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Abstract

This chapter addresses an important practical task of classification of multichannel
remote sensing data with application to multitemporal dual-polarization Sentinel radar
images acquired for agricultural regions in Ukraine. We first consider characteristics of
dual-polarization Sentinel radar images and discuss what kind of filters can be applied
to such data. Several examples of denoising are presented with analysis of what proper-
ties of filters are desired and what can be provided in practice. It is also demonstrated
that the use of preliminary denoising produces improvement of classification accuracy
where despeckling that is more efficient in terms of standard filtering criteria results in
better classification.

Keywords: Sentinel, dual polarization, radar image, classification, agricultural area

1. Introduction

Remote sensing (RS) systems have become tools of intensive everyday use for numerous

applications in ecology, forestry, oceanology, agriculture, and disaster monitoring [1–5]. This

is due to significant advances and achievements in science and technology. Firstly, imagers’

characteristics such as spatial resolution, swath width, receiver input signal-to-noise ratio,

bandwidth and throughput, and near real-time data delivery have improved considerably.

Secondly, it has become possible to process more data both onboard and on-land in real time

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



or quickly enough. Thirdly, many existing spaceborne RS systems provide data with frequency

needed (convenient) for performing monitoring for scenes under interest.

In particular, such monitoring is possible using RS data by Sentinel-1 A/B two-polarization

synthetic aperture radar (SAR) that has been put into operation recently [6]. There are several

positive features of data (images) provided by this SAR. Firstly, radars are known to be able to

operate well (to acquire images) during day and night in almost all weather conditions [7, 8].

Secondly, polarization radars (Sentinel SAR produces VV and VH polarization images) offer

more opportunities for effectively solving different classification tasks than single-channel

radars [8, 9]. Thirdly, Sentinel SAR is characterized by spatial resolution about 10 m, and data

are available free of charge for noncommercial use. Finally, Sentinel satellites carry out global

coverage with 6-day revisit frequency.

All together, these facilities of Sentinel SAR provide excellent prerequisites for solving tasks of

agricultural monitoring where multitemporal radar images can be employed either separately

or jointly with other types of images including optical and infrared ones [10–12]. However,

radar images also have certain drawbacks. One of them is the presence of noise-like phenom-

enon called speckle [7, 13]. Although speckle intensity and probability density function (PDF)

can be different depending upon the number of looks and other factors [7, 14, 15], speckle is

the main factor that deteriorates radar image quality and prevents their efficient processing

[16, 17] and classification [18].

Taking this into account, speckle noise has to be reduced. Speckle removal (despeckling) is not

an easy task. There are several known peculiarities of speckle. Firstly, it is supposed to be pure

multiplicative noise [7, 13]. Secondly, it has PDF that is usually non-Gaussian [7, 16]. Thirdly,

speckle often possesses spatial correlation [19] that has to be taken into account.

There are many existing image processing software packages, which allow performing radar

image pre-filtering such as ESA SNAP toolbox, ENVI, etc. In particular, they provide such

good filters as Frost, Lee, refined Lee, etc. [6, 13]. However, there are three aspects worth taking

into consideration. Firstly, selection of a proper filter and its parameters (scanning window

size, thresholds, etc.) should be done based on careful analysis of speckle properties for SAR

data supposed to be used (Sentinel SAR data in our case). Secondly, there are good despeckling

filters that have not been yet implemented in toolboxes including filters based on discrete

cosine transform (DCT) and/or that belong to a new family of nonlocal filters [20, 21]. Thirdly,

efficiency of filtering should be assessed with respect to a final task as crop or agricultural area

classification in our case where type of data, methodology of classifier learning, and other

factors have essential impact on final classification [9].

The goal of this chapter is threefold. Analysis of speckle characteristics has to be carried out, and

the obtained data can be considered as a prerequisite for choosing a proper technique (or several

possible methods) of radar image processing. Performance of different despeckling methods has

to be evaluated and compared where emphasis should be done on modern techniques. Besides,

our intention is to assess the impact of filtering techniques on crop classification accuracy and

provide practical recommendations.
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2. Image and noise model and its parameters

In this book chapter, we focus on processing Sentinel SAR images. It is known from the

literature that the dominant factor degrading SAR image quality is speckle which is supposed

to be a specific type of pure multiplicative noise [7, 14], i.e.:

Ink ij ¼ Itruek ij μk ij, i ¼ 1,…, I, j ¼ 1,…, J, k ¼ 1,…, K, (1)

where Ink ij denotes the ijth sample of the kth component for a considered multichannel image, μk ij

is the ijth value of the multiplicative noise in the kth component image, Itruekij is the true value for the

kijth pixel, I and J define the data size, and K denotes the number of components (K = 2 for two-

polarization data that are mainly considered below). Random variable μk ij is supposed to have

unity mean and variance σ2
μk that, in general, can be different for different component images.

To the best of our knowledge, the assumption on pure multiplicative nature of speckle in

Sentinel images has not been tested. Other properties of speckle such as spatial correlation

have not been thoroughly analyzed yet as well. Thus, we have performed a preliminary

analysis. First, our study has been performed for manually selected image fragments. Exam-

ples of such fragments (all of rectangular shape) are shown by frames for vertical-vertical (VV)

and vertical-horizontal (VH) polarization components of SAR image fragments presented in

Figure 1. Analysis has confirmed the assumption that speckle is pure multiplicative. The

estimated value of its relative variance σ2
μk is about 0.05 for both components (k = 1 and 2), i.e.,

we deal with multi-look data. Automatic blind estimation [19] has resulted in almost the same

estimates of σ2
μk that varied only slightly (no more than 10–15% for 19 analyzed VV and 19

studied VH images) (Figure 2).

Figure 1. An example of Sentinel SAR images in Kiev region of Ukraine with marked homogeneous regions.
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Visual inspection of images in Figure 1 also shows that they are similar and different simulta-

neously. The objects might have different contrasts with respect to background or neighbor

objects. Some objects can be present in image with one polarization and be absent in image of

other polarizations. For example, there is a rectangular shape high-intensity object in the

central part of VV image (Figure 1, left) that is not observed in VH image (Figure 1, right).

Cross-correlation factor values for VV and VH polarizations (under condition that they are

jointly registered or superimposed with high accuracy) are about 0.8. Speckle has been found

practically uncorrelated between component images. These properties will be taken into

account in consideration of filters to be applied.

Another important property of speckle is its spatial correlation. There are different approaches

to describe and analyze it. One approach is to obtain 2D autocorrelation functions in homoge-

neous image areas [7, 22]. Under condition of a priori known σ2
μk, such areas can be detected by

comparing relative variance σ2k r loc (calculated by Eq. 2) to Th� σ2
μk. Here, it is supposed that the

considered area is of rectangular shape defined by indices imin; imax in one direction and

jmin; jmax in the other direction; Th is threshold that can be set approximately equal to 1.2; Ikloc
is the local mean (calculated by Eq. 3):

σ
2
k r loc ¼

X

imax

i¼imin

X

jmax

j¼jmin

Ink ij � Ikloc

� �2
= imax � imin þ 1ð Þ jmax � jmin þ 1

� �

I
2

kloc

� �

, (2)

Ikloc ¼
X

imax

i¼imin

X

jmax

j¼jmin

Ink ij= imax � imin þ 1ð Þ jmax � jmin þ 1
� �� �

: (3)

Figure 2. The sensed region (Figure 1) in Ukraine to south from Kiev marked in map.
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Below we characterize speckle correlation in another manner, using spectrum in DCT domain.

The reasons for this will become clear later, in Section 3. Suppose that we have found N

homogeneous image blocks of size 8�8 pixels, i.e., blocks for which

σ
2
k n ¼

X

iminþ7

i¼imin

X

jminþ7

j¼jmin

Ink ij � Ikn

� �2
= 64I

2

kn

� �

≤Th� σ
2
μk, (4)

where Ikn is the local mean for the nth block. 2D DCT is then calculated for each nth block with

obtaining Dn l;mð Þ, l ¼ 1,…, 8; m ¼ 1,…, 8 where lm are indices of spatial frequencies, l = 1 and

m = 1 relate to DC (direct current) term proportional to the block mean, and alternating current

(AC) DCT components with larger l andm relate to higher spatial frequencies. Power spectrum

shape estimate is obtained through Eq. 5. Then, the normalized DCT spectrum is obtained

through Eq. 6:

Figure 3. Examples of estimated normalized DCT spectra in 8�8 blocks.
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bDp l;mð Þ ¼
XN

n¼1

D2
m l;mð Þ=D2

n 1; 1ð Þ
� �

=n, l ¼ 1,…, 8; m ¼ 1,…, 8, (5)

bDnorm l;mð Þ ¼ 63bDp l;mð Þ=
X8

l¼1

X8

m¼1

bDp l;mð Þ
� �

� bD
p

1; 1ð Þ

0

@

1

A, l ¼ 1,…, 8; m ¼ 1,…, 8, (6)

where, in fact, bDnorm l;mð Þ is not of interest for us since it is not taken into account in denoising

(see the details in Section 3). There exist also other methods of estimation [23] including blind

methods [24, 25].

The obtained estimates are presented in Figure 3 for both polarization components. Bin heights

that reflect spectrum values clearly demonstrate that speckle is spatially correlated (spectrum

values are considerably smaller for higher spatial frequencies). These correlation properties are

quite similar for VVand VH polarizations as well as for different images analyzed.

Thus, it is possible to state that speckle in Sentinel SAR images is practically pure multiplicative

with σ2
μk ≈ 0:05, k ¼ 1, 2. Its distribution is not Gaussian—this has been shown by Gaussianity

tests. Speckle is spatially correlated and practically independent for different polarizations. All

these properties should be taken into consideration at image processing stage.

3. Filters and their impacts on images

First of all, let us recall requirements to filters applied to radar image processing. The main

requirement is, certainly, effective suppression of speckle noise. However, edge/detail/texture

preservation is important as well. Additional requirement is to retain mean level in homoge-

neous image regions (some filters do not perform this automatically, without specific correction

[26]). This is important since mean in homogeneous regions is strictly connected with calibration

[7]. Finally, computational efficiency is important, especially in the considered application since

standard size of Sentinel SAR images we deal with is large, ~25k � 16k pixels. Note that some

requirements are contradictory [27]. In particular, it is difficult to provide a trade-off between

speckle suppression and edge/detail/texture preservation.

If we deal with multichannel images (multispectral, hyperspectral, multipolarization ones),

there are two main approaches to their filtering [28]. The first is component-wise processing,

i.e., if each component image is processed as single-channel image [13]. This approach is, in

general, simpler. There exist more methods. It is easier to take into account speckle properties

including its spatial spectrum. Processing of multichannel images can be done in parallel.

The second approach is 3D (vectorial) processing [20, 29]. This group of filters is able to take

correlation of image components into account. This, under certain conditions, allows improv-

ing the efficiency of noise suppression. However, these methods can run into problems of

different properties of noise (noise variance can be not the same, spectrum can be not identical,

etc.). Then, either special methods of component image preprocessing are needed [30], or the

use of 3D processing benefits in full extent becomes impossible.
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Below we consider representatives of both groups of methods. All studied filters are based on

DCT. The reasons for this are the following. Firstly, DCT is one of the best data decorrelating

transforms approaching Karhunen-Loeve transform. This property is important in denoising

and data representation. Secondly, DCT denoising is carried out in sliding blocks [31]. Due to

this, it is easily adapted to signal-dependent noise [32] and its spatial correlation [28]. Thirdly,

2D DCT is a standard operation in image processing (in particular, in compression), and its

efficient software and hardware implementations exist.

Thus, in addition to known despeckling techniques available in ESA SNAP toolbox, we also

study filtering techniques based on DCT. For all modifications considered below, the main

principles of processing are the same. Denoising is carried out in blocks of square shape,

usually of size 8�8 pixels although other variants are possible. In each block, direct 2D DCT

is performed. Then, amplitudes of obtained DCT coefficients are compared to thresholds, and

one or another type of threshold operation is accomplished (the coefficient with indices (1,1) is

remained unchanged in any case). Then, inverse 2D DCT is done, and as the result, filtered

values are obtained for all pixels that belong to a given block.

There are different modifications of DCT-based denoising that concern block overlapping and

threshold type. Denoising can be done with nonoverlapping, partly overlapping, and fully

overlapping blocks. In the latter case, neighbor blocks are shifted by only one pixel with

respect to each other in horizontal or vertical direction. Processing with full overlapping of

blocks takes more time compared to processing with partly overlapping or nonoverlapping

blocks. But the use of fully overlapping blocks provides the best efficiency of filtering in terms

of standard quantitative criteria as peak signal-to-noise ratio (PSNR) and visual quality met-

rics. So, we will further employ this variant of DCT-based denoising. Note that for most image

pixels, one has 64 filtered values coming from different block positions. They are averaged

(although other methods of aggregation are possible).

There are hard, soft, and combined types of threshold. Below we employ the former type since

hard thresholding is the most simple and efficient. This means that if a DCT coefficient is larger

than a corresponding threshold, then it is remained unchanged. Otherwise, a zero value is

assigned.

Multiplicative nature of speckle and its spatial correlation can be taken into consideration in

different manners. Consider possible variants more in detail. If processing is component-wise,

signal-dependent (locally adaptive) and frequency-dependent thresholds can be used. The

local thresholds in an nth block are determined as

T n; l;mð Þ ¼ βσ nð ÞD0:5
norm l;mð Þ, l ¼ 1,…, 8; m ¼ 1,…, 8, (7)

where σ nð Þ is local noise standard deviation for the nth block that can be approximately calculated

as σ nð Þ ¼ σμIn (index k is omitted for simplicity) and β is the filter parameter usually set equal to

2.7 for hard thresholding [32]. This approach to filtering will be further referred as Filter 1.

Another way of component-wise processing mentioned earlier is based on utilizing homomor-

phic or variance-stabilizing transforms. A general form of logarithmic-type homomorphic

transform (HT) is Ihij ¼ c log d Inij

� �

[7, 33] where c and d are transform parameters that are both
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larger than unity. These parameters can be chosen in different ways depending upon certain

conditions. The main aspect here is that in multilook SAR images subject to such a HT, speckle

converts to pure additive noise with non-Gaussian PDF. Its variance can be calculated as

σ2h ≈ c
2σ2μ= ln dð Þð Þ2.

After this direct HT, a DCT-based filter version for additive noise is applied. Since additive

noise is spatially correlated as well and its normalized DCT spectrum is practically the same as

for original data, frequency-dependent thresholds are determined as

T n; l;mð Þ ¼ βσhD
0:5
norm l;mð Þ, l ¼ 1,…, 8; m ¼ 1,…, 8, (8)

where the recommended β is the same as earlier. After filtering, inverse HT is performed, and it

is desired to carry out mean level correction [26]. This variant of filtering will be further

referred as Filter 2. According to our studies, it performs slightly worse compared to Filter 1.

One reason is that additional distortions are introduced by direct and inverse HTs.

Joint processing of two component images that we plan to perform for the considered applica-

tion can be carried out in two ways. The first one [20] is to use one component as basic one and

to perform data correction for the second component image with providing equal mean values

for each block of these images. Then, 3D DCT is performed in each block, and σ nð Þ is set

according to (4) where In from the basic image is used for its calculation.

Another, practically equivalent, variant is to carry out variance-stabilizing transforms sepa-

rately for each component images in such a manner that σ2h1 ¼ σ2h2. If σ
2
μ1 ≈σ

2
μ2 as we have in our

case, parameters of logarithmic transform c and d can be the same. After this, 3D is done in

each block, then thresholding follows, after this inverse 3D DCT is carried out. Due to separa-

bility of 3D transform into two-element 1D DCT and 2D DCT, obtaining of sum and difference

images is possible. Then, their separate processing is applied with further inverse two-element

DCT for each pixel. Threshold (8) is used in this case. The described denoising method is

further called Filter 3.

There is one condition that should be satisfied for both presented 3D filtering techniques.

Normalized spectra for component images should be the same or, at least, almost identical.

Preliminary analysis carried out in Section 2 has demonstrated that this condition is satisfied.

So, we have averaged estimates of normalized spectra obtained for all analyzed fragments of

19 VV and 19 VH radar images.

It is worth recalling that methods for predicting noise suppression efficiency have been pro-

posed previously [27, 34]. Equivalent noise variance can be determined for original image with

speckle as

σ
_2

eq k ¼
X

I

i¼1

X

J

j¼1

σ2μ kI
true
kij

0

@

1

A= IJð Þ ≈
X

I

i¼1

X

J

j¼1

σ2μ k Inkij

� �2

0

@

1

A= IJð Þ: (9)

Then, the proposed methods of efficiency prediction are able to either predict the ratio

MSEout
k =σ2eq k where

Recent Advances and Applications in Remote Sensing28



MSEout
k ¼

X

I

i¼1

X

J

j¼1

I
f
k ij � Itruekij

� �2
= IJð Þ, k ¼ 1,…, K (10)

and I
f
k ij, i ¼ 1,…, I; j ¼ 1,…, J; k ¼ 1,…, K is the kth component image after despeckling or

improvement of PSNR (IPSNR) equal to 10 log 10 σ
2
eq k=MSEout

k

� �

[35, 36]. Experiments carried

out with 512�512 pixel fragments of Sentinel SAR images have shown that IPSNR for Filter 1

varies within the limits from 5 to 12 dB, i.e., images enhance sufficiently.

Let us prove this by two examples. Figure 4a presents original image with VV polarization.

The output of Filter 1 is shown in Figure 4b. In turn, Figure 4c represents the output of Filter 2.

Finally, Figure 4d shows the output of the modification [30] applied within the scheme [26]

instead of standard BM3D (block matching three-dimensional) filter. Note that this is only an

example for the latter filter applied to image fragment of limited size. We have not applied it to

processing large-size Sentinel data further subject to classification since this filter requires too

much time for image denoising.

Figure 4. Original SAR image (a) and outputs of three denoisers: Filters 1 (b), Filter 2 (c), and nonlocal filter with HT (d).

Despeckling of Multitemporal Sentinel SAR Images and Its Impact on Agricultural Area Classification
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The filtering results represented in Figure 4 look quite similarly. Efficient speckle suppression

is provided, while edge/detail preservation is good enough. Visual inspection carried by us

and quantitative data in [30] show that the output of Filter 2 is the most smeared and some

artifacts are present. Due to linearity nature of the main used computational procedures (DCT)

of the considered filters, all computational costs can be easily reduced using parallel-wised

algorithms or hardware. On the following computer configuration—Intel Core i7, 16 GB RAM—

the entire calculation time for one image (recall that average size of images is ~25k � 16k

pixels) is about 17 min. We also note that such time can be reduced by realizing the considered

denoising methods in low-level programming language due to filter simplicity.

We have also analyzed filter outputs for 3D despeckling methods. One example is given in

Figure 5. Original image of VV polarization is presented in Figure 5a. Again, a good compro-

mise between speckle suppression and edge/detail preservation is provided.

However, visual analysis is not able to draw conclusions what filter will suit the final goal of

reaching high classification accuracy in the best way. Thus, three denoising techniques (Filters

1, 2, and 3) described above have been used to improve SAR image quality before classifica-

tion. Note that for multitemporal SAR data, more sophisticated 3D filtering methods can be

Figure 5. Original (noisy) image (a) and outputs of Filter 3 (b) and filters in [20].
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applied, but our task here is to establish connection between filtering efficiency and classifica-

tion accuracy. We expect that the use of Filter 2 and Filter 3 will produce comparable or better

classification than Filter 1 and other filters available in known toolboxes.

4. Classification of multichannel radar images

There are many classifiers that can be applied. Popular ones such as support vector machine

(SVM), decision tree (DT), and random forest (RF) classifiers were often employed for remote

sensing image classification in the recent years. Many papers have demonstrated comparable

or better performance of neural networks (NN) [37–40]. Although the NN training can be

resource- and time-consuming, the corresponding classifiers have several positive features

compared to SVM and DT. In particular, NNs are usually fast at processing new data that is

important in processing of large volumes of radar data. Besides, they are able to produce

probabilistic outputs, which can be employed for characterizing reliability (quality) of the final

results (classification map). Hence, for classification, we have used a specific type of NN—an

ensemble of feedforward neural networks, namely, multilayer perceptrons (MLPs). This type

of classifiers was validated earlier for five Joint Experiment of Crop Assessment and Monitor-

ing (JECAM) test sites in several countries, and it outperformed other considered techniques

[41, 42]. The architecture of the used approach is represented in Figure 6. A committee

(ensemble) of MLPs was used to improve performance of individual classifiers [9, 10]. The

committee was obtained using a variant of the bagging technique [43] where MLPs with

different parameters were trained using the same training data. This approach has several

advantages. It is rather simple, non-computationally intensive and proved to be efficient for

various applications. Outputs from the used MLPs were integrated using the method of

average committee. According to this technique, the average class probability over all elemen-

tary classifiers is calculated, and the class that has the highest average posterior probability for

the given input sample is chosen [9]. The following equation describes this procedure:

cer ¼
1

Q

XQ

q¼1

pqr , c∗ ¼ arg max
c¼1,C

pec, (11)

where c∗ is the class to which the input sample is assigned by the committee of classifiers, per
denotes the resulting posterior probability of the committee, pec is posterior probability for each

of MLPs, Q is the total number of classifiers in the committee, and C denotes the number of

classes. There are two differences between average committee procedure and a majority voting

technique: (i) the former approach gives probabilistic output, which can be employed as an

indicator of reliability for classifying a particular pixel or area; (ii) there is no ambiguity when

two or more classes have got the same number of “votes.”

Let us give some details. Our MLP classifier used hyperbolic tangent activation function for

neurons in the hidden layer and logistic activation function in the output layer. We utilized a

cross-entropy (CE) error function for training our neural network. This provided better perfor-

mance in terms of speed of training and classification accuracy [9, 44]:
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E wð Þ ¼ �ln p Tjwð Þ ¼ �
XS

s¼1

XC

c¼1

tscln ysc, (12)

where E(w) denotes the CE error function that is dependent on the neurons’ weight coefficients

w, T is the set of vectors of target outputs in the training set that is composed of S samples, and tsc
and ysc denote the target and MLP outputs, respectively. In the target output for class c, all

components of vector ts are set to 0, except for the cth component, which is set to 1. The CE error

E(w) had to be minimized. This was done by the scaled conjugate gradient algorithm by varying

Figure 6. Architecture of an ensemble of feed forward NNs based on multilayer perceptrons (MLPs).
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weight coefficients w. Backpropagation method was utilized for NN training. To prevent NN

overfitting, we used early stopping and weight decay (L2 regularization) techniques.

Classification of multitemporal radar images was performed on a per-pixel basis [45]. We have

considered all SAR images available during the crop growth period. Note that the use of

multitemporal images allows more accurate classification of crops than a single-date image.

5. Classification results

Filtering approaches for Sentinel-1 images were verified in the south part of Ukraine (yellow

rectangle in Figure 2). Zoomed results after different filters are shown for fragment (marked by

star) in Figure 2 that has coordinates (33.73052, 47.18544). Such a territory is an intensive

agricultural area; it corresponds to different climatic zones (humid continental) and has many

different land cover types (forest on the north and agricultural crop in the southern part). The

crop calendar is September–July for winter crops and April–October for spring and summer

crops. A typical field size is 30–250 ha.

Figure 7. Example of using different filters applied to Sentinel-1A images (R channel, VV polarization; G channel, VH

polarization): (A) image without filtering, (B) refined Lee filter, (C) Filter 1, and (D) Filter 3.

Despeckling of Multitemporal Sentinel SAR Images and Its Impact on Agricultural Area Classification
http://dx.doi.org/10.5772/intechopen.72577

33



We preprocessed time series of 10 Sentinel-1A images with different filters available in ESA

SNAP toolbox and Filter 1, Filter 2, and Filter 3. The comparison of those filters with non-

filtered image for July 7, 2016, is shown in Figure 7. It is not easy to evaluate quality of filtering

visually (user’s opinions can be subjective). Therefore, we provide crop classification maps

based on the same in situ data for time series of images obtained by each filter. For each time

series of images, we independently trained an ensemble of neural networks. For this, we

collected 153 data samples for nine classes, and all the accuracies were evaluated on indepen-

dent set, which consisted of 146 samples for nine classes. Under the term “sample,”we assume

one polygon that consists of homogeneous pixels and all of them relate to the same class.

For ground-truth data collecting, we have used the along the roads approach. During these

trips, we have collected georeferenced type of crops for definite fields. After that, collected data

were divided into two independent datasets: one was used for training and another one for

validation (as ground-truth data). So, for training and validation, we have used independent

datasets with 153 and 146 samples, respectively.

The obtained crop classification maps after applying different filters are shown in Figure 8. In

Tables 1 and 2, we present the comparison of user accuracy (UA), producer accuracy (PA),

overall accuracy (OA), and Kappa coefficient for all classes [46] from crop classification map

using different filters for SAR data in 2016.

Figure 8. Example of crop classification maps based on different filters for Sentinel-1A images: (A) without filtering, (B)

refined Lee filter, (C) Filter 1, and (D) Filter 3.
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The overall accuracy of the crop classification map without applying any filtering is 82.6%. The

lowest accuracy among all the available filters is provided by Median filter; classification

accuracy is higher by +3.2% than classification of original (non-filtered) data. The proposed

Filter 1 and Filter 2 have similar results with a nonsignificant gain of +0.3 and +0.1% compared

to refined Lee, respectively. The most accurate crop map was obtained based on images

preprocessed by the Filter 3. The gain of using this method is +6.1% compared to classification

of original data and +1.3% compared to the refined Lee filter. It is worth noting that Filter 3

Class No filter Boxcar Frost Gamma map IDAN Lee

UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, %

Artificial 4.6 42.1 10.8 43.1 15.7 42.1 7.1 43.1 5.9 56 10.2 43.5

Winter wheat 65.5 73.5 79.7 76.3 78.4 76.9 79.6 76 71.9 67.3 79.5 76.6

Maize 62.7 49.8 79.6 54.5 78.1 55.4 78.7 55.8 93.2 62.5 79.8 56.2

Sunflower 96.5 90.2 96.6 92.9 96.5 92.9 96.7 92.4 96.5 94.7 96.7 92.9

Soybeans 37 61.3 41.9 65.6 42.6 65.1 39.6 65.2 51.5 69.2 41.3 65.4

Forest 52.9 88.3 55.4 92.1 56.4 92.9 61.5 91.9 23.9 42 54.9 92.5

Grassland 38.5 83.6 44.3 92.1 44.9 92 44.3 85.5 48 93.3 47.1 92.1

Bare land 49.8 23.2 68 51 67.4 52.4 71.3 46.6 36.9 22.4 60.8 47.4

Water 98.1 99.9 97.6 100 98.7 99.9 93.2 100 99.5 100 99.1 100

OA, %/kappa 82.6/0.7 86.4/0.76 86.7/0.77 86/0.75 86.2/0.76 86.5/0.76

Table 1. Comparison of user accuracy (UA), producer accuracy (PA), overall accuracy (OA), and kappa coefficient (in the

lowest raw) for different filters for SAR data in 2016.

Class Lee sigma Median Refined Lee DCTF DCTF HT 3D DCTF

UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, % UA, % PA, %

Artificial 9.4 43.5 7.8 38.9 6.8 45.4 3.7 52.3 8.9 81.9 8.4 65.3

Winter wheat 69.5 71.8 75.8 76 80.3 77.6 78.1 76.1 85.3 75.1 86.1 70.5

Maize 92.6 61.3 78.5 55 82.1 57.9 92.7 73.5 95 78.7 94.9 82.6

Sunflower 96.7 94.9 96.5 92.3 96.7 93.8 97.2 95.1 96.8 95.3 96.6 95.2

Soybeans 51.6 69.9 40.5 63.7 45.5 66.8 58.1 71.1 56.6 72.5 59.5 72.3

Forest 45.5 79.2 55.3 93.3 66.5 91.9 48.2 58.7 9.5 19.9 29.1 48.4

Grassland 53.9 89.6 45.8 91.3 46.3 92.8 44.6 94.2 48.8 90.9 48.6 91.1

Bare land 36.9 26.6 63.5 44 62.6 47.9 32.1 14.9 23.4 9.3 48.6 29.8

Water 95.3 100 96 100 99.3 100 99.7 100 99.8 100 99.7 100

OA, %/kappa 87.0/0.77 85.8/0.75 87.4/0.78 87.7/0.78 87.5/0.78 88.7/0.80

Table 2. Comparison of user accuracy (UA), producer accuracy (PA), overall accuracy (OA), and kappa coefficient (in the

lowest raw) for different filters for SAR data in 2016.
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positive gains were observed not only for overall accuracy but also for PA and UA for each

class, excluding forest and bare land.

6. Conclusions

One aim of this study was to analyze properties of Sentinel SAR images. It has been shown

that speckle is quite intensive and spatially correlated. These peculiarities have been taken into

account in choosing proper filters for data preprocessing.

Another aim was to compare the impact of different filters for SAR imagery denoising on crop

classification accuracy. Ten SAR images with VV and VH polarization acquired by Sentinel-1A

satellite for the Ukraine territory were explored. For speckle suppression, all available filters

from the ESA SNAP toolbox were evaluated along with those based on DCT, namely, DCTF,

DCTF HT, and 3D DCTF. Filter quality estimation has been performed in terms of overall crop

classification accuracy. An ensemble of feed forward neural networks, in particular MLPs, was

used as this method was validated for multiple JECAM test sites and proved to be efficient for

multitemporal image classification.

The best performance using available filters in SNAP toolbox in terms of overall accuracy was

achieved by the refined Lee filter. At the same time, all proposed DCT-based filters outper-

formed common filters from the SNAP toolbox. 3D DCTF provided the most accurate crop

classification map after removing the speckle, and that is essential for crop area estimation and

for solving other applied problems. It should be noted that 3D DCTF improved not only

overall accuracy but also PA and UA for each class (especially for summer crops), excluding

forest and bare land.
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