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1. Introduction 

"A picture is worth one thousand words". This proverb comes from Confucius - a Chinese 
philosopher about 2500 years ago. Now, the essence of these words is universally 
understood. A picture can be magical in its ability to quickly communicate a complex story 
or a set of ideas that can be recalled by the viewer later in time. 
Visual information plays an important role in our society, it will play an increasingly 
pervasive role in our lives, and there will be a growing need to have these sources processed 
further. The pictures or images are used in many application areas like architectural and 
engineering design, fashion, journalism, advertising, entertainment, etc. Thus it provides the 
necessary opportunity for us to use the abundance of images. However, the knowledge will 
be useless if one can't find it. Face to the substantive and increasing apace images, how to 
search and to retrieve the images that we are interested in facility is a fatal problem: it brings 
a necessity for image retrieval systems. As we know, visual features of the images provide a 
description of their content. Content-based image retrieval (CBIR), emerged as a promising 
mean for retrieving images and browsing large images databases. CBIR has been a topic of 
intensive research in recent years. It is the process of retrieving images from a collection 
based on automatically extracted features from those images. 
This paper focuses on presenting a survey of the existing approaches of shape-based feature 
extraction. Efficient shape features must present some essential properties such as: 

• identifiability: shapes which are found perceptually similar by human have the same 
features that are different from the others. 

• translation, rotation and scale invariance: the location, the rotation and the scaling 
changing of the shape must not affect the extracted features. 

• affine invariance: the affine transform performs a linear mapping from coordinates 
system to other coordinates system that preserves the "straightness" and "parallelism" of 
lines. Affine transform can be constructed using sequences of translations, scales, flips, 
rotations and shears. The extracted features must be as invariant as possible with affine 
transforms. 

• noise resistance: features must be as robust as possible against noise, i.e., they must be 
the same whichever be the strength of the noise in a give range that affects the pattern. O
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• occultation invariance: when some parts of a shape are occulted by other objects, the 
feature of the remaining part must not change compared to the original shape. 

• statistically independent: two features must be statistically independent. This 
represents compactness of the representation. 

• reliability: as long as one deals with the same pattern, the extracted features must 
remain the same. 

In general, shape descriptor is a set of numbers that are produced to represent a given shape 
feature. A descriptor attempts to quantify the shape in ways that agree with human intuition 
(or task-specific requirements). Good retrieval accuracy requires a shape descriptor to be able 
to effectively find perceptually similar shapes from a database. Usually, the descriptors are in 
the form of a vector. Shape descriptors should meet the following requirements: 

• the descriptors should be as complete as possible to represent the content of the 
information items. 

• the descriptors should be represented and stored compactly. The size of a descriptor 
vector must not be too large. 

• the computation of the similarity or the distance between descriptors should be simple; 
otherwise the execution time would be too long. 

Shape feature extraction and representation plays an important role in the following 
categories of applications: 

• shape retrieval: searching for all shapes in a typically large database of shapes that are 
similar to a query shape. Usually all shapes within a given distance from the query are 
determined or the first few shapes that have the smallest distance. 

• shape recognition and classification: determining whether a given shape matches a 
model sufficiently, or which of representative class is the most similar. 

• shape alignment and registration: transforming or translating one shape so that it best 
matches another shape, in whole or in part. 

• shape approximation and simplification: constructing a shape with fewer elements 
(points, segments, triangles, etc.), so that it is still similar to the original. 

Many shape description and similarity measurement techniques have been developed in the 
past. A number of new techniques have been proposed in recent years. There are 3 main 
classification methods as follows: 

• contour-based methods and region-based methods [1]. This is the most common and 
general classification and it is proposed by MPEG-7. It is based on the use of shape 
boundary points as opposed to shape interior points. Under each class, different 
methods are further divided into structural approaches and global approaches. This 
sub-class is based on whether the shape is represented as a whole or represented by 
segments/sections (primitives). 

• space domain and transform domain [2]. Methods in space domain match shapes on 
point (or point feature) basis, while feature domain techniques match shapes on feature 
(vector) basis. 

• information preserving (IP) and non-information preserving (NIP). IP methods allow an 
accurate reconstruction of a shape from its descriptor, while NIP methods are only 
capable of partial ambiguous reconstruction. For object recognition purpose, IP is not a 
requirement. 

Unlike the traditional classification, the approaches of shape-based feature extraction and 

representation are classified according to their processing approaches: One-dimensional 
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function for shape representation, Polygonal approximation, Spatial interrelation feature, 

Moments, Scale space approaches, Shape transform domains. The figure 1 shows the 

hierarchy of the classification of shape feature extraction approaches. 
 

 

Fig. 1. An overview of shape description techniques 

Without being complete, in the following sections, we will describe and group a number of 
these methods together. 

2. Shape parameters 

Basically, shape-based image retrieval consists of measuring the similarity between shapes 

represented by their features. Some simple geometric features can be used to describe 

shapes. Usually, the simple geometric features can only discriminate shapes with large 

differences; therefore, they are usually used as filters to eliminate false hits or combined 

with other shape descriptors to discriminate shapes. They are not suitable to be stand alone 

shape descriptors. A shape can be described by different aspects. These shape parameters 

are Center of gravity, Axis of least inertia, Digital bending energy, Eccentricity, Circularity 

ratio, Elliptic variance, Rectangularity, Convexity, Solidity, Euler number, Profiles, Hole 

area ratio. They will be introduced in this section. 
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2.1 Center of gravity 
The center of gravity is also called centroid. Its position should be fixed in relation to the shape. 
In shape recognition field, it is of particular interest to consider the case where the general 
function f(x, y) is 

 
(1)

where D is the domain of the binary shape. Its centroid (gx, gy) is: 

 

(2)

where N is the number of point in the shape, (xi, yi) ∈ {(xi, yi) | f(xi, yi) = 1}. 
A contour is a closed curve, the discrete parametric equation in Cartesian coordinate system is 

 (3)

where n ∈ [0, N - 1]; a contour may be parametrized with any number N of vertices and  
ƥ(N) = ƥ(0). The position of its centroid is given below: 

 

(4)

where A is the contour's area given by 

 
(5)

The position of shape centroid is fixed with different points distribution on a contour. One 
can notice that the position of the centroid in Figure 2 is fixed no matter how the points 
distribution is. 

 
                                                         (a)                                          (b) 
Fig. 2. Centroid of contour. The dots are points distributed on the contour uniformly (a) and 
non-uniformly (b). The star is the centroid of original contour and the inner dot is the 
centroid of sampled contour. 
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So using Eq. 4, we can obtain the genuine centroid of a contour under whatever the contour 
is normalized. 

2.2 Axis of least inertia 
The axis of least inertia is unique to the shape. It serves as a unique reference line to 
preserve the orientation of the shape. The axis of least inertia (ALI) of a shape is defined as 
the line for which the integral of the square of the distances to points on the shape boundary 
is a minimum. 
Since the axis of inertia pass through the centroid of a contour, to find the ALI, transfer the 
shape and let the centroid of the shape be the origin of Cartesian coordinates system. Let  
xsinθ - ycosθ = 0 be the parametric equation of ALI. The slope angle θ is estimated as follows: 

Let α be the angle between the axis of least inertia and the x-axis. The inertia is given by [3, 4]: 

 

where  
Hence, 

 
Let dI/dα = 0, we obtain 

 

The slope angle θ is given by 
 

 

2.3 Average bending energy 
Average bending energy BE is defined by 

 

where K(s) is the curvature function, s is the arc length parameter, and N is the number of 
points on a contour [5]. In order to compute the average bending energy more efficiently, 
Young et. al. [6] did the Fourier transform of the boundary and used Fourier coefficients and 
Parseval's relation. 
One can prove that the circle is the shape having the minimum average bending energy. 

2.4 Eccentricity 
Eccentricity is the measure of aspect ratio. It is the ratio of the length of major axis to the 
length of minor axis. It can be calculated by principal axes method or minimum bounding 
rectangle method. 
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2.4.1 Principal axes method 
Principal axes of a given shape can be uniquely defined as the two segments of lines that 
cross each other orthogonally in the centroid of the shape and represent the directions with 
zero cross-correlation [7]. This way, a contour is seen as an instance from a statistical 
distribution. Let us consider the covariance matrix C of a contour: 

 

(6)

where 

 
G(gx, gy) is the centroid of the shape. Clearly, here cxy = cyx. 
The lengths of the two principal axes equal the eigenvalues ǌ1 and ǌ2 of the covariance 
matrix C of a contour, respectively. 
So the eigenvalues ǌ1 and ǌ2 can be calculated by 

 

So 

 
 

Then, eccentricity can be calculated: 

 (7)

2.4.2 Minimum bounding rectangle 
Minimum bounding rectangle is also called minimum bounding box. It is the smallest 
rectangle that contains every point in the shape. For an arbitrary shape, eccentricity is the 
ratio of the length L and width W of minimal bounding rectangle of the shape at some set of 
orientations. Elongation, Elo, is an other concept based on eccentricity (cf. Figure 3): 

 (8)

Elongation is a measure that takes values in the range [0,1]. A symmetrical shape in all axes 
such as a circle or square will have an elongation value of 0 whereas shapes with large 
aspect ratio will have an elongation closer to 1. 

2.5 Circularity ratio 
Circularity ratio represents how a shape is similar to a circle [2]. There are 3 definitions: 

• Circularity ratio is the ratio of the area of a shape to the area of a circle having the same 
perimeter: 
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(9)

where As is the area of the shape and Ac is the area of the circle having the same 

perimeter as the shape. Assume the perimeter is O, so Ac = O2/4Ǒ. Then C1
 = 4Ǒ·As= O2. 

As 4Ǒ is a constant, we have the second circularity ratio definition. 
 

 

Fig. 3. Minimum bounding rectangle and corresponding parameters for elongation 

• Circularity ratio is the ratio of the area of a shape to the shape's perimeter square: 

 
(10)

• Circularity ratio is also called circle variance, and defined as: 

 
(11)

where ǍR and ķR are the mean and standard deviation of the radial distance from the 

centroid (gx, gy) of the shape to the boundary points (xi, yi), i ∈ [0,N-1]. They are the 
following formulae respectively: 

 

where  
The most compact shape is a circle. See Figure 4. 

2.6 Ellipse variance 
Ellipse variance Eva is a mapping error of a shape to fit an ellipse that has an equal 
covariance matrix as the shape: Cellipse = C (cf. Eq.6). It is practically effective to apply the 
inverse approach yielding. 
We assume 

 

www.intechopen.com



 Pattern Recognition Techniques, Technology and Applications 

 

50 

 

Fig. 4. Circle variance 

 

 

Then 

 
(12)

Comparing with Eq. 11, intuitively, Eva represents a shape more accurately than Cva, cf. 
Figure 5. 

 

Fig. 5. Ellipse variance 

2.7 Rectangularity 
Rectangularity represents how rectangular a shape is, i.e. how much it fills its minimum 
bounding rectangle: 

 

where AS is the area of a shape; AR is the area of the minimum bounding rectangle. 
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2.8 Convexity 

Convexity is defined as the ratio of perimeters of the convex hull OConvexhull over that of the 

original contour O [7]: 

 
(13)

 

Fig. 6. Illustration of convex hull 

The region R2
 is a convex if and only if for any two points P1, P2 ∈ R2, the entire line segment 

P1P2 is inside the region. The convex hull of a region is the smallest convex region including 
it. In Figure 6, the outline is the convex hull of the region. 
In [7], the authors presented the algorithm for constructing a convex hull by traversing the 
contour and minimizing turn angle in each step. 

2.9 Solidity 
Solidity describes the extent to which the shape is convex or concave [8] and it is defined by 

 

where, As is the area of the shape region and H is the convex hull area of the shape. The 
solidity of a convex shape is always 1. 

2.10 Euler number 
Euler number describes the relation between the number of contiguous parts and the 
number of holes on a shape. Let S be the number of contiguous parts and N be the number 
of holes on a shape. Then the Euler number is: 

 

For example 

 
 

Euler Number equal to 1, -1 and 0, respectively. 

www.intechopen.com



 Pattern Recognition Techniques, Technology and Applications 

 

52 

2.11 Profiles 
The profiles are the projection of the shape to x-axis and y-axis on Cartesian coordinates 
system. We obtain two one-dimension functions: 

 

where f(i, j) represents the region of shape Eq. 1. See Figure 7. 
 

 
Fig. 7. Profiles 

2.12 Hole area ratio 
Hole area ratio HAR is defined as 

 
where As is the area of a shape and Ah is the total area of all holes in the shape. Hole area 
ratio is most effective in discriminating between symbols that have big holes and symbols 
with small holes [9]. 

3. One-dimensional function for shape representation 

The one-dimensional function which is derived from shape boundary coordinates is also 
often called shape signature [10, 11]. The shape signature usually captures the perceptual 
feature of the shape [12]. Complex coordinates, Centroid distance function, Tangent angle 
(Turning angles), Curvature function, Area function, Triangle-area representation and 
Chord length function are the commonly used shape signatures. 
Shape signature can describe a shape all alone; it is also often used as a preprocessing to 
other feature extraction algorithms, for example, Fourier descriptors, wavelet description. In 
this section, the shape signatures are introduced. 

3.1 Complex coordinates 
A complex coordinates function is simply the complex number generated from the 
coordinates of boundary points, Pn(x(n), y(n)), n ∈[1,N]: 

 
where (gx, gy) is the centroid of the shape, given by Eq. 4. 
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3.2 Centroid distance function 
The centroid distance function is expressed by the distance of the boundary points from the 

centroid (gx, gy) (Eq. 4) of a shape 

 

Due to the subtraction of centroid, which represents the position of the shape, from 

boundary coordinates, both complex coordinates and centroid distance representation are 

invariant to translation. 

3.3 Tangent angle 
The tangent angle function at a point Pn(x(n), y(n)) is defined by a tangential direction of a 

contour at that point [13]: 

 

since every contour is a digital curve; w is a small window to calculate θ(n) more accurately. 
Tangent angle function has two problems. One is noise sensitivity. To decrease the effect of 

noise, a contour is filtered by a low-pass filter with appropriate bandwidth before 

calculating the tangent angle function. The other is discontinuity, due to the fact that the 

tangent angle function assumes values in a range of length 2Ǒ, usually in the interval of  

[-Ǒ, Ǒ] or [0, 2Ǒ]. Therefore θn in general contains discontinuities of size 2Ǒ. To overcome the 

discontinuity problem, with an arbitrary starting point, the cumulative angular function φn 

is defined as the angle differences between the tangent at any point Pn along the curve and 

the tangent at the starting point P0 [14, 15]: 

 

In order to be in accordance with human intuition that a circle is “shapeless”, assume  

t = 2Ǒn/N, then φ(n) = φ(tN/2Ǒ). A periodic function is termed as the cumulative angular 

deviant function  (t) and is defined as 

 

where N is the total number of contour points. 

In [16], the authors proposed a method based on tangent angle. It is called tangent space 

representation. A digital curve C simplified by polygon evolution is represented in the 

tangent space by the graph of a step function, where the x-axis represents the arc length 

coordinates of points in C and the y-axis represents the direction of the line segments in the 

decomposition of C. Figure 8 shows an example of a digital curve and its step function 

representation in the tangent space. 

3.4 Contour curvature 
Curvature is a very important boundary feature for human to judge similarity between 
shapes. It also has salien perceptual characteristics and has proven to be very useful for 
shape recognition [17]. In order to use curvature for shape representation, we quote the 
function of curvature, K(n), from [18, 19] as: 
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Fig. 8. Digital curve and its step function representation in the tangent space 

 
(14)

Therefore, it is possible to compute the curvature of a planar curve from its parametric 

representation. If n is the normalized arc length parameter s, then Eq. 14 can be written as: 

 (15)

As given in Eq. 15, the curvature function is computed only from parametric derivatives, 

and, therefore, it is invariant under rotations and translations. However, the curvature 

measure is scale dependent, i.e., inversely proportional to the scale. A possible way to 

achieve scale independence is to normalize this measure by the mean absolute curvature, 

i.e., 

 
 

where N is the number of points on the normalized contour. 

When the size of the curve is an important discriminative feature, the curvature should be 

used without the normalization; otherwise, for the purpose of scale-invariant shape analysis, 

the normalization should be performed. 

An approximate arc length parametrization based on the centripetal method is given by the 

following [19]: 

Let  dn be the perimeter of the curve and  where dn is the length of 

the chord between points Pn and Pn+1, n=1, 2, . . . , N-1. The approximate arc length 

parametrization relations are following: 

 
 

Starting from an arbitrary point and following the contour clockwise, we compute the 

curvature at each interpolated point using Eq. 15. Convex and concave vertices will imply 

negative and positive values, respectively (the opposite is verified for counterclockwise 

sense). Figure 9 is an example of curvature function. Clearly, as a descriptor, the curvature 

function can distinguish different shapes. 
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                                            (a)                                                     (b) 

Fig. 9. Curvature function (a) Contour normalized to 128 points; the dot marked with a star 
is the starting point on the contour; (b) curvature function; the curvature is computed 
clockwise. 

3.5 Area function 
When the boundary points change along the shape boundary, the area of the triangle 
formed by two successive boundary points and the center of gravity also changes. This 
forms an area function which can be exploited as shape representation. Figure 10 shows an 
example. Let S(n) be the area between the successive boundary points Pn, Pn+1 and the center 
of gravity G. 
 

 

Fig. 10. Area function (a) Original contour; (b) the area function of (a). 

The area function is linear under affine transform. However, this linearity only works for 
shape sampled at its same vertices. 

3.6 Triangle-area representation 
The triangle-area representation (TAR) signature is computed from the area of the triangles 
formed by the points on the shape boundary [20, 21]. The curvature at the contour point  
(xn, yn) is measured using the TAR as follows. 

For each three points  where  

n ∈[1,N] and ts ∈ [1, N/2 - 1], N is assumed to be even. The signed area of the triangle formed 
by these points is given by: 

 

(16)

www.intechopen.com



 Pattern Recognition Techniques, Technology and Applications 

 

56 

When the contour is traversed in counter clockwise direction, positive, negative and zero 
values of TAR mean convex, concave and straight-line points, respectively. Figure 11 
demonstrates these three types of the triangle areas and the complete TAR signature for the 
hammer shape. 
 

 

Fig. 11. Three different types of the triangle-area values and the TAR signature for the 
hammer shape 

By increasing the length of the triangle sides, i.e., considering farther points, the function of 
Eq. 16 will represent longer variations along the contour. The TARs with different triangle 

sides can be regarded as different scale space functions. The total TARs, ts ∈ [1, N/2 - 1], 
compose a multi-scale space TAR. 
In [21], authors show that the multi-scale space TAR is relatively invariant to the affine 
transform and robust to non-rigid transform. 

3.7 Chord length function 
The chord length function is derived from shape boundary without using any reference point. 
For each boundary point P, its chord length function is the shortest distance between P and 
another boundary point P’ such that line PP’ is perpendicular to the tangent vector at P [10]. 
The chord length function is invariant to translation and it overcomes the biased reference 
point (which means the centroid is often biased by boundary noise or defections) problems. 
However, it is very sensitive to noise, so that there may be drastic burst in the signature of 
even smoothed shape boundary. 

3.8 Discussions 
A shape signature represents a shape by a 1-D function derived from shape contour. To 
obtain the translation invariant property, they are usually defined by relative values. To 
obtain the scale invariant property, normalization is necessary. In order to compensate for 
orientation changes, shift matching is needed to find the best matching between two shapes. 
Having regard to occultation, Tangent angle, Contour curvature and Triangle-area 
representation have invariance property. In addition, shape signatures are computationally 
simple. 
Shape signatures are sensitive to noise, and slight changes in the boundary can cause large 
errors in matching procedure. Therefore, it is undesirable to directly describe shape using a 
shape signature. Further processing is necessary to increase its robustness and reduce the 
matching load. For example, a shape signature can be simplified by quantizing the signature 
into a signature histogram, which is rotationally invariant. 
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4. Polygonal approximation 

Polygonal approximation can be set to ignore the minor variations along the edge, and 
instead capture the overall shape information. This is useful because it reduces the effects of 
discrete pixelization of the contour. In general, there are two ways to realize it: one is 
merging methods and the other is splitting ones [22]. 

4.1 Merging methods 
Merging methods add successive pixels to a line segment if each new pixel that is added 
doesn't cause the segment to deviate too much from a straight line. 

4.1.1 Distance threshold method 
Choose a point of the contour as a starting point. For each new point that we add, let a line 
go from the starting point to this new point. Then, compute the squared error for every 
point along the segment/line. If the error exceeds some threshold, we keep the line from the 
starting point to the previous point and start a new line at the current point. 
In practice, the most of practical error measures in use are based on distance between 
vertices of the input curve and the approximation linear segments. The distance dk(i, j) from 
curve vertex Pk = (xk, yk) to the corresponding approximation linear segments (Pi, Pj) is 
defined as follows (cf. Figure 12): 

 

 

 
Fig. 12. Illustration of the distance from a point on the boundary to a linear segment 

4.1.2 Tunneling method 
If we have thick boundaries rather than single-pixel thick ones, we can still use a similar 
approach called tunneling. Imagine that we’re trying to lay straight rods along a curved 
tunnel, and that we want to use as few as possible. We can start at any point and lay as long 
a straight rod as possible. Eventually, the curvature of the “tunnel” won't let us go any 
further, so we lay another rod and another until we reach the end. 
Both the distance threshold and tunneling methods can do polygonal approximation 
efficiently. However, the great disadvantage is that the position of the starting point will 
affect greatly the approximate polygon. 

4.1.3 Polygon evolution 
The basic idea of polygons evolution in [23] is very simple: in every evolution step, a pair of 
consecutive line segments (the line segment is the line between two consecutive vertices) 
s1,s2  is substituted with a single line segment joining their farther endpoints of s1 and s2. 
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The key property of this evolution is the order of the substitution. The substitution is done 
according to a relevance measure K given by 

 

where β(s1, s2) is the turn angle at the common vertex of segments s1, s2 and l(α ) is the length of 

α, α = s1 or s2, normalized with respect to the total length of a polygonal curve. The evolution 
algorithm is assuming that vertices which are surrounded by segments with a high value of 
K(s1, s2) are important while those with a low value are not. Figure 13 is an example. 
 

 

Fig. 13. Few stages of polygon evolution according to a relevant measure 

The curve evolution method achieves the task of shape simplification, i.e., the process of 
evolution compares th significance of vertices of the contour based on a relevance measure. 
Since any digital curve can be regarded as a polygon without loss of information (with 
possibly a large number of vertices), it is sufficient to study evolutions of polygonal shapes 
for shape feature extraction. 

4.2 Splitting methods 
Splitting methods work by first drawing a line from one point on the boundary to another. 
Then, compute the perpendicular distance from each point along the boundary segment to 
the line. If this exceeds some threshold, break the line at the point of greatest distance. 
Repeat the process recursively for each of the two new lines until no longer need to break 
any more. See Figure 14 for an example. 
 

 

Fig. 14. Splitting method for polygonal approximation 

This is sometimes known as the ‘fit and split” algorithm. For a closed contour, we can find 
the two points that lie farthest apart and fit two lines between them, one for one side and 
one for the other. Then, we can apply the recursive splitting procedure to each side. 
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4.3 Discussions 
Polygonal approximation technique can be used as a simple method for contour 

representation and description. The polygon approximation have some interesting 

properties: 

• it leads to simplification of shape complexity with no blurring effects. 

• it leads to noise elimination. 

• although irrelevant features vanish after polygonal approximation, there is no 
dislocation of relevant features. 

• the remaining vertices on a contour do not change their positions after polygonal 
approximation. 

Polygonal approximation technique can also be used as preprocessing method for further 

extracting features from a shape. 

5. Spatial interrelation feature 

Spatial interrelation feature describes the region or the contour of a shape by the relation of 

their pixels or curves. In general, the representation is done by using their geometric 

features: length, curvature, relative orientation and location, area, distance and so on. 

5.1 Adaptive grid resolution 
The adaptive grid resolution (AGR) was proposed by [24]. In the AGR, a square grid that is 

just big enough to cover the entire shape is overlaid on a shape. A resolution of the grid cells 

varies from one portion to another according to the content of the portion of the shape. On 

the borders or the detail portion on the shape, the higher resolution, i.e. the smaller grid 

cells, are applied; on the other hand, in the coarse regions of the shape, lower resolution, i.e. 

the bigger grid cells, are applied. 

To guarantee rotation invariance, it is necessary to convert an arbitrarily oriented shape into 

a unique common orientation. First, find the major axis of the shape. The major axis is the 

straight line segment joining the two points P1 and P2 on the boundary farthest away from 

each other. Then we rotate the shape so that its major axis is parallel to the x-axis. This 

orientation is still not unique as there are two possibilities: P1 can be on the left or on the 

right. This problem is solved by computing the centroid of the polygon and making sure 

that the centroid is below the major axis, thus guaranteeing a unique orientation. 

Let us now consider scale and translation invariance. We define the bounding rectangle (BR) 

of a shape as the rectangle with sides parallel to the x and y axes just large enough to cover 

the entire shape (after rotation). Note that the width of the BR is equal to the length of the 

major axis. To achieve scale invariance, we proportionally scale all shapes so that their BRs 

have the same fixed width (pixels). 

The method of computation of the AGR representation of a shape applies quad-tree 

decomposition on the bitmap representation of the shape. The decomposition is based on 

successive subdivision of the bitmap into four equal-size quadrants. If a bitmap-

quadrant does not consist entirely of part of shape, it is recursively subdivided into 

smaller and smaller quadrants until we reach bitmap-quadrants, i.e., termination 

condition of the recursion is that the predefined resolution is reached. Figure 15(a) is an 

example of AGR. 
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To represent the AGR image, in [24], quad-tree method is applied. Each node in the quad-

tree covers a square region of the bitmap. The level of the node in the quad-tree determines 

the size of the square. The internal nodes (shown by gray circles) represent “partially 

covered” regions; the leaf nodes shown by white boxes represent regions with all 0s while 

the leaf nodes shown by black boxes represent regions with all 1s. The “all 1s” regions are 

used to represent the shape, Figure 15(b). Each rectangle can be described by 3 numbers: its 

center C = (Cx,Cy) and its size (i.e. side length) S. So each shape can be mapped to a point in 

3n-dimensional space (n is the number of the rectangles occupied by the shape region). 

 

 

                  (a)                                                                              (b) 

Fig. 15. Adaptive resolution representations (a) Adaptive Grid Resolution (AGR) image; (b) 
quad-tree decomposition of AGR. 

Due to the fact that the normalization before computing AGR, AGR representation is 

invariant under rotation, scaling and translation. It is also computationally simple. 

5.2 Bounding box 
Bounding box computes homeomorphisms between 2D lattices and its shapes. Unlike many 
other methods, this mapping is not restricted to simply connected shapes but applies to 
arbitrary topologies [25]. 
To make bounding box representation invariant to rotation, a shape should be normalized 
by the same method as for AGR (Subsection 5.1) before further computation. After the 

normalization, a shape S is a set of L pixels, S = {pk ∈ R2|k = 1, 2,… ,L} and also write |S| = 
L. The minimum bounding rectangle or bounding box of S is denoted by B(S); its width and 
height, are called w and h, respectively. 
Figure 16 shows the algorithm flowchart based on bounding box that divides a shape S into 

m(row) × n (column) parts. The output B is a set of bounding boxes. 
An illustration of this procedure and its result is shown in Figure 17. 
To represent each bounding box, one method is that partial points of the set of bounding 
boxes are sampled. Figure 18 shows an example. 
If v = (vx, vy)T denotes the location of the bottom left corner of the initial bounding box of S, 

and  denotes the center of sample box Bij , then the coordinates 
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provide a scale invariant representation of S. Sampling k points of an m×n lattice therefore 
allows to represent S as a vector 

 

where i(α ) < i(β) if α < β and likewise for the index j. 
Bounding box representation is a simple computational geometry approach to compute 
homeomorphisms between shapes and lattices. It is storage and time efficient. It is invariant 
to rotation, scaling and translation and also robust against noisy shape boundaries. 
 

 

Fig. 16. Flowchart of shape divided by bounding box 
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          (a)                             (b)                               (c)                              (d)                             (e) 

Fig. 17. Five steps of bounding box splitting (a) Compute the bounding box B(S) of a pixel 
set S; (b) subdivide S into n vertical slices; (c) compute the bounding box B(Sj) of each 
resulting pixel set Sj , where j = 1, 2,... , n, (d) subdivide each B(Sj) into m horizontal slices; (e) 
compute the bounding box B(Sij) of each resulting pixel set Sij , where i = 1, 2, ...,m. 

 
Fig. 18. A sample points on lattice and examples of how it is mapped onto different shapes 

5.3 Convex hull 
The approach is that the shape is represented by a serie of convex hulls. The convex region 
has be defined in Sebsection 2.8. The convex hull H of a region is its smallest convex region 
including it. In other words, for a region S, the convex hull conv(S) is defined as the smallest 
convex set in R2 containing S. In order to decrease the effect of noise, common practice is to 
first smooth a boundary prior to partitioning. 
The representation of the shape may be obtained by a recursive process which results in a 
concavity tree. See Figure 19. Each concavity can be described by its area, chord (the line 
connecting the cut of the concavity) length, maximum curvature, distance from maximum 
curvature point to the chord. The matching between shapes becomes a string or a graph 
matching. 
 

 
                                             (a)                                                                           (b) 

Fig. 19. Illustrates recursive process of convex hull (a) Convex hull and its concavities; (b) 
concavity tree representation of convex hull. 

Convex hull representation has a high storage efficiency. It is invariant to rotation, scaling and 
translation and also robust against noisy shape boundaries (after filtering). However, extracting 
the robust convex hulls from the shape is where the shoe pinches. [26, 27] and [28] gave the 
boundary tracing method and morphological methods to achieve convex hulls respectively. 
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5.4 Chain code 
Chain code is a common approach for representing different rasterized shapes as line-

drawings, planar curves, or contours. Chain code describes an object by a sequence of unit-

size line segments with a given orientation [2]. Chain code can be viewed as a connected 

sequence of straight-line segments with specified lengths and directions [29]. 

5.4.1 Basic chain code 
Freeman [30] first introduced a chain code that describes the movement along a digital 
curve or a sequence of border pixels by using so-called 8-connectivity or 4-connectivity. The 
direction of each movement is encoded by the numbering scheme {i|i = 0, 1, 2, … , 7} or {i|i 

= 0, 1, 2, 3} denoting a counter-clockwise angle of 45° × i or 90° × i regarding the positive x -
axis, as shown in Figure 20. 
 

 
                                                         (a)                                         (b) 

Fig. 20. Basic chain code direction (a) Chain code in eight directions (8-connectivity); (b) 
chain code in four directions (4-connectivity). 

By encoding relative, rather than absolute position of the contour, the basic chain code is 
translation invariant. We can match boundaries by comparing their chain codes, but with 
the two main problems: 1) it is very sensitive to noise; 2) it is not rotationally invariant. To 
solve these problems, differential chain codes (DCC) and resampling chain codes (RCC) 
were proposed. 
Differential chain codes (DCC) is encoding differences in the successive directions. This can 

be computed by subtracting each element of the chain code from the previous one and 

taking the result modulo n, where n is the connectivity. This differencing allows us to rotate 

the object in 90-degree increments and still compare the objects, but it doesn’t get around the 

inherent sensitivity of chain codes to rotation on the discrete pixel grid. 

Re-sampling chain codes (RCC) consists in re-sampling the boundary onto a coarser grid 

and then computing the chain codes of this coarser representation. This smoothes out small 

variations and noise but can help compensate for differences in chain-code length due to the 

pixel grid. 

5.4.2 Vertex chain code (VCC) 
To improve chain code efficiency, in [29] the authors proposed a chain code for shape 

representation according to vertex chain code (VCC). An element of the VCC indicates the 

number of cell vertices, which are in touch with the bounding contour of the shape in that 

element’s position. Only three elements “1”, “2” and “3” can be used to represent the 

bounding contour of a shape composed of pixels in the rectangular grid. Figure 21 shows 

the elements of the VCC to represent a shape. 
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Fig. 21. Vertex chain code 

5.4.3 Chain code histogram (CCH) 
Iivarinen and Visa derive a chain code histogram (CCH) for object recognition [31]. The 

CCH is computed as hi = #{i∈M, M is the range of chain code}, #{α} denotes getting the 

number of the value α. 
The CCH reflects the probabilities of different directions present in a contour. 
If the chain code is used for matching it must be independent of the choice of the starting 

pixel in the sequence. The chain code usually has high dimensions and is sensitive to noise 

and any distortion. So, except the CCH, the other chain code approaches are often used as 

contour representations, but is not as contour attributes. 

5.5 Smooth curve decomposition 
In [32], the authors proposed smooth curve decomposition as shape descriptor. The segment 

between the curvature zero-crossing points from a Gaussian smoothed boundary are used 

to obtain primitives, called tokens. The feature for each token is its maximum curvature and 

its orientation. In Figure 22(b), the first number in the parentheses is its maximum curvature 

and the second is its orientation. 
 

 
                              (a)                                                                                      (b) 

Fig. 22. Smooth curve decomposition (a) θis the orientation of this token; (b) an example of 
smooth curve decomposition. 
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The similarity between two tokens is measured by the weighted Euclidean distance. The 
shape similarity is measured according to a non-metric distance. Shape retrieval based on 
token representation has shown to be robust in the presence of partially occulted objects, 
translation, scaling and rotation. 

5.6 Symbolic representation based on the axis of least inertia 
In [33], a method of representing a shape in terms of multi-interval valued type data is 
proposed. The proposed shape representation scheme extracts symbolic features with 
reference to the axis of least inertia, which is unique to the shape. The axis of least inertia 
(ALI) of a shape is defined as the line for which the integral of the square of the distances to 
points on the shape boundary is a minimum (cf. Subsection 2.2). 
Once the ALI is calculated, each point on the shape curve is projected on to ALI. The two 
farthest projected points say E1 and E2 on ALI are chosen as the extreme points as shown in 
Figure 23. The Euclidean distance between these two extreme points defines the length of 
ALI. The length of ALI is divided uniformly by a fixed number n; the equidistant points are 
called feature points. At every feature point chosen, an imaginary line perpendicular to the 
ALI is drawn. It is interesting to note that these perpendicular lines may intersect the shape 
curve at several points. The length of each imaginary line in shape region is computed and 
the collection of these lengths in an ascending order defines the value of the feature at the 
respective feature point. 
 

 

Fig. 23. Symbolic features based axis of least inertia 

Let S be a shape to be represented and n the number of feature points chosen on its ALI. 
Then the feature vector F representing the shape S, is in general of the form F = [f1, f2, …, 

ft,…,fn ], where ft = {d
1t

, d
2t

, … d
kt

} for some tk ≥ 1. 

The feature vector F representing the shape S is invariant to image transformations viz., 
uniform scaling, rotation, translation and flipping (reflection). 

5.7 Beam angle statistics 
Beam angle statistics (BAS) shape descriptor is based on the beams originating from a 
boundary point, which are defined as lines connecting that point with the rest of the points 
on the boundary [34]. 
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Let B be the shape boundary. B = {P1, P2,.. , PN} is represented by a connected sequence of 
points, Pi = (xi, yi), i = 1, 2,… ,N, where N is the number of boundary points. For each point 

Pi, the beam angle between the forward beam vector  and backward beam 

vector  in the kth order neighborhood system, is then computed as (see Figure 

24, k=5 for example) 

 

 
 

 

Fig. 24. Beam angle in the 5th neighborhood system for a boundary point 

For each boundary point Pi of the contour, the beam angle Ck(i) can be taken as a random 
variable with the probability density function P(Ck(i)). Therefore, beam angle statistics 
(BAS), may provide a compact representation for a shape descriptor. For this purpose, mth 

moment of the random variable Ck(i) is defined as follows: 

 

In the above formula E indicates the expected value. See Figure 25 as an example. 
Beam angle statistics shape descriptor captures the perceptual information using the statistical 
information based on the beams of individual points. It gives globally discriminative features 
to each boundary point by using all other boundary points. BAS descriptor is also quite stable 
under distortions and is invariant to translation, rotation and scaling. 

5.8 Shape matrix 
Shape matrix descriptor is an M × N matrix to represent a shape region. There are two basic 
modes of shape matrix: Square model [35] and Polar model [36]. 

5.8.1 Square model shape matrix 
Square model of shape matrix, also called grid descriptor [37, 35], is constructed by the 
following: for the shape S, construct a square centered on the center of gravity G of S; the 
size of each side is equal to 2L, L is the maximum Euclidean distance from G to a point M on 
the boundary of the shape. Point M lies in the center of one side and GM is perpendicular to 
this side. 
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Fig. 25. The BAS descriptor for original and noisy contour (a) Original contour; (b) noisy 
contour; (c), (d) and (e) are the BAS plot 1st, 2nd and 3rd moment, respectively. 

Divide the square into N × N subsquares and denote Skj , k, j = 1, … ,N, the subsquares of the 
constructed grid. Define the shape matrix SM = [Bkj], 

 
where Ǎ(F) is the area of the planar region F. Figure 26 shows an example of square model of 
shape matrix. 

 
                                 (a)                                                         (b)                                           (c) 
Fig. 26. Square model shape matrix (a) Original shape region; (b) square model shape 
matrix; (c) reconstruction of the shape region. 
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For a shape with more than one maximum radius, it can be described by several shape 
matrices and the similarity distance is the minimum distance between these matrices. In 
[35], authors gave a method to choose the appropriate shape matrix dimension. 

5.8.2 Polar model shape matrix 
Polar model of shape matrix is constructed by the following steps. Let G be the center of 
gravity of the shape, and GA is the maximum radius of the shape. Using G as center, draw n 
circles with radii equally spaced. Starting from GA, and counterclockwise, draw radii that 
divide each circle into m equal arcs. The values of the matrix are same as in square model 
shape matrix. Figure 27 shows an example, where n = 5 and m =12. Its polar model of shape 
matrix is 

 
 

 

Fig. 27. Polar model shape 

Polar model of shape matrix is simpler than square model because it only uses one matrix 
no matter how many maximum radii are on the shape. However, since the sampling density 
is not constant with the polar sampling raster, a weighed shape matrix is necessary. For the 
detail, refer to [36]. 
The shape matrix exists for every compact shape. There is no limit to the scope of the shapes 
that the shape matrix can represent. It can describe even shapes with holes. Shape matrix is 
also invariant under translation, rotation and scaling of the object. The shape of the object 
can be reconstructed from the shape matrix; the accuracy is given by the size of the grid 
cells. 

5.9 Shape context 
In [38], the shape context has been shown to be a powerful tool for object recognition tasks. 
It is used to find corresponding features between model and image. 
Shape contexts analysis begins by taking N samples from the edge elements on the shape. 
These points can be on internal or external contours. Consider the vectors originating from a 
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point to all other sample points on the shape. These vectors express the appearance of the 
entire shape relative to the reference point. The shape context descriptor is the histogram of 
the relative polar coordinates of all other points: 

 

An example is shown in Figure 28. (c) is the diagram of log-polar histogram that has 5 bins 
for the polar direction and 12 bins for the angular direction. The histogram of a point Pi is 
formed by the following: putting the center of the histogram bins diagram on the point Pi, 
each bin of this histogram contains a count of all other sample points on the shape falling 
into that bin. Note on this figure, the shape contexts (histograms) for the points marked by ○ 

(in (a)), ◊ (in (b)) and 1 (in (a)) are shown in (d), (e) and (f), respectively. It is clear that the 

shape contexts for the points marked by ○ and ◊, which are computed for relatively similar 

points on the two shapes, have visual similarity. By contrast, the shape context for 1 is quite 

different from the others. Obviously, this descriptor is a rich description, since as N gets 
large, the representation of the shape becomes exact. 

 

Fig. 28. Shape context computation and graph matching (a) and (b) Sampled edge points of 
two shapes; (c) diagram of log-polar histogram bins used in computing the shape contexts; 

(d), (e) and (f) shape contexts for reference sample points marked by ○, ◊ and 1 in (a) and 

(b), respectively. (Dark=large value). 

Shape context matching is often used to find the corresponding points on two shapes. It has 
been applied to a variety of object recognition problems [38, 39, 40, 41]. The shape context 
descriptor has the following invariance properties: 

• translation: the shape context descriptor is inherently translation invariant as it is based 
on relative point locations. 

• scaling: for clutter-free images the descriptor can be made scale invariant by 
normalizing the radial distances by the mean (or median) distance between all point 
pairs. 
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• rotation: it can be made rotation invariant by rotating the coordinate system at each 
point so that the positive x-axis is aligned with the tangent vector. 

• shape variation: the shape context is robust against slight shape variations. 

• few outliers: points with a final matching cost larger than a threshold value are 
classified as outliers. Additional ‘dummy’ points are introduced to decrease the effects 
of outliers. 

5.10 Chord distribution 
The basic idea of chord distribution is to calculate the lengths of all chords in the shape (all 
pair-wise distances betwee boundary points) and to build a histogram of their lengths and 
orientations [42]. The “lengths” histogram is invariant to rotation and scales linearly with 
the size of the object. The “angles” histogram is invariant to object size and shifts relative to 
object rotation. Figure 29 gives an example of chord distribution. 
 

 
                         (a)                                                 (b)                                                    (c) 

Fig. 29. Chord distribution (a) Original contour; (b) chord lengths histogram; (c) chord 
angles histogram (each stem covers 3 degrees). 

5.11 Shock graphs 
Shock graphs is a descriptor based on the medial axis. The medial axis is the most popular 
method that has been proposed as a useful shape abstraction tool for the representation and 
modeling of animate shapes. Skeleton and medial axes have been extensively used for 
characterizing objects satisfactorily using structures that are composed of line or arc 
patterns. Medial axis is an image processing operation which reduces input shapes to axial 
stick-like representations. It is as the loci of centers of bi-tangent circles that fit entirely 
within the foreground region being considered. Figure 30 illustrates the medial axis for a 
rectangular shape. 
 

 

Fig. 30. Medial axis of a rectangle defined in terms of bi-tangent circles 

We notice that the radius of each circle is variable. This variable is a function of the loci of 
points on the medial axis. This function is called radius function. 
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A shock graph is a shape abstraction that decomposes a shape into a set of hierarchically 
organized primitive parts. Siddiqi and Kimia define the concept of a shock graph [43] as an 
abstraction of the medial axis of a shape onto a directed acyclic graph (DAG). Shock 
segments are curve segments of the medial axis with monotonic flow, and give a more 
refined partition of the medial axis segments. Figure 31 is for example. 
 

 

Fig. 31. Shock segments 

The skeleton points are first labeled according to the local variation of the radius function at 
each point. Shock graph can distinguish the shapes but the medial axis cannot. Figure 32 
shows two examples of shapes and their shock graphs. 
 

 

Fig. 32. Examples of shapes and their shock graphs 

To calculate the distance between two shock graphs, in [44], the authors employ a 
polynomial-time edit-distance algorithm. This algorithm is shown to have the good 
performances for boundary perturbations, articulation and deformation of parts, 
segmentation errors, scale variations, viewpoint variations and partial occultation. However 
the authors also indicate that the computation complexity is very high. The matching shape 
typically takes about 3-5 minutes on an SGI Indigo II (195 MHz), which limits the number of 
shapes that can be practically matched. 

5.12 Discussions 
Spacial feature descriptor is a direct method to describe a shape. These descriptors can apply 
the theory of tree-based (Adaptive grid resolution and Convex hull), statistic (Chain code 
histogram, Beam angle statistics, Shape context and Chord distribution) or syntactic analysis 
(Smooth curve decomposition) to extract or represent the feature of a shape. This 
description scheme not only compresses the data of a shape, but also provides a compact 
and meaningful form to facilitate further recognition operations. 

6. Moments 

The concept of moment in mathematics evolved from the concept of moment in physics. It is 
an integrated theory system. For both contour and region of a shape, one can use moment's 
theory to analyze the object. 
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6.1 Boundary moments 
Boundary moments, analysis of a contour, can be used to reduce the dimension of boundary 
representation [28]. Assume shape boundary has been represented as a 1-D shape 
representation z(i) as introduced in Section 3, the rth moment mr and central moment Ǎr can 
be estimated as 

 

where N is the number of boundary points. 

The normalized moments  are invariant to shape 

translation, rotation and scaling. Less noise-sensitive shape descriptors can be obtained from 

 

The other approaches of boundary moments treats the 1-D shape feature function z(i) as a 
random variable v and creates a K bins histogram p(vi) from z(i). Then, the rth central 
moment is obtained by 

 
The advantage of boundary moment descriptors is that it is easy to implement. However, it 
is dificult to associate higher order moments with physical interpretation. 

6.2 Region moments 
Among the region-based descriptors, moments are very popular. These include invariant 
moments, Zernike moments Radial Chebyshev moments, etc. 
The general form of a moment function mpq of order (p + q) of a shape region can be given as: 

 

where Ψpq is known as the moment weighting kernel or the basis set; f(x, y) is the shape region 
Eq. 1. 

6.2.1 Invariant moments (IM) 
Invariant moments (IM) are also called geometric moment invariants. Geometric moments, 
are the simplest of the moment functions with basis Ψpq = xpyq, while complete, it is not 
orthogonal [30]. Geometric moment function mpq of order (p + q) is given as: 

 
The geometric central moments, which are invariant to translation, are defined as: 
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A set of 7 invariant moments (IM) are given by [30]: 

 

IM are computationally simple. Moreover, they are invariant to rotation, scaling and 

translation. However, they have several drawbacks [45]: 

• information redundancy: since the basis is not orthogonal, these moments suffer from a 
high degree of information redundancy. 

• noise sensitivity: higher-order moments are very sensitive to noise. 

• large variation in the dynamic range of values: since the basis involves powers of p and 
q, the moments computed have large variation in the dynamic range of values for 
different orders. This may cause numerical instability when the image size is large. 

6.2.2 Algebraic moment invariants 
The algebraic moment invariants are computed from the first m central moments and are 

given as the eigenvalues of predefined matrices, M[j,k], whose elements are scaled factors of 

the central moments [46]. The algebraic moment invariants can be constructed up to 

arbitrary order and are invariant to affne transformations. However, algebraic moment 

invariants performed either very well or very poorly on the objects with different 

configuration of outlines. 

6.2.3 Zernike moments (ZM) 
Zernike Moments (ZM) are orthogonal moments [45]. The complex Zernike moments are 
derived from orthogonal Zernike polynomials: 

 

where Rnm(r)is the orthogonal radial polynomial: 

 

n = 0, 1, 2, … , 0 ≤ |m| ≤ n; and n - |m| is even. 
Zernike polynomials are a complete set of complex valued functions orthogonal over the 
unit disk, i.e., x2 + y2 ≤ 1. The Zernike moment of order n with repetition m of shape region 
f(x, y) (Eq. 1) is given by: 
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Zernike moments (ZM) have the following advantages [47]: 

• rotation invariance: the magnitudes of Zernike moments are invariant to rotation. 

• robustness: they are robust to noise and minor variations in shape. 

• expressiveness: since the basis is orthogonal, they have minimum information 
redundancy. 

However, the computation of ZM (in general, continuous orthogonal moments) pose several 
problems: 

• coordinate space normalization: the image coordinate space must be transformed to the 
domain where the orthogonal polynomial is defined (unit circle for the Zernike 
polynomial). 

• numerical approximation of continuous integrals: the continuous integrals must be 
approximated by discrete summations. This approximation not only leads to numerical 
errors in the computed moments, but also severely affects the analytical properties such 
as rotational invariance and orthogonality. 

• computational complexity: computational complexity of the radial Zernike polynomial 
increases as the order becomes large. 

6.2.4 Radial Chebyshev moments (RCM) 
The radial Chebyshev moment of order p and repetition q is defined as [48]: 

 
 

where tp(r) is the scaled orthogonal Chebyshev polynomials for an image of size N × N: 

 

ǒ(p,N) is the squared-norm: 

 

and m = (N/2) + 1. 
The mapping between (r, θ) and image coordinates (x, y) is given by: 

 
 

Compared to Chebyshev moments, radial Chebyshev moments possess rotational 
invariance property. 
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6.3 Discussions 
Besides the previous moments, there are other moments for shape representation, for 

example, homocentric polar-radius moment [49], orthogonal Fourier-Mellin moments 

(OFMMs) [50], pseudo-Zernike Moments [51], etc. The study shows that the moment-based 

shape descriptors are usually concise, robust and easy to compute. It is also invariant to 

scaling, rotation and translation of the object. However, because of their global nature, the 

disadvantage of moment-based methods is that it is dificult to correlate high order moments 

with a shape's salient features. 

7. Scale space approaches 

In scale space theory a curve is embedded into a continuous family {ƥķ: ķ ≥0} of gradually 
simplified versions. The main idea of scale spaces is that the original curve ƥ = ƥ 0 should get 
more and more simplified, and so small structures should vanish as parameter ķ increases. 
Thus due to different scales (values of ķ), it is possible to separate small details from 
relevant shape properties. The ordered sequence {ƥķ: ķ ≥ 0} is referred to as evolution of ƥ. 
Scale-spaces find wide application in computer vision, in particular, due to smoothing and 
elimination of small details. 
A lot of shape features can be analyzed in scale-space theory to get more information about 
shapes. Here we introduced 2 scale-space approaches: curvature scale-space (CSS) and 
intersection points map (IPM). 

7.1 Curvature scale-space 
The curvature scale-space (CSS) method, proposed by F. Mokhtarian in 1988, was selected as 

a contour shape descriptor for MPEG-7. This approach is based on multi-scale 

representation and curvature to represent planar curves. The nature parametrization 

equation is shown as following: 

 (17)

An evolved version of that curve is defined by 

 

where X(Ǎ, ķ) = x(Ǎ) ∗g(Ǎ, ķ) and Y (Ǎ, ķ) = y(Ǎ)∗g(Ǎ, ķ), ∗ is the convolution operator, and 
g(Ǎ, ķ) denotes a Gaussian filter with standard deviation ķ defined by 

 

Functions X(Ǎ, ķ) and Y (Ǎ, ķ) are given explicitly by 

 

The curvature of is given by 
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where 

 

Note that ķ is also referred to as a scale parameter. The process of generating evolved 
versions of ƥķ as ķ increases from 0 to ∞ is referred to as the evolution of ƥķ. This technique 
is suitable for removing noise and smoothing a planar curve as well as gradual 
simplification of a shape. 
The function defined by k(Ǎ, ķ) = 0 is the CSS image of ƥ. Figure 33 is a CSS image examples. 
 

 

Fig. 33. Curvature scale-space image (a) Evolution of Africa: from left to right ķ = 0(original), 
ķ = 4, ķ = 8 and ķ = 16, respectively; (b) CSS image of Africa. 

The representation of CSS is the maxima of CSS contour of an image. Many methods for 

representing the maxima of CSS exist in the literatures [52, 53, 19] and the CSS technique has 

been shown to be robust contour-based shape representation technique. The basic properties 

of the CSS representation are as follows: 

• it captures the main features of a shape, enabling similarity-based retrieval; 

• it is robust to noise, changes in scale and orientation of objects; 
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• it is compact, reliable and fast; 

• it retains the local information of a shape. Every concavity or convexity on the shape 
has its own corresponding contour on the CSS image. 

Although CSS has a lot of advantages, it does not always give results in accordance with 
human vision system. The main drawbacks of this description are due to the problem of 
shallow concavities/convexities on a shape. It can be shown that the shallow and deep 
concavities/convexities may create the same large contours on the CSS image. In [54, 55], 
the authors gave some methods to alleviate these effects. 

7.2 Intersection points map 
Similarly to the CSS, many methods also use a Gaussian kernel to progressively smooth the 
curve relatively to the varying bandwidth. In [56], the authors proposed a new algorithm, 
intersection points map (IPM), based on this principle, instead of characterizing the curve 
with its curvature involving 2nd order derivatives, it uses the intersection points between the 
smoothed curve and the original. As the standard deviation of the Gaussian kernel 
increases, the number of the intersection points decreases. By analyzing these remaining 
points, features for a pattern can be defined. Since this method deals only with curve 
smoothing, it needs only the convolution operation in the smoothing process. So this 
method is faster than the CSS one with equivalent performances. Figure 34 is an example of 
IPM. 
 

 

Fig. 34. Example of the IPM  (a) An original contour; (b) an IPM image in the (u, ķ) plane. 
The IPM points indicated by (1)-(6) refer to the corresponding intersection points in (a). 

The IPM pattern can be identified regardless of its orientation, translation and scale change. 
It is also resistant to noise for a range of noise energy. The main weakness of this approach 
is that it fails to handle occulted contours and those having undergone a non-rigid 
deformation. 

7.3 Discussions 
As multi-resolution analysis in signal processing, scale-space theory can obtain abundant 
information about a contour with different scales. In scale-space, global pattern information 
can be interpreted from higher scales, while detailed pattern information can be interpreted 
from lower scales. Scale-space algorithm benefit from the boundary information 
redundancy in the new image, making it less sensitive to errors in the alignment or contour 
extraction algorithms. The great advantages are the high robustness to noise and the great 
coherence with human perception. 
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8. Shape transform domains 

The transform domain class includes methods which are formed by the transform of the 
detected object or the transform of the whole image. Transforms can therefore be used to 
characterize the appearance of images. The shape feature is represented by the all or partial 
coefficients of a transform. 

8.1 Fourier descriptors 
Although, Fourier descriptor (FD) is a 40-year-old technique, it is still considered as a valid 
description tool. The shape description and classification using FD either in contours or 
regions are simple to compute, robust to noise and compact. It has many applications in 
different areas. 

8.1.1 One-dimensional Fourier descriptors 
In general, Fourier descriptor (FD) is obtained by applying Fourier transform on a shape 
signature that is a one-dimensional function which is derived from shape boundary 
coordinates (cf. Section 3). The normalized Fourier transformed coefficients are called the 
Fourier descriptor of the shape. FD derived from different signatures has significant 
different performance on shape retrieval. As shown in [10, 53], FD derived from centroid 
distance function r(t) outperforms FD derived from other shape signatures in terms of 
overall performance. The discrete Fourier transform of r(t) is then given by 

 

Since the centroid distance function r(t) is only invariant to rotation and translation, the 
acquired Fourier coefficients have to be further normalized so that they are scaling and start 
point independent shape descriptors. From Fourier transform theory, the general form of 
the Fourier coefficients of a contour centroid distance function r(t) transformed through 
scaling and change of start point from the original function r(t)(o) is given by 

 

where an and a ( )o

n  are the Fourier coefficients of the transformed shape and the original 

shape, respectively, ĸ is the angles incurred by the change of start point; s is the scale factor. 
Now considering the following expression: 

 

where bn and b ( )o

n  are the normalized Fourier coefficients of the transformed shape and the 

original shape, respectively. If we ignore the phase information and only use magnitude of 

the coefficients, then|bn|and|b ( )o

n
|are the same. In other words,|bn|is invariant to 

translation, rotation, scaling and change of start point. 
The set of magnitudes of the normalized Fourier coefficients of the shape {|bn|, 0 < n < N} 
are used as shape descriptors, denoted as 
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One-dimensional FD has several nice characteristics such as simple derivation, simple 
normalization and simple to do matching. As indicated by [53], for efficient retrieval, 10 FDs 
are sufficient for shape description. 

8.1.2 Region-based Fourier descriptor 
The region-based FD is referred to as generic FD (GFD), which can be used for general 
applications. Basically, GFD is derived by applying a modified polar Fourier transform 
(MPFT) on shape image [57, 12]. In order to apply MPFT, the polar shape image is treated as 
a normal rectangular image. The steps are 
1. the approximated normalized image is rotated counter clockwise by an angular step 

sufficiently small. 
2. the pixel values along positive x-direction starting from the image center are copied and 

pasted into a new matrix as row elements. 
3. the steps 1 and 2 are repeated until the image is rotated by 360°. 
The result of these steps is that an image in polar space plots into Cartesian space. 
Figure 35 shows the polar shape image turning into normal rectangular image. 
 

 
                                (a)                                                                 (b) 

Fig. 35. The polar shape image turns into normal rectangular image. (a) Original shape 
image in polar space; (b) polar image of (a) plotted into Cartesian space. 

The Fourier transform is acquired by applying a discrete 2D Fourier transform on this shape 
image. 

 

where  and  

is the center of mass of the shape; R and T are the radial and angular resolutions. The 
acquired Fourier coefficients are translation invariant. Rotation and scaling invariance are 
achieved by the following: 

 

where area is the area of the bounding circle in which the polar image resides. m is the 
maximum number of the radial frequencies selected and n is the maximum number of 
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angular frequencies selected. m and n can be adjusted to achieve hierarchical coarse to fine 
representation requirement. 
For efficient shape description, in the implementation of [57], 36 GFD features reflecting m = 
4 and n = 9 are selected to index the shape. The experimental results have shown GFD as 
invariant to translation, rotation, and scaling. For obtaining the affine and general minor 
distortions invariance, in [57], the authors proposed Enhanced Generic Fourier Descriptor 
(EGFD) to improve the GFD properties. 

8.2 Wavelet transform 
A hierarchical planar curve descriptor is developed by using the wavelet transform [58]. 
This descriptor decomposes a curve into components of different scales so that the coarsest 
scale components carry the global approximation information while the finer scale 
components contain the local detailed information. The wavelet descriptor has many 
desirable properties such as multi-resolution representation, invariance, uniqueness, 
stability, and spatial localization. In [59], the authors use dyadic wavelet transform deriving 
an affine invariant function. In [60], a descriptor is obtained by applying the Fourier 
transform along the axis of polar angle and the wavelet transform along the axis of radius. 
This feature is also invariant to translation, rotation, and scaling. At same time, the matching 
process of wavelet descriptor can be accomplished cheaply. 

8.3 Angular radial transformation 
The angular radial transformation (ART) is based in a polar coordinate system where the 
sinusoidal basis functions are defined on a unit disc. Given an image function in polar 
coordinates, f(ǒ, θ), an ART coefficient Fnm (radial order n, angular order m) can be defined as 
[61]: 

 

Vnm(ǒ, θ) is the ART basis function and is separable in the angular and radial directions so that: 

 
The angular basis function, Am, is an exponential function used to obtain orientation 
invariance. This function is defined as: 

 
Rn, the radial basis function, is defined as: 

 
In MPEG-7, twelve angular and three radial functions are used (n < 3, m < 12). Real parts of 
the 2-D basis functions are shown in Figure 36. 
For scale normalization, the ART coefficients are divided by the magnitude of ART 
coefficient of order n = 0, m = 0. 
MPEG-7 standardization process showed the efficiency of 2-D angular radial transformation. 
This descriptor is robust to translations, scaling, multi-representation (remeshing, weak 
distortions) and noises. 
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Fig. 36. Real parts of the ART basis functions 

8.4 Shape signature harmonic embedding 
A harmonic function is obtained by a convolution between the Poisson kernel PR(r, θ) and a 

given boundary function u(Re jφ ). Poisson kernel is defined by 

 

The boundary function could be any real- or complex-valued function, but here we choose 

shape signature functions for the purpose of shape representation. For any shape signature 

s[n], n = 0, 1, … ,N – 1, the boundary values for a unit disk can be set as 

 

where ω0 = 2Ǒ/N, φ = ω0n. 
So the harmonic function u can be written as 

 
(18)

The Poisson kernel PR(r, θ) has a low-pass filter characteristic, where the radius r is inversely 

related to the bandwidth of the filter. The radius r is considered as scale parameter of a 

multi-scale representation [62]. Another important property is PR(0, θ) = 1, indicating u(0) is 

the mean value of boundary function u(Re jφ ). 

In [62], the authors proposed a formulation of a discrete closed-form solution for the 

Poisson’s integral formula Eq. 18, so that one can avoid the need for approximation or 

numerical calculation of the Poisson summation form. 

As in Subsection 8.1.2, the harmonic function inside the disk can be mapped to a rectilinear 

space for a better illustration. Figure 37 shows an example for a star shape. Here, we used 

curvature as the signature to provide boundary values. 

The zero-crossing image of the harmonic functions is extracted as shape feature. This shape 

descriptor is invariant to translation, rotation and scaling. It is also robust to noise. Figure 38 

is for example. The original curve is corrupted with different noise levels, and the harmonic 

embeddings show robustness to the noise. 

At same time, it is more efficient than CSS descriptor. However, it is not suitable for 

similarity retrieval, because it is unconsistent to non-rigid transform. 
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                          (a)                                        (b)                                                  (c) 

Fig. 37. Harmonic embedding of curvature signature (a) Example shape; (b) harmonic 
function within the unit disk; (c) rectilinear mapping of the function. 

 

Fig. 38. centroid distance signature harmonic embedding that is robust to noisy boundaries 
(a) Original and noisy shapes; (b) harmonic embedding images for centroid distance 
signature. 

8.5 ℜ-Transform 

The ℜ-Transform to represent a shape is based on the Radon transform. The approach is 

presented as follow. We assume that the function f is the domain of a shape, cf. Eq. 1. Its 
Radon transform is defined by: 

 

where ĵ(.) is the Dirac delta-function: 

 

θ ∈ [0, Ǒ] and ρ ∈(-∞,∞). In other words, Radon transform TR(ǒ, θ) is the integral of f over the 
line L(ǒ,θ) defined by ǒ = xcos θ + ysin θ. 
Figure 39 is an example of a shape and its Radon transform. 

The following transform is defined as ℜ-transform: 
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where TR(ǒ, θ) is the Radon transform of the domain function f. In [63], the authors show the 

following properties of ℜf (θ): 

• periodicity: ℜf (θ±Ǒ) = ℜf (θ) 

• rotation: a rotation of the image by an angle θ 0 implies a translation of the ℜ-transform 

of θ 0: ℜf (θ + θ 0). 

• translation: the ℜ-transform is invariant under a translation of the shape f by a vector 

u
f

= (x0, y0). 

• scaling: a change of the scaling of the shape f induces a scaling in the amplitude only of 

the ℜ-transform. 
 

 
                                           (a) Shape                       (b) Radon transform of (a) 

Fig. 39. A shape and its Radon transform 

Given a large collection of shapes, one ℜ-transform per shape is not efficient to distinguish 

from the others because the ℜ-transform provides a highly compact shape representation. In 

this perspective, to improve the description, each shape is projected in the Radon space for 
different segmentation levels of the Chamfer distance transform. Chamfer distance 
transform is introduced in [64, 65]. 
Given the distance transform of a shape, the distance image is segmented into N equidistant 
levels to keep the segmentation isotropic. For each distance level, pixels having a distance 

value superior to that level are selected and at each level of segmentation, an ℜ-transform is 

computed. In this manner, both the internal structure and the boundaries of the shape are 
captured. 

Since a rotation of the shape implies a corresponding shift of the ℜ-transform. Therefore, a 

one-dimensional Fourier transform is applied on this function to obtain the rotation 

invariance. After the discrete one-dimensional Fourier transform F, ℜ-transform descriptor 

vector is defined as follows: 

 

where i∈ [1,M], M is the angular resolution. FℜĴ is the magnitude of Fourier transform to ℜ-

transform. Ĵ ∈ [1, N], is the segmentation level of Chamfer distance transform. 
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8.6 Shapelets descriptor 
Shapelets descriptor was proposed to present a model for animate shapes and extracting 
meaningful parts of objects. The model assumes that animate shapes (2D simple closed 
curves) are formed by a linear superposition of a number of shape bases. A basis function  
(s; Ǎ, ķ) is defined in [66]: Ǎ ∈ [0, 1] indicates the location of the basis function relative to the 

domain of the observed curve, and ķ is the scale of the function ψ. Figure 40 shows the 

shape of the basis function ψ at different ķ values. It displays variety with different 

parameter and transforms. 
 

 

Fig. 40. Each shape base is a lobe-shaped curve 

The basis functions are subject to affine transformations by a 2 × 2 matrix of basis 
coefficients: 

 
The variables for describing a base are denoted by bk = (Ak, Ǎk, ķk) and are termed basis 
elements. The shapelet is defined by 

 

Figure 40 (b,c,d) demonstrates shapelets obtained from the basis functions ψ by the affine 

transformations of rotation, scaling, and shearing respectively, as indicated by the basis 
coefficient Ak. By collecting all the shapelets at various Ǎ, ķ, A and discretizing them at 
multiple levels, an over-complete dictionary is obtained 

 

A special shapelet γ0 is defined as an ellipse. 
Shapelets are the building blocks for shape contours, and they form closed curves by linear 
addition: 

 

Here (x0, y0) is the centroid of the contour and n is residue. 
A discrete representation B = (K, b1, b2, …, bK), shown by the dots in second row of Figure 
41, represents a shape. B is called the “shape script” by analogy to music scripts, where each 
shapelet is represented by a dot in the (Ǎ, ķ) domain. The horizontal axis is Ǎ ∈ [0, 1] and the 
vertical axis is the ķ. Large dots correspond to big coefficient matrix 
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Fig. 41. Pursuit of shape bases for an eagle contour 

Clearly, computing the shape script B is a non-trivial task, since Ʀ is over-complete and 
there will be multiple sets of bases that reconstruct the curve with equal precision. [66] gave 
some pursuit algorithms to use shapelets representing a shape. 

8.7 Discussions 
As a kind of global shape description technique, shape analysis in transform domains takes 
the whole shape as th shape representation. The description scheme is designed for this 
representation. Unlike the spacial interrelation feature analysis, shape transform projects a 
shape contour or region into an other domain to obtain some of its intrinsic features. For 
shape description, there is always a trade-off between accuracy and efficiency. On one hand, 
shape should be described as accurate as possible; on the other hand, shape description 
should be as compact as possible to simplify indexing and retrieval. For a shape transform 
analysis algorithm, it is very flexible to accomplish a shape description with different 
accuracy and efficiency by choosing the number of transform coefficients. 

9. Summary table  

For convenience to compare these shape feature extraction approaches in this chapter, we 
summarize their properties in Table 1. 
Frankly speaking, it is not equitable to affirm a property of an approach by rudely speaking 
“good” or “bad”. Because certain approaches have great different performances under 
different conditions. For example, the method area function is invariant with affine 
transform under the condition of the contours sampled at its same vertices; whereas it is not 
robust to affine transform if the condition can’t be contented. In addition, some approaches 
have good properties for certain type shapes; however it is not for the others. For example, 
the method shapelets representation is especially suitable for blobby objects, and it has 
shortcomings in representing elongated objects. So the simple evaluations in this table are 
only as a reference. These evaluations are drawn by assuming that all the necessary 
conditions have been contented for each approach. 

10. Conclusion 

In this chapter we made a study and a comparison the methods of shape-based feature 
extraction and representation. About 40 techniques for extraction of shape features have 
been shortly described and compared. Unlike the traditional classification, the approaches of 
shape-based feature extraction and representation were classified by their processing 
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Table 1. Properties of shape feature extraction approaches 
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approaches. These processing approaches included shape signatures, polygonal 
approximation methods, spatial inter-relation feature, moments approaches, scale-space 
methods and shape transform domains: in such way, one can easily select the appropriate 
processing approach. A synthetic table has been established for a fast and global comparison 
of the performances of these approaches. 
Extracting a shape feature in accordance with human perception is not an easy task. Due to 
the fact that huma vision and perception are an extraordinary complicated system, it is a 
utopia to hope that the machine vision has super excellent performance with small 
complexity. In addition, choosing appropriate features for a shape recognition system must 
consider what kinds of features are suitable for the task. There exists no general feature 
which would work best for every kind of images. 
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