 420 and 520 nm, and percentages of 
red, blue and yellow (red %, blue % and yellow %). The wines were centrifuged for 3 min at 
1100 × g before spectrophotometric analysis. Measurements were taken using a Shimadzu 
UV-1700 spectrophotometer (Shimadzu, Japan).

2.6. Statistical analysis

Data were analysed using a general linear model, with water status (two levels), cluster 
thinning (two levels) and their interactions as factors. Differences between treatments were 
obtained using Tukey’s test for significant differences (p ≤ 0.05).

A principal component analysis (PCA) was carried out to observe the distribution of the wines 
of the different treatments as a function of their phenolic composition. A correlation analysis 
was performed to determine the relationships between phenolic compounds and agronomic 
factors and Tukey’s test was used to evaluate significant correlations (p < 0.05).

The partial least squares (PLS) approach was used to analyse the relationships between wine 
colour and HPLC-quantified phenolic compounds. Collinearity between X variables was dis-
carded as significant correlations were not found between them. The statistical analyses were 
performed with the XLSTAT-Pro (Addinsoft 2009, París, France) statistical software package.

3. Results

3.1. Effect of treatments on the phenolic content and oxidant/antioxidant activities in grapes

Table 3 shows the different values obtained for oxidant and antioxidant activities, and phe-
nolic content in grapes at harvest. With thinning, all these phenolic components were found 
in higher or equal concentrations, but not lower. The greater value of lipid peroxidation 
corresponds to CT (rainfed and thinned). The SOD activity was always lower than in the 
unthinned treatments. It stands out that the lowest values of SOD activity corresponded to 
CT. Regarding the activity of PPO, an enzyme which catalyses the formation of o-quinones, at 
harvest, the PPO activity levels were similar in all treatments, although showing a minimum 
value in CT. The lowest POX values correspond to the thinning treatments (CT and R100T). 
The activity levels of CA-POX, an enzyme which is involved in processes of lignification, were 
slightly higher with thinning than without thinning.
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Treatment* Lipid 

peroxidation

nmol MDA 

g−1 FW

Superoxide 

dismutase 

(SOD)

U mg−1 prot

Peroxidase 

(POX)

U mg−1 prot

Conyferilalcohol 

peroxidase

(CA-POX)

U mg−1 prot

Polyphenoloxidase 

(PPO)

U mg−1 prot

Total Phenols

μg caffeic acid 
g−1 FW

Total 

Phenylpropanoid 

glycosides

μg verbascoside g−1 

FW

Total flavonoids

μg rutín g−1 FW

C 94.6 ± 20.5b 89.3 ± 21.7b 4.9 ± 1.2b 53.6 ± 16.5b 1415.5 ± 615.4b 988.6 ± 142.2a 1689.9 ± 290.5b 1122.3 ± 211.0b

CT 130.1 ± 23.0a 71.6 ± 18.0b 4.2 ± 1.5b 66.2 ± 19.3ab 900.3 ± 189.0a 1108.9 ± 158.0a 2013.5 ± 188.3b 1589.7 ± 132.4a

R100C 88.3 ± 18.4b 158.7 ± 22.8a 5.2 ± 1.2b 78.2 ± 20.8a 1510–3 ± 312.5b 1045.6 ± 100.1a 1865.0 ± 366.0ab 1325.6 ± 126.1ab

R100T 91.4 ± 24.3b 81.5 ± 20.1b 2.6 ± 1.0a 79.0 ± 22.1a 1389.0 ± 340.0b 966.0 ± 144.5a 1924.4 ± 171.3b 1159.0 ± 206.6b

Data were the means ± SD of at least 10 replicates obtained from 5 different experiments. The values were subjected to the Tukey test (different letters within each 
column indicate significant difference, p ≤ 0.05)1C = Rainfed without cluster thinning; R100C = Full irrigation without cluster thinning; CT = Rainfed with cluster thinning; 
R100T = Full irrigation with cluster thinning

Table 3. Average values (2007 and 2008 vintage) of lipid peroxidation, antioxidant activities, total phenols, phenylpropanoid glycosides and flavonoids on grapes cv. 
Tempranillo at harvest.

Convenience of A
pplying of Viticulture Technique as a Function of the W

ater Status of the…
http://dx.doi.org/10.5772/intechopen.72799

99



3.2. Effect of treatments on the phenolic profile of wines

Table 4A and B shows the mean concentration values over the 2 year study period of antho-
cyanin and non-anthocyanin flavonoid substances (flavanols and flavonols) of the R100C, 
R100T, R25C and R25T wines, as well as the results of the statistical analysis.

Table 4A shows the amount of monoglucosides (G), acetates (A) and coumaroyl derivatives 
(C) and the amounts of delphinidin (Dp), cyanidin (Cy), petunidin (Pt), peonidin (Pn) and 
malvidin (Mv) compounds.

In the case of the flavanols (Table 4B), as well as the mean concentration values of (+)-catechin 
(Cat) and (−)-epicatechin (Ep), also shown are the global mean values of these monomers (Mon) 
and, as well as the individual mean of (−)-epicatechin-(4ß-8)-(+)-catechin (PB1), (−)-epicatechin-
(4ß-8)-(−)-epicatechin (PB2) and (+)-catechin-(4ß-8)-(+)-catechin (PB3) values, the combined 
mean values of these dimers (Dim). The flavonols are grouped together by the flavonol 
molecule present, such that myricetin (My), quercetin (Qc), kaempherol (Kp) and isorhamnetin 
(Ir) glucosides represent the total values, respectively.

Results of the general linear model analysis only found statistical significance of the irrigation 
and thinning interaction in Cy, PB1, PB3, Dim and total flavonoid substances. A statistical analy-
sis was then performed of the overall effect of irrigation dosage and its individual effect on each 
crop load, as well as of the overall effect of cluster thinning and its effect on each water status.

3.2.1. Effect of irrigation

As can be seen in Table 4A, the different irrigation dosages had almost no effect on wine 
anthocyanin concentration values. Slightly lower concentrations of these substances were 
found in the wine from R25 treatment compared to the wine from R100 treatment, but the 
differences were non-significant (p > 0.05). This trend was also observed when studying 
separately the effect of irrigation dosage on the different crop loads (R100T vs. R25T and 
R100C vs. R25C).

However, the opposite trend was observed for the rest of the flavonoid families (flavanols and 
flavonols). The R25 wines contained significantly higher concentrations of Cat, the flavonol 
compounds My, Qc, Kp and Ir, Mon and total flavanols (Table 4B). An analysis of the effect of 
irrigation dosage on the different crop loads revealed significant differences only in the wines 
from the cluster-thinned treatments (R25T vs. R100T).

3.2.2. Effect of cluster thinning

In terms of wine anthocyanin composition, the effect of thinning was greater than of irriga-
tion, with the A-treatment wines having significantly higher values of all the substances of 
this family, except for the acetyl-acetate derivatives. The biggest differences were found in the 
G (18%), Mv (15%) and Dp (29%). Table 4A also shows the separate analysis made of the effect 
of thinning on the R25 and R100 wines, with a greater and more significant response in R100. 
These results confirm the importance of vine water status in the effect of cluster thinning on 
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the concentration of anthocyanin substances present in the wines. In addition, when com-

pared to the C-treatment wines, the T-treatment wines had lower concentrations (p < 0.001) of 
Cat, and higher concentrations of My and Qc (Table 4B).

3.2.3. Effect of treatments

Table 4A and B also shows the results of the combined statistical analysis of the four treat-
ments. In concordance with the results described above, the highest and lowest values for 
anthocyanin substances were found in the 100T and 25C wines, respectively. Of these sub-
stances, Cy (the sum total of cyanidin compounds) is a special case as both the lower irrigation 

Compound Load Water status2 Significance level1

R T Irrigation Thinning R and T

R100 R25 in C in T in R25 in R100

∑ Glucosides C 90.21ab 83.35b ns * ns ns ns ** *

T 111.08a 100.19a

∑ Acetates C 11.96a 10.26a ns ns ns ns ns ns ns

T 11.28a 11.2a

∑ Cumarates C 10.18b 11.65b ns ** ns ns ns ns *

T 14.45a 14.32ab

∑ Malvidins C 82.88a 79.59a ns ** ns ns ns ** ns

T 100.35a 92.06a

∑ Petunidins C 15.04ab 13.23b ns *** ns ns ns ** *

T 18.73a 17.58ab

∑ Delphinids C 7.97b 8.11ab ns *** ns ns ns *** **

T 11.80a 11.06ab

∑ Peonidins C 3.32a 2.62a ns * ns ns ns ns ns

T 3.93a 3.49a

∑ Cyanidins C 3.15a 1.70b Significant interaction *

T 2.01b 1.53b

Total Anthocyanins C 112.36a 105.25a ns ** ns ns ns * ns

T 136.82a 125.67a

1ANOVA test significance level. R: irrigation; A: cluster thinning; R and A: combination of both treatments. ns = not 
significant; * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001
2For the same compound, values followed by different letters indicate significant differences between treatments (p ≤ 0.5)

Table 4A. Average values (2007 and 2008 vintage) of anthocyanins (mg L−1) in Tempranillo wines from vines subjected to 
different irrigation dosages and with different crop level loads, cluster thinned (T) and non-thinned (C), in Extremadura 
(Spain).
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Flavanols

Compound Load Water status2 Significance level1

R T Irrigation Thinning R and T

R100 R25 in C in T in R25 in R100

(+)-catechin C 25.67b 31.89a ** *** ns *** * *** ***

T 16.35c 23.08b

(−)-epicatechin C 4.35a 4.01a ns ns ns * ns ns ns

T 5.42a 4.31a

Procyanidin 1 (PB1) C 34.54c 49.44b Significant interaction ***

T 40.95ab 71.18a

Procyanidin 2 (PB2) C 6.64b 6.00b ns *** ns ns ** *** **

T 6.00b 8.24a

Procyanidin 3 (PB3) C 17.08bc 16.14c Significant interaction ***

T 21.96a 18.27b

Monomers C 30.03b 35.91a *** *** ns ** * ** ***

T 21.77c 27.38b

Dimers C 58.26c 71.59b Significant interaction ***

T 71.04b 97.69a

Total Flavanols C 88.29c 107.49b *** ** *** *** ** ns ***

T 92.81c 125.07a

∑ Myricetins C 8.06c 9.64b *** *** ns * *** *** ***

A 11.46b 14.06a

∑ Quercetins C 6.52c 8.20b *** *** ns ** ** ** ***

A 7.84bc 10.5a

∑ Kaempherols C 1.40c 1.74b * ns *** ns *** *** ***

A 1.55bc 2.17a

∑ Isorhamnetins C 0.96c 1.28b *** *** * * ** ** ***

A 1.24b 1.62a

Total Flavonols C 16.94c 20.85b *** *** ns ** *** *** ***

A 22.09b 28.37a

1ANOVA test significance level. R: irrigation; A: cluster thinning; R and A: combination of both treatments. ns = not 
significant; * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001
2For the same compound, values followed by different letters indicate significant differences between treatments (p ≤ 0.5)

Table 4B. Average values (2007 and 2008 vintage) of flavanols, flavonols, (mg L−1) in cv. Tempranillo wines from vines 
subjected to different irrigation dosages and with different crop load levels, cluster thinned (T) and non-thinned (C) in 
Extremadura (Spain).
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dosage as well as cluster thinning resulted in lower concentration values, with the consequent 
concentration value for the R100C wines being significantly higher than for the other wines.

Values of the PB1 and PB3 dimers increased as irrigation dosage fell, with the 25T and 100C 
wines having the minimum and maximum values, respectively. Finally, and given the sensi-
tivity of flavonols to both irrigation dosage and crop load, the R25T wines had significantly 
higher values than the R100C.

3.2.4. Correlation between agronomic parameters and grape berry ripeness indicators and 
concentration of wine phenolic substances

To determine the degree of correlation between the agronomic parameters (véraison-harvest 
Ψs and yield values of the different treatments), berry weight and berry ripeness indicators 
(TSS—total soluble solids and MI—maturity index) and the values of the different phenolic 
families of the vines, the mean values for the 2 years of the study were subjected to a Pearson’s 
correlation and a PCA.

No significant correlation was found between véraison-harvest Ψs and wine phenolic val-
ues. However, significant negative correlations were found between yield and concentration 

Figure 1. Principal component analysis (PCA) between the different parameters studied (stem water potential Ψs, yield, 
° brix and maturity index (MI) and wine phenolic compounds. G: ∑ Glycosides, Cm: ∑ Coumarates, Pt: ∑ Petunidins, 
Dp: ∑ Delphinids, Cy: ∑ Cyanidins, My: ∑ Myricetins, Qc: ∑ Quercetins; Kp: ∑ Kaempherols; Ir: ∑ Isorhamnetin; Mon:∑ 
Monomers; Dim: ∑ Dimers, TA: total acidity.
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Figure 2. Partial least squares (PSA) regression between the colorimetric parameters and wine phenolic compounds. 
G: ∑ Glycosides, Cm: ∑ Coumarates, Pt: ∑ Petunidins, Dp: ∑ Delphinids, Cy: ∑ Cyanidins, My: ∑ Myricetins, Qc: ∑ 
Quercetins; Kp: ∑ Kaempherols; Ir: ∑ Isorhamnetin; Mon:∑ Monomers; Dim: ∑ Dimers.

of C (anthocyanin coumarates, r = −0.997) and between Qc and Ih (r = −0.961 and −0.984, 
respectively) and berry weight. This latter parameter was also positively correlated with Cy 
(r = 0.955). Conversely, berry acidity was negatively correlated with dimer values (r = −0.956) 
and all the flavonols except Kp. Finally, berry ripeness as reflected by the MI was positively 
correlated with dimers and My (r = 0.955 and 0.997 respectively).

Figure 1 represents the projection of the variables and samples in the plane defined by the 
first two principal components. The two principal components explain 96.65% of total vari-
ance. Principal component 1, which explains 71.87% of the variance, allows to distinguish 
the T wines from the C wines. This component is characterised by titratable acidity (TA), 
yield and berry weight on the positive side of the axis and by practically all the phenolic 
substances except G and Pt on the negative side, such that as we shift from left to right the 
wines are poorer in phenolic substances. The second principal component explains 24.78% of 
the variance and allows to distinguish the R100 from the R25 wines and is characterised by 
high monomer concentrations on the positive side of the axis and by véraison-harvest Ψs and 
G values on the negative side.

3.2.5. Correlation between wine phenolic composition and chromatic parameters

A PLS regression was performed to determine correlations between the chromatic parameters 
of the different wines, Colour intensity and Colour hue (CI, CT), percentage of red, blue and 
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yellow and dA%, and the phenolic compounds with significant inter-treatment differences. 
The chromatic data were taken as Y variables and phenolic substance concentrations as X 
variables. The data were also standardised to approximately the same scale to better reveal 
the correlations between the colour and chemical variables. Two new variables (axes) were 
obtained through this technique which explains together 97% of total variance.

Figure 2 shows how CI was high and positively correlated with the presence of G, C, Dp, Pt 
and My, with this correlation being higher and more intense in the R100T and R25A wines. 
Conversely, %dA and %red were positively correlated with Kp (sum total of kaempherol 
glucosides) and the overall amount of flavonol, with this correlation being higher in the R25T 
wines. These results allow to make wine colour predictions based on wine phenolic composi-
tion. Accordingly, colour intensity can be predicted by the amount of certain phenolic com-

pounds in the wines: G and C, Dp and Pt, and My. In the same way, the %dA and %red of a 
wine can be predicted by the concentration of Kp and flavonols.

4. Discussion

The results obtained for phenols, flavonoids and PPGs in grapes at harvest are consistent with 
those obtained by Tardáguila et al. [73] who describe increased overall amounts of phenols 
and anthocyanins in grapes from thinned cv. Tempranillo vines. Likewise, Diago et al. [27] 

also describe an increase in these compounds caused by thinning in this variety, although 
the treatment was much less effective in the Garnacha variety. Esteban et al. [74] and Ojeda 
et al. [75] describe similar results in the content of total phenols, flavonoids, anthocyanins 
and flavonols as a result of water stress. Again, the combination of water deficit and thinning 
is the treatment with the greatest incidence on the evolution and content of these phenolic 
compounds. The SOD activity was always lower than in the unthinned treatments, an aspect 
which could have been the cause of the observed greater level of lipid peroxidation in the 
water deficit and thinned treatment. The nonspecific peroxidase activity was very low, espe-

cially in the thinned treatments. On the contrary, in the harvest the CA-POX activity’s levels 
were slightly higher with thinning than without thinning. This enzyme might be involved in 
the production of H2O2 during the formation of lignins [76]. According to our previous results 
[30], it does not appear to be affected by either the stage of ripening or the different treatments 
(thinning and water deficit).

Most studies on the effect of irrigation on grape berry and wine anthocyanin composition 
have found a decrease in the concentration of different anthocyanin derivatives and in their 
overall concentration as irrigation dosage is increased [77, 78]. Until a few years ago, these 
results were explained as being secondary effects of irrigation, including modification of 
berry size and consequently of skin/pulp ratio, which were responsible for the decrease in the 
concentration of these substances in the berry [75]. In this respect, sufficiently large increases 
in R100 berry size were not obtained in our study (Table 2) to generate, by dilution effect, a 
decrease in the concentration of these substances in the wines. However, recent studies have 
found that these substances are synthesised in the biosynthetic phenylpropanoid pathway, 
and it has been shown that it is the pre-véraison deficit which regulates the expression of genes 
involved in this biosynthesis [79]. Accordingly, the lack of response to irrigation in the G, and 
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T and C forms, as well as in the Mv, Pt, Df and Pn derived compounds can be explained based 
on the different irrigation dosages applied in the post-véraison period.

In a similar study to ours conducted in Requena (Spain) with Tempranillo vines, Intrigliolo 
et al. [9] found increased anthocyanin concentrations in wines from the most irrigated vines. 
They explained their results as the consequence of the greater water requirements and the 
inability of cv. Tempranillo, typically grown in colder regions, to adapt to edapho-climatic 
conditions. This could also be the case in our study, as the highest values were observed in 
the R100 wines. This result might also suggest a greater synchrony between sugar and antho-

cyanin accumulation in the berry of the higher irrigation treatments [18].

The significant differences that were found in the flavanol- and flavonol-type substances are 
not a decisive factor for these substances. Studies have shown that while water deficit has a 
moderate effect on flavonol synthesis, the effect of the irrigation application period is almost 
negligible [23, 80]. This would explain the significant increase in My, Qc, Kp and Ir in the R25 
wines compared to the R100 wines. The synthesis of these substances is light dependent, so 
the lower leaf area observed in the R25 treatment may also have contributed to this increase. 
In this respect, Matthews et al. [81] reported that the decrease in berry weight was higher, 
and consequently the increase in flavonoid concentration was higher, when water stress was 
imposed to pre-véraison.

Given the higher content of anthocyanin substance in the A-treatment musts [18], the forma-

tion of copigments must have taken place in them in a greater proportion during fermenta-

tion, which would in turn have resulted in greater flavonol extraction. This may be one of the 
reasons why, when the effect of irrigation was analysed separately on the two load levels, sig-

nificant differences were only found in My, Qc and Ir values in the R100T versus R25T compar-

ison. This result is very important, as copigments stabilise the colour of young red wines [50].

The results shown in Table 4A and B concurs with those from previous studies which show that 
cluster thinning is a useful tool to increase the concentration of different flavonoid compounds 
in grapes and wines [29, 37, 82]. Oenologically speaking, and in full concurrence with the results 
observed by Peña-Neira et al. (29), the most important and notable effects of cluster thinning are 
those related to the increase in phenolic compound values via the phenylpropanoid pathway.

Among the anthocyanin substances, the increase in the coumarate forms is particularly impor-

tant, as these are more stable than the monoglucosides [83, 84] and offer greater stability to wine 
colour. Also notable is the low significance of cluster thinning on the R25 wines. In a similar 
study performed with the Syrah grape [82], cluster thinning led to significant increases in the 
coumarate forms of malvidin and peonidin. In our study, the maximum anthocyanin content 
in the R25 berries may have been generated at lower TSS values than those at which the berries 
were harvested (24.37°Brix), so that anthocyanin material may have been lost in these berries.

The increase in flavonols is especially interesting, since these contribute to astringency and 
also play an important role in anthocyanin copigmentation and in the formation of more 
complex pigments during the ageing process [85, 86]. In the copigmentation phenomenon 
which contributes to the stabilisation of the colour of red wines [50, 87], Baranac et al. [88] 

reported that flavonol substances are amongst the best copigments, especially quercetin [89].
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The increased concentrations of catechin and procyanidin B1 are also important given their 
relation to colour and body stability through these copigmentation and polymerisation reac-
tions with other flavonols.

Similar to the results from other studies [19, 26, 39], wines from the cluster-thinned treatments 
had higher CI values. Colour hue variation between wines as a function of vine water status 
has also been described in other studies, though with contradictory results [21]. In our study, 
the greater presence of cyanidin due to the later ripening of the R100C grapes may have been 
responsible for the higher percentage of blue hues (p < 0.05) of these wines.

Many studies have used statistical techniques to find correlations between phenolic com-

pounds and colour parameters during the maturation and ageing processes of red wine [90]. In 
one interesting work, Monagas et al. [91] showed that chromatic attributes of red wines could 
be predicted by their phenolic profile using polynomial regression techniques. The substances 
which provided the best fitting model in that study were the anthocyanin compounds, and in 
the specific case of cv. Tempranillo wines the pyruvic adducts. According to the PLS regression 
which we preformed, the CI of Tempranillo wines can also be predicted as a function of antho-
cyanin compounds, specifically C, G, and Df and Pt compounds. Along the same line, our work 
also confirms the findings of Escudero-Gilete et al. [92]. They studied the correlations between 
colour and anthocyanin composition of wines made from a blend of cv. Tempranillo and cv. 
Graciano grapes and found that the petunidin compounds (monoglucoside, acetyl-acetate 
and acetyl-coumarate) were the ones most closely related to the chromaticity of these wines. 
Similarly, the negative correlation between the percentages of yellow and blue and the flava-
nols which were also found by the PLS regression concur with the findings of the previously 
cited work of Monagas et al. [91]. From all of the above, it can be concluded that the thinning 
treatment generated, most notable, an increase in wine colour intensity and that vine water 
stress modified, most notably, wine hue as a result of differences in flavonol concentrations.

5. Conclusion

This work contributes to our understanding of how vine-growing practices can affect the com-

pounds responsible for the sensory attributes of wines. It is shown how modification of water 
status and crop load through deficit irrigation and cluster-thinning techniques can induce vari-
ations in the phenolic composition and consequently the chromatic characteristics of a wine. 
It can be concluded from the results that post-véraison water stress increased the concentra-
tion values of non-anthocyanin flavonoids, though the extent of the increase varied depend-
ing on the compound under consideration and, in the case of flavanols, on the crop load. 
Consequently, special care should be taken to adapt and control irrigation dosages in regions 
of very dry and hot summers where post-véraison irrigation is an absolute necessity. The results 
of our study also show an increase in the phenolic composition of wines as a result of the clus-
ter thinning of irrigated vines and, above all, show how the extent and significance of this tech-
nique depends in the case of anthocyanins and flavanols on vine water status. Furthermore, 
our work demonstrates how these practices can affect wine colour. With the increase in antho-
cyanin content, thinning augmented wine colour intensity, while the different levels of vine 
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water status affected colour hue by modifying the concentration of flavonols which participate 
in the reactions that help to stabilise wine colour.
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