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Abstract

Although there has been an intense study and exploitation of research regarding biosorp-
tion processes, the lack of coherent and similar methodologies, essential to the elaboration 
of any consequential and universal conclusion, associated with the lack of biosorption 
studies conducted at a pilot and industrial scale, with multicomponent solutions or real 
effluents, as well as the lack of information regarding the pollutant interactions makes 
the implementation and commercialization of biosorption technology very complicated. 
This chapter summarizes the existing knowledge and the experimental work conducted 
at a pilot scale or industrial scale with multicomponent solutions and critically reviews 
aspects related to biosorption research regarding the advantages, the disadvantages, the 
rationale, the scope and scientific value of biosorption processes and the obstacles to com-
mercial success.

Keywords: biosorption, bioremoval, metals, organic pollutants, pilot and industrial 
scale

1. Introduction

Although the contamination of water resources is a widely recognized fact and a critical univer-

sal issue, it is still a common occurrence [1, 2]. The major sources of aquatic as well as terrestrial 

and atmospheric systems contamination are effluent outfalls and gas emissions from indus-

tries, agricultural activities and refinery contaminants [2] that end up entering water bodies via 

rain water, soil and groundwater systems. The contaminants comprise (i) inorganic chemicals 

such as metals, extensively used in a wide variety of industries, including metal plating, min-

ing, batteries, electroplating, ceramic, chemical manufacturing of paint and coating, health-care 
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products, extractive metallurgy, petrochemical and fine chemistry [3] and (ii) organic chemicals 

such as industrial solvents, volatile organic compounds (VOCs), pharmaceuticals, insecticides, 

pesticides, dyes [1] and food processing wastes [2].

The non-natural redistribution of these chemicals has culminated first in their increasing dis-

charge and accumulation into the different environmental matrices and second in the devel-
opment of environmental and health problems (Figure 1) [3, 4]. Therefore, there is a constant 

search for economical, efficient, effective and eco-friendly processes able to not only decon-

taminate wastewaters but also ensure that the presence of the pollutants discharged into the 

aquatic systems is below the permissible limits.

In the past decades, great attention and concern have been given to the continuous and increas-

ing discharge of metals such as chromium, mercury, lead [2], cadmium and nickel into the envi-

ronment. This increasing concern is due to metals’ inherent properties, (i) persistence in nature, 

(ii) tremendous toxicity even at low concentrations and (iii) tendency for bioaccumulation via 

food chain in living tissues, which may culminate in the triggering of several serious diseases 

and health disorders [3].

Chromium compounds, for instance, are carcinogenic and nephrotoxic in nature. Exposure to 

mercury and lead may provoke allergic skin reaction, eventual negative reproductive effects as 
well as damage to brain function and disruption of the nervous system [2]. Cadmium exposure 

may cause severe damage in different organs including the testis, lungs, liver and kidneys and 
even lead to infertility [5, 6]. It also affects the action of enzymes and induces genomic instabil-
ity through complex and multifactorial mechanisms, such as proteinuria, and an increase in 

the frequency of kidney stone formation, eventually causing certain types of cancer (group B1) 

[3]. Besides being listed in the carcinogenic group B2, nickel has been implicated as a teratogen 

nephrotoxin and an embryotoxin element. Acute and chronic nickel exposure can cause several 

disorders such as cyanosis, chest pain, tightness, pulmonary fibrosis, skin dermatitis, lungs and 
kidney damage and renal oedema [7].

The capacities of metals to disrupt the function of fundamental biological molecules, such as 

DNA, proteins and enzymes, and to displace certain metals essential for the cell viability by 

Figure 1. Sources of pollution by organic and inorganic chemicals, their transport, transformation, fate and impact into 

the different environmental matrices.
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similar metals are the two major causes of their toxicity. For instance, lead can replace calcium 

in the bone and other tissues where it is required, whereas cadmium can replace zinc in some 

proteins that require it for their structure as well as function [2].

More recently, the discharge of organic chemicals such as pharmaceutical products [8], volatile 

organic compounds, aromatic hydrocarbons [9] and dyes [10] has also caught the world atten-

tion, due not only to their persistence, toxicity and mobility in the environment but also to their 

widespread use and discharge as well as their impact on all forms of life.

Despite the fact that every single aspect connected to pharmaceutical efficiency and patient 
security to be under scrutiny [8], the complete extent and consequences of the presence of 

emerging pollutants in the environment matrices and on the wellbeing of all forms of life are 

not yet sufficiently studied in terms of toxicity, degradability and occurrence, allowing it to 
remain unregulated.

Pharmaceutical compounds have been detected at trace concentrations (ng/L levels) in a wide 

variety of environmental water samples including sewage flows, rivers, lakes, groundwater 
aquifers and drinking water [11]. Although the concentrations of these pharmaceutical prod-

ucts have been detected at trace concentrations in a broad variety of aquatic environments, 

their continuous input may compose a potential threat for living organisms. Furthermore, 

pharmaceutical products are often synthesized in order to remain unchanged during their 

passage through the human body, which makes them and their metabolites persistent pollut-

ants in environmental matrices [8].

The increased use of organic compounds in almost, if not all, industrial sectors as well as in 

household activities and consequent discharge and accumulation into the environment has 

increased in an extremely significant way in the past years [2, 12–14]. Most of these compounds 

are extremely toxic to humans due to (i) their general carcinogenic and mutagenic properties, 

(ii) their capacity to form intermediates with the same or even the higher level of toxicity [15] 

and (iii) their persistence and mobility into the different environmental matrices [7].

More than 1 × 105 dyes are currently marketed with an annual production exceeding 7 × 105 tons 

per year, of which about 2% are discharged directly to effluents from manufacturing operations, 
whereas 10% are discharged from textile and related industries [16]. The dye lost through the 

practices of textile industry poses a serious problem for wastewater management and treat-

ment, since it can reach loss values as high as 50%. About 2 × 105 tons of dyes are discharged 

annually into the environment, especially into water bodies [17].

Although chemical precipitation, reverse osmosis, complexation, solvent extraction, ion exchange, 

adsorption on granular activated carbon, condensation, thermal degradation, oxidation and incin-

eration comprise the conventional abiotic methods usually employed to remove different types of 
pollutants from effluents [7], biotic methods such as water purification treatments and standard 
sewage as well as auxiliary reed bed and wetlands approaches [18] have been used for many 

years. The outstanding ability of microorganisms to detoxify organic and inorganic pollutants 

[15, 18] and to the downside of the abiotic methods which can be summarized (i) as expensive, 

(ii) not environmentally friendly and (iii) usually dependent on the concentration of the waste [7] 

makes them an attractive alternative to decontaminate contaminated solutions.
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2. Biosorption: a general overview

Microorganisms, in particular bacteria and fungi, have been receiving particular attention 
in the area of environmental microbiology and biotechnology due to their ability not only to 

decompose a wide range of organic compounds, from natural and anthropogenic origin, but 

also to accomplish changes in the speciation and mobility of metals and radionuclides as well 

as other inorganic elements by oxidation-reduction and other changes, most of which are a 

direct consequence of metabolic properties of living organisms and microorganism [18].

Although the term biosorption presents a multidimensional character, its definition is rather dif-
ficult and has been evolving over the past few decades, due to the diversity of the mechanisms 
that contribute to the overall process, depending on the sorbate and the biosorbent, on the envi-

ronmental conditions and on the metabolic processes in the case of living organisms [18, 19].

Some publications [18, 20, 21] indicate that most researchers define biosorption as a passive 
and metabolically independent process that can be performed either by dead biomass or frag-

ments of cells and tissues or by living cells as an active and metabolic-dependent process. It is 

important to highlight that both mechanisms can overlap adding additional confusion in the 

use of the terminology.

It is also important to highlight that (i) biosorption is a crucial part of many processes taking 

place in nature, including, for example, antigen-antibody immune reactions and adsorption to 

host cells, as the first stage in virus replication or sorption in soil and that (ii) numerous meth-

odological approaches used in medicine, life sciences and biotechnology are, in fact, based on 

biosorption processes, for instance, the staining of microbial cells for electron microscopy and 

targeted therapies in cancer treatment. It is therefore possible to affirm that many life phe-

nomena are in some way related to interactions between a sorbate and biological surfaces [18]. 

Basically, biosorption is a reversible and rapid process of binding of ions or neutral molecules 

from aqueous solutions onto functional groups that are present on the surface of biomass, 

independent on cellular metabolism, efficient and selective [21].

Presently, it is accepted that biosorption is a physico-chemical process, simply defined as the 
removal of substances from solution by biological material, and includes mechanisms such as 

absorption, adsorption, surface complexation ion exchange and precipitation [18]. The addi-

tion of the prefix bio to the term sorption denotes the involvement of a biological entity (living 

or death biomass, as well as their metabolites or synthesized products). Although the majority 

of biosorption research has been focused on metals and/or metalloid species, the substances to 

be sorbed can be from either organic or inorganic origin and presented in soluble or insoluble 

forms. Therefore, considering the diversity of sorbates and sorbents that can be used in all 

domains of life, it is plausible to use the term biosorption to describe any system where a 

sorbate (e.g. an atom, molecule, a molecular ion) interacts with a biosorbent (a solid surface 

of a biological matrix) resulting in an accumulation at the sorbate-biosorbent interface and 

therefore a reduction in the solution sorbate concentration.

The mesmerizing features of biosorption processes over traditional treatment methods com-

prise (i) economical operating costs; (ii) inexpensive biological materials, usually obtained from 
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agriculture or from industrial wastes; (iii) high efficiency; (iv) no additional nutrient require-

ment; (v) minimization of biological or chemical sludge; (vi) biosorbent regeneration; and (vii) 

the possibility of metal recovery. In addition to all this captivating features, biosorption pro-

cesses can be accomplished in an extensive range of pH values (from pH 3 to pH 9) and tem-

perature values ranging from 4 to 90°C.

The first paper on biosorption was published in 1951, and since then, enormous efforts have been 
made to accomplish efficient, effective and economic biosorbents to be employed in wastewater 
treatment. Fundamental progresses have been accomplished over the past decades in order to 

understand the complex biosorption mechanisms, the methods for its quantification (equilibrium 
and kinetics) and the factors that influence efficiency and the rate of the process (Figure 2) [20].

Although the majority of the biosorption research conducted till now has been performed on 

microbial systems, mainly bacteria, microalgae and/or fungi, with metals and related substances 

(Table 1), the term is now being applied to all types of organic compounds and to particulates.

The massive research concerning biosorption of metals is an unsurprising fact, taking into 

account not only the toxicity effect and increased discharge of these contaminants into the 
environment but also the nature of adsorption and ion exchange mechanisms. Nevertheless, 

it is also crucial to highlight that regardless the continuous increase in published research 

related to the biosorption of hazardous substances and/or elements, there has been little or no 
exploitation in a pilot and industrial scale and/or context [18] and on the decontamination of 

multicomponent solutions [3, 4, 7, 22, 23]. In fact, despite the biosorption process that has been 

discussed in literature for 60 years with over 13,000 scientific papers in peer-reviewed journals 
[19], so far most of this research was performed in a laboratory scale, using batch tank reactors 

or packed mini-column, and has not been extensively implemented in an industrial scale and 

in multicomponent solutions. The team of Professor Bohumil Volesky from McGill University, 

Canada, and his company BV Sorbex comprise the few researchers that have contributed to 

Figure 2. Biosorption process: a global overview (adapted from Refs. [2, 19]).
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the scale-up of sorption process field, from a laboratory scale to a pilot or industrial scale [21]. 

The team of the Centre of Biological Engineering from the University of Minho, Portugal, 

has also been contributing to the study and understanding of (i) the scale-up of biosorption 

processes from a laboratory scale to a pilot scale and (ii) the increase of solution complexity to 

be decontaminated, evolving from single-component solutions to multicomponent solutions, 

mixing organic and inorganic compounds [3, 4, 7, 9, 15, 24], the main subject of this chapter.

3. Biosorption in multicomponent solutions

Although most of industrial and household effluents and wastewater are composed by a cock-

tail of contaminants made of metal residues and organic compounds, few studies regarding 

the simultaneous removal of multicomponent solutions have been conducted and optimized, 

studies that would better simulate the behaviour of the pollutants present in real effluents. 
The effect that different types of contaminants (inorganic versus inorganic and inorganic ver-

sus organic) have on each other and the effect that different initial concentrations of metal 
exert on the bioremoval (biodegradation and biosorption among other biological processes) 

Position Paper Times cited

1 Review of second-order models for adsorption systems Journal of  

Hazardous Materials 136 (3): 681–689

1402

2 Biosorption of heavy metals Biotechnology Progress 11 (3): 235–250 1323

3 A review of the biochemistry of heavy metal biosorption by brown  

algae Water Research 37 (18): 4311–4330

1133

4 Application of biosorption for the removal of organic pollutants: A  

review Process Biochemistry 40 (3–4): 997–1026

1002

5 Biosorbents for heavy metals removal and their future Biotechnology  

Advances 27 (2): 195–226

903

6 Application of chitosan, a natural aminopolysaccharide, for dye removal  

from aqueous solutions by adsorption processes using batch studies: A 

review of recent literature Progress in Polymer Science 33 (4): 399–447

832

7 Removal of Congo Red from water by adsorption onto activated carbon 

prepared from coir pith, an agricultural solid waste Dyes and Pigments  

54 (1): 47–58

759

8 Activated carbons and low cost adsorbents for remediation of tri- and 

hexavalent chromium from water Journal of Hazardous Materials 137 (2): 

762–811

757

9 Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and 

equilibrium studies Environmental Science & Technology 36 (9): 2067–2073

749

10 Interactions of fungi with toxic metals New Phytologist 124 (1): 25–60 740

Table 1. The top 10 publications in the ISI Web of Science database (Web of Science Core Collection) for ‘all years’ 

(1970–2016) with ‘biosorption’ in the topic.
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of the organic contaminant have also been poorly investigated. For these reasons, the authors 

opted to review the state of the art of biosorption from multicomponent solutions, from a 

laboratory scale to a pilot and/or industrial scale.

Costa and Tavares [3] studied the ability of two fungi and one bacteria (Penicillium sp., 

Alternaria sp. and Streptococcus equisimilis) to simultaneously treat tertiary solutions containing 

diethylketone, Cd(II) and Ni(II), and they determined the influence of the initial concentra-

tion of metal on (a) the microbial growth, (b) the biosorption capacity of these pollutants and 

(c) the biological activity after exposure. The results obtained regarding the tertiary solutions 

allowed to infer that S. equisimilis presented the best performance in terms of uptake, for all the 

conditions tested and that an increase in the initial concentration of metal promoted an increase 

in the uptake. For the same experimental conditions, the biosorption data obtained for the 

three microorganisms showed (i) a higher affinity of the biosorbents towards Ni(II) and (ii) a 
strong and detrimental effect of the metals either in the biosorption process or in the microbial 
growth. These results may be explained by the fact that not only Ni(II) can be used by the cells 

as a cofactor, competing actively and passively with Cd(III) but is also less toxic than Cd(II).

More complex systems were further evaluated [4] with a suspended bacterial culture of 

Streptococcus equisimilis with different initial concentrations of Ni(II) (5–450 mg/L) and Cd(II) 
(5–100 mg/L) in single-component solutions compared to vermiculite to decontaminate single-

component solutions composed either by diethylketone, Cd(II) or Ni(II) and binary-component 

solutions composed either by diethylketone and Cd(II) or diethylketone and Ni(II). A S. equisi-

milis biofilm supported on vermiculite to decontaminate binary solutions composed either by 
diethylketone and Cd(II) or diethylketone and Ni(II) was also evaluated. The principal aim of 

this research was the characterization of the interactions between the different concentrations 
of sorbates and the biosorbents used, when employed in single or binary solutions. For the first 
set of experiments (S. equisimilis and different concentrations of Ni(II) or Cd(II), it was observed 
that the uptake and percentage of influent Ni(II) sorbed depended on the initial concentration 
of the sorbate. No significant pH changes had occurred, and the uptake suffered a 30-fold 
increase with the increase of the initial concentration between 5 and 80 mg/L. Nevertheless, 

there were no significant changes (<10%) in terms of biosorption percentage for the same initial 
concentration. The biosorption of Cd(II) was also found to depend on the initial concentra-

tion, suffering fluctuations lower than 18%. In these assays, there was an increase in terms of 
pH (from 6.05 to 6.98). This increase resulted in an increase in the hydroxyl and other anionic 

functional groups, which made the bacterial surface more negative increasing the number of 

electrostatic interactions. For the second set of experiments, it was observed that the presence 

of Cd(II) decreases significantly the sorption percentage of diethylketone, but the presence of 
this organic compound increased Cd(II) sorption percentage. The presence of Ni(II) has a syn-

ergetic effect on diethylketone biosorption. For the third set of experiments, it was established 
that the presence of the biofilm is an advantage, obtaining promising results, specially taking 
into account not only the concentrations employed but also the toxicity of the metals. In these 

experiments, a common increase in terms of sorption efficiency was observed, and this may 
be explained by the functional groups present on the biofilm that can implement the substrate 
molecule adsorption and eventually promote the biodegradation of diethylketone and by the 

increase of the available sites for sorption.

Biosorption of Multicomponent Solutions: A State of the Art of the Understudy Case
http://dx.doi.org/10.5772/intechopen.72179

57



Attempting to mimetize the complexity of real effluents and wastewaters, biosorption experi-
ments of multicomponent solutions (Al(III), Ni(II), Cd (II) and Mn(II)) by a S. equisimilis biofilm 
supported into vermiculite were performed first at a laboratory scale in batch system (4 g/L of 
diethylketone and 5–100 mg/L of each metal) and second at a pilot scale in open systems (7.5 g/L 

of diethylketone and 100 mg/L of each metal) [7]. Diethylketone was periodically added to the 

bioreactor and was used as the only carbon source. At laboratory scale, the authors observed 

that diethylketone and removal percentages higher than 95% were achieved in less than 4 hours 

for all the initial concentrations of metal tested and that the increase of the initial concentration 

of metals accelerates the complete bioremoval (by biodegradation and/or biosorption processes, 

for instance) of diethylketone. Regarding the results obtained for the four metals (5–80 mg/L), 

it is was found that they follow the sequence Al(III) > Cd(II) ≥ Ni(II) ≥ Mn(II), whereas for the 
experiment conducted with an initial concentration of 100 mg/L, the bioremoval efficiency fol-
lowed a different sequence Al(III) > Ni(II) > Cd(II) > Mn(II). This difference may be explained 
by the increase in the initial concentration of metal, which will influence the ionic strength of 
the elements in solutions, and also by the fact that many divalent metal cations are structurally 

similar, allowing the substitution of essential metals, such as Ni(II) and Mn(II) for non-essential 

metals such as Cd(II). The uptake of all metals increased with the increase of the initial concen-

tration of each metal.

At a pilot scale, it was observed that the biosorption percentage of all the sorbates (organic and 

inorganic) tended to increase through time and followed the sequence diethylketone > Al(III) 

> Cd(II) ≈ Ni(II) ≥ Mn(II), and this is explained by the bioavailability and structural similarity 
between Ni(II) and Cd(II) that promote the uptake of Cd(II) by the cell enzymes instead of 

Ni(II) and by the combination of the reduced size of the ionic radius of Mn(II) associated with 

its reduced electronegativity and the small porosity of the support. The complete bioremoval 

of diethylketone and its metabolites was achieved, even after the addition of diethylketone to 

the bioreactor and the sorption percentage of each metal increased through time.

The effect of different initial concentrations of Cd(II), Cu(II), Zn(II), Pb(II) and As(II) (10 mg/L 
or 100 mg/L) on the bioremoval of fluorene (10 mg/L) by Sphingobacterium sp. KM-02 was also 

assessed [25]. The presence of those metals at 10 mg/L decreased fluorine bioremoval, and 
the microbial growth and the inhibition effect followed the trend Cd(II) ≈ Cu(II) > Zn(II) > Pb 
(II) > As(II). Cd(II) and Cu(II) strongly inhibited fluorene bioremoval and microbial growth, 
whereas Zn(II) and Pb(II) exert a modest inhibitory effect. As(II), on the other hand, has no 
negative effect on microbial growth and fluorene bioremoval.

3.1. Correlation between metal concentration and microbiological processes

Metals including cadmium, chromium (III and VI), copper, lead, mercury, nickel and zinc are 

reported to inhibit microbiological processes such as acidogenesis, methanogenesis, nitro-

gen transformation, biomass production and enzymatic activity [22]. S. equisimilis exposure 

(in the form of biofilm supported into vermiculite or in suspension) to solutions containing 
either Cd(II) or Ni(II) (5–100 mg/L) led to microbial growth inhibition [3, 4]. Nevertheless, 

it is important to mention that the addition of metals may also have the opposite effect 
and enhance and/or stimulate microbiological processes. The growth of a suspend culture 
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of Alternaria sp. and Penicillium sp. when exposed to Ni(II) concentration ranging from 5 to 

100 mg/L was enhanced [3], and when this metal was mixed with diethylketone, the entrap-

ment metabolic pathway selected by those microorganisms was different, since no metabolite 
was formed during the experimental period, as opposite to what occurred when exposed only 

to diethylketone.

Although studies concerning the influence of metals on organic contaminant bioremoval are 
scarce, it has been demonstrated that those elements are able to inhibit organic contaminant 

bioremoval, under both aerobic and anaerobic conditions.

Cadmium, chromium (II), copper, mercury and zinc were found to inhibit the biodegrada-

tion of 2,4-DME in lake water samples inoculated with either a sediment or an aufwuch 

(floating algal mat) sample [26]. In the aufwuch samples, mercury revealed to be the most 

toxic metal, with a microbial inhibitory concentration (MIC) of 2 × 10−3 mg total mercury/L, 

whereas in the sediment samples, zinc was the most toxic metal with a MIC of 6 × 10−3 mg 

total zinc/L. Naphthalene (NAPH)-degrading Burkholderia sp. was used in a pure culture 

and reported a MIC of 1 mg solution-phase cadmium/ L [27]. Comparable values of MIC 

were reported for cadmium (0.629 mg total cadmium/L for aufwuch samples and 0.1 mg 

total cadmium/L for sediment samples) [26].

Not all studies were focused on the effect of single metals on bioremoval of a single, pure organic 
pollutant. Benka-Coker and Ekundayo [28] investigated the impact of copper, manganese, lead 

and zinc on crude oil biodegradation by Pseudomonas sp. and Micrococcus sp. These authors 

inferred that the crude oil was mostly reduced by zinc and slightly by manganese. Interestingly, 

combinations of these metals presented a lesser toxic profile than some single metals. For 
instance, toxicity of 0.5 mg total zinc/L was mitigated by the addition of 0.5 mg total copper, lead 

and manganese/L.

3.2. Correlation between metal concentration and bioremoval inhibition

It is acknowledged that the bioremoval of an organic pollutant decreases as the concentration 

of bioavailable metal increases in co-contaminated systems (Figure 3). However, this pattern 
is not always observed. Two other additional patterns describing the effect of metals on the 
bioremoval of organic pollutants have been shown.

Low metal concentration enhances bioremoval of organic pollutant; high metal concentrations 

inhibit it—additional pattern 1: diverse studies showed a pattern of metal toxicity in which 
low metal concentrations enhance bioremoval activity, till the maximum level of stimulation 

is reached. After this point, an increase in metal concentration will lead to an increase in metal 

toxicity (Figure 3, Line 2). Sustaining this pattern is the result obtained by Capone et al. [29] 

showing that methanogenesis was enhanced by the addition of some metals.

Bioremoval inhibition of organic pollutants is due to low metal concentration; lower biore-

moval inhibition of organic pollutants is due to high metal concentration—additional pat-

tern 2: several studies suggested that low concentrations of metal strongly inhibit bioremoval 

activity, until a maximum of inhibition is achieved (Figure 3, Line 3). After this point, an 
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increase in metal concentration will lead to a decrease of metal toxicity. An example is the 

work conducted by Said and Lewis [26] where an increase in metal concentration was respon-

sible for a decrease in 2,4-DME bioremoval.

Briefly, the existence of different patterns of responses of organic pollutants towards metals is 
possible to assume and that this variety of responses makes the understanding and prediction 

of metal toxicity in the environment more difficult, since these elements may influence both 
the ecology and physiology of the pollutant-degrading microorganisms.

Unless the models used to predict the influence of metals on the bioremoval of organic pol-
lutants incorporate both the ecologic and physiologic effects of metals towards the pollutant-
degrading microorganisms, they may fail their main purpose.

3.3. Biosorption in multi-metal solutions

As previously mentioned, despite the research concerning biosorption processes has been well 

documented in the literature, biosorption of different metal ions by different types of biological 
materials has been mainly conducted in single-metal solutions [21]. Information concerning bio-

sorption studies in binary- [30–34], tertiary- [31–35] and quaternary-component solutions [36] is 

very scarce. Moreover, the use of different evaluation methodologies makes any attempt to draw 
any meaningful and universal conclusion very difficult and, on the other hand [37], the influence 
that anions may exert on the biosorption process of metal cations has been somehow neglected.

Nostoc muscorum, a cyanobacterium indigenous from coal mining sites, was employed as bio-

sorbent to decontaminate aqueous solutions containing Cd(II), Cu(II), Pb(II) and Zn(II) (5 or 
10 mg/L) [38]. The results obtained in these experiments showed a maximum bioremoval of 

both Pb(II) (96.3%) and Cu(II) (96.4%) followed by Cd(II) (80.0%) and Zn(II) (71.3%) after 60 h 
of culture period. The bioremoval of Cd(II), Cu(II) and Pb(II) was maximum at 5 mg/L, whereas 

Zn(II) bioremoval has a maximum when all the four heavy metals were set at 5 mg/L. These 

Figure 3. Metal concentration impact on bioremoval inhibition pattern of organic pollutants, assuming (1) a direct or 
linear relationship, (2) additional pattern 1 and (3) additional pattern 2.
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results suggest a dependence of metal bioremoval by N. muscorum on the metals and their 

concentration combination in the multi-metal solution. It was also observable that the metals’ 

uptake depended upon their concentration combination in solution and the bioremoval order 

observed was Pb(II) > Cu(II) > Cd(II) > Zn(II). In this study, Pb(II) showed not only a better 
bioremoval efficiency compared with the other three metals but also that its bioremoval was 
unaffected by the presence of the three other metals. However, the presence of Pb(II) exerted 
a strong negative effect on the bioremoval of all other metals. These results may be explained 
by taking into consideration the Pb(II) strong interaction with the functional groups present 

on the biomass and because Pb(II) presents the smallest radius among the four metals tested in 

these assays (the smaller the hydrated radius, the higher is the affinity of its binding).

3.3.1. Effect of anions

Three aspects related to the influence of anions on the biosorption processes are usually 
considered in the available literature: (i) the influence that the anion has on the maximum 
biosorption capacity of the sorbent, in single-metal solutions [39]; (ii) the influence of anion 
concentration on the biosorption of several metal ions, in multi-metal solutions [37–41]; and 

(iii) the nature of the biosorbent that can influence significantly the effect of the anion on the 
biosorption capacity [21].

The biosorption of four metals—Cr(VI), Co(II), Ni(II) and Zn(II)—by the Aspergillus niger fun-

gus [40] revealed that the presence of anions such as NO
3
− and SO

4
2− did not significantly affect 

the biosorption performance of the four metals, whereas the presence of Cl− did negatively 

affect the biosorption performance of the four metals in multi-metal solutions.

Kuyuca and Volesky [42] studied the biosorption of Co(II) ions in the presence of SO
4
2− and 

PO
4
3− by the brown macroalga Ascophyllum nodosum and concluded that the presence of these 

anions did not reveal any influence on the biosorption performance, as opposite to the pres-

ence of NO
3
− anions, that strongly inhibited the biosorption process. The opposite situation 

was observed in the biosorption of Zn(II) by the cyanobacterium Oscillatoria angustissima [41], 

and it was stated that the presence of SO
4
2−, NO

3
− and Cl− had the following biosorption inhibi-

tion order SO
4
2− > Cl− > NO

3
−.

The degree of inhibition for the biosorption of La(III), Cd(II), Pb(II) and Ag(I) cations, by the 

Rhizopus arrhizus fungus [43], usually followed the order EDTA > SO
4
 2− > Cl− > PO

4
 3− > glu-

tamate > CO
3
 2 − .

As referred previously, the influence of the anion on the biosorption capacity will vary 
depending on the metal ion oxidation state, as it was observed for the biosorption of Cr(III) 

and CR(VI) ions [44], with the following inhibitory orders SO
4
2− > Cl− ≈ NO

3
− and NO

3
− > SO

4
2−.

3.3.2. Effect of the ionic concentration

Considering the limited number of active sites present on the biosorbent surface, it is accepted 

that the biosorption capacity of the biosorbent towards a specific pollutant (metal or not) in a 
multicomponent solution is inferior to the one in single-component solutions; therefore, the 

contaminants will compete for the active sites, available for sorption [44].
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This is the case of the amount of Cr(VI) biosorbed per unit weight of Rhizopus arrhizus that 

decreased with the increase of Fe(III) concentration as an antagonistic effect [45, 46].

Fagundes-Klen et al. [47] observed that the amount of Zn(II) biosorbed by S. filipendula in the 

presence of high concentrations of Cd(II) decreased significantly (56.8 %) when comparing 

the biosorption results achieved in single-metal solution. These results are easily explained 

by the reduced number of coordination, the ionic radius and the higher ionization potential 

of Zn(II).

It is therefore worth noting that as the ionic concentrations become higher, there is a growing 

force able to overcome the mass resistance transfer of metal ions through the biosorption pro-

cess. The published data [48] showed that even though lead ions (Pb2+) have higher affinity than 
copper (Cu2+) to be biosorbed by an algae belonging to the genera Gelidium uptake, Cu2+ uptake 

was higher than Pb2+ uptakes due to the higher initial concentration of Cu2+. Similar results 

described the biosorption of Pb2+ and Cu2+ by pine cone shells [49]. When binary solutions were 

tested, the uptake of both metals was significantly inhibited, revealing an antagonistic effect.

3.3.3. Effect of electronegativity and atomic weigh of metals

In multi-metal solution, the electronegativity and atomic weight of metals can also have an 

important role in the biosorption process and efficiency. Biosorption experiments showed 
that when mixed, Ni(II) and Zn(II) sorption by wheat straw presented different performances, 
revealing a competition between both metals for the actives sites present on the biosorbent 

surface and a higher preference for Zn(II) rather than Ni(II) [50]. These results are easily justi-

fied taking into consideration the more appealing physical characteristics of Zn(II): lower elec-

tronegativity and higher atomic weight of Zn(II). The oxygen-containing group present on the 
wheat straw (negative sites) repels Ni(II) more than Zn(II), making it more difficult to be sorbed.

3.3.4. Effect of temperature

As previously mentioned (see Section 2, Figure 2), temperature also plays an important role on 

the biosorption processes, as well as on all biological and physico-chemical processes. The bio-

sorption of Cr(III), Cu(II) and Zn(II) by wine-processing waste sludge (WPWS) in a ternary sys-

tem was found to be significantly affected by temperature. At normal conditions, the biosorption 
of these three metals in a mixture by WPWS followed the trend Cr(III) > Cu(II) > Zn(II). However, 
when the temperature decreases to 10°C, the biosorption of Cr(III) was inferior than Cu(II) [50].

4. Critical assessment concerning the biosorption research on 

multicomponent solutions

As previously mentioned, in the past few decades, there has been an intense study and 

research concerning biosorption processes to treat contaminated environmental matrices and 

wastewaters. However, it is doubtful whether such a remarkable rise in published output 

has significantly enhanced the knowledge about biosorption process, or aided any industrial 
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exploitation, which so often is the primary underlying principle for such investment and work 

[18, 19, 21]. Despite the incontestable progress made over decades of research, most of the 

biosorption studies are still conducted at a laboratory scale and involve (i) the characteriza-

tion of a selected sorbent, which will sorb a given contaminant from solution, (ii) the study of 

the effect of physico-chemical parameters may have on biosorption and (iii) the use of metals. 
Considering that the majority of elements present in the periodic table are classified as metals, 
the potential number of ‘original’ research is most likely beyond comprehension, especially if 

coupled with the gigantic number of microbial species, strains and metabolites/derived sub-

stances. It is therefore expected that the output of publications related to biosorption shows 

no sign of decreasing and will be increased due to the continuing number of new journals, 

including those that are web based [18, 19].

It is also logical to infer that several technical and scientific issues should be solved in order 
to meet the industrial demands and bring the biosorption technology into commercialization. 

Based on this, several future perspectives can be made:

• Although a large number of biological materials are available, it is still essential to find and/
or prepare more economic, efficient and selective sorbents.

• It is necessary to elaborate, improve and/or simplify the mathematical models used to de-

scribe the multicomponent systems.

• To achieve the best biosorption performance, it is crucial to identify the biosorption mecha-

nism underlying relatively to the class of biosorbents used.

• To obtain the best biosorption performance, it is essential to identify the biosorption mech-

anism in relation to the general group of the selected biosorbent.

• Biosorption studies should also be conducted at a pilot or industrial scale and with mul-

ticomponent solutions or, if possible, real effluents and wastewaters. This will allow to 
understand the interactions between all the sorbents and the sorbate and thus optimize the 

biosorption process, promoting its future commercialization.

• Although there is a significant number of patents and publications available, the biosorp-

tion process has been so far mainly performed at a laboratory scale. Up-scale of the bio-

sorption processes should be enhanced.

• In order to apply the biosorption technology at an industrial scale, economic analyses are 

necessary to estimate the overall cost of the sorbent and biosorption process.

• Additional attention should be paid to the application of biosorption technology in product 
separation, recovery and purification.

• The use of similar and universal evaluation methodologies allows to draw meaningful and 

universal conclusions [21].

• Eradicate the poor and misleading communications, and the use of loose terminology, 

which is associated with the great complexity of biosorption phenomena, has intricated the 

process of prioritizing fundamental scientific and commercial tasks and of creating clear 
information for the industry.
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