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Abstract

Passive vibration control solutions like tuned vibration absorbers are often limited to
tackle a single structural resonance or a specific disturbance frequency. Active vibration
control systems can overcome these limitations, yet requiring continuously electrical
energy for a sufficient performance. Thus, in some cases, a passive vibration control
system is still preferable. Yet, the integration of active elements enables adaptation of the
system parameters, for instance, the resonance of a tuned vibration absorber. These
adaptive or semi-active systems only require external energy for the adaptation, while
the compensating forces are generated by the inertia of the absorber’s mass. In this
contribution, the fundamentals of active, passive, and adaptive vibration control are
briefly summarized and compared regarding their main advantages and design chal-
lenges. In the second part, a design of an inertial mass device with integrated piezoelec-
tric actuators is presented. By applying a lever mechanism, the stiffness of the inertial
mass device can be tuned even to very low frequencies. The device can be used to
implement both adaptive tuned vibration absorbers and active control systems. In the
last section of the chapter, the device is used in an experiment for vibration control of a
large elastic structure. The setup is used to demonstrate different strategies for the
realization of a vibration control system and the integration of different vibration con-
trol strategies.

Keywords: vibration control, active vibration control, passive vibration control,
piezoelectric actuators, adaptive vibration absorbers

1. Introduction

Tuned vibration absorbers (TVA) and tuned mass dampers (TMD) are used since the beginning

of the twentieth century to reduce disturbing vibrations [1]. Basically, this method uses an inertial

mass that is elastically coupled to the vibrating host structure [2]. This resonant spring-mass

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



system can be tuned to certain resonance frequencies of the host structure (Figure 1). Then, the

device is usually referred to as tuned mass damper (TMD), which is frequently applied to elastic

infrastructure objects like towers or bridges. For large objects, several TMDs are distributed

among the structure [3].

When the oscillator is tuned to a harmonic disturbance frequency, it is called tuned vibration

absorber or vibration neutralizer [4]. Potential applications range from Optical Disc Drives,

using an absorber mass of about 40 g [5] to vibrations of ship engines, requiring over 10 tons of

oscillating mass [6]. The performance of these devices is mainly limited by the precise tuning to

the target frequency. If a certain bandwidth is to be tackled, a high inertial mass has to be used,

which usually prevents the application of TVAs in such cases.

In this chapter, several improvements to the traditional passive vibration absorber are intro-

duced that have been made over the last decades, ranging from semi-active or adaptive to

active dynamic systems (Figure 2).

In the next section, the basics of the different vibration control systems are summarized and

examples for realized systems are given. In the last two sections, a system that can be used for

Figure 1. Generic vibration control set up with a passive TVA.

Figure 2. Vibration control systems—passive, adaptive, and active.
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adaptive and active vibration control methods is presented and the application to an elastic

vibrating structure is investigated.

2. Passive, adaptive, and active vibration control systems

2.1. Passive vibration control with tuned vibration absorbers

To illustrate the working principle of a passive TVA, the generic example from Figure 1 is

studied. The vibrating host structure is represented by a mechanical mobility YM. If the

structure can be treated as a vibrating mass element of mass M, i.e., away from its resonance

frequencies, the mobility reads [7]:

Ym sð Þ ¼
1

sM
(1)

The neutralizer is described by its mass mN , resonance frequency ω0, and damping coefficient

θ. Then, its input mobility at the base can be derived to:

YN sð Þ ¼
1

mN

s2 þ s 2 θω0 þ ω
2
0

s22 θω0 þ s ω2
0

(2)

The connection of both systems is represented by:

Y sð Þ ¼
Ym sð ÞYN sð Þ

Ym sð Þ þ YN sð Þ
¼

s2 þ s 2 θω0 þ ω
2
0

sM s2 þ s2θω0 þ ω2
0

� �

þmN sω2
0 þ s22θω2

0

� � (3)

Obviously, the mobility transfer function has a pair of conjugated complex zeros that match

the resonance of the TVA. If the TVA is fully undamped, the mobility of the system at the

resonance of the TVA turns to zero, i.e., complete cancellation of vibrations. It can be shown

that the performance of the passive TVA is directly proportional to the mass ratio mN=M, while

increased damping has the contrary effect [8]. This issue is illustrated in Figure 3 (left). Also the

bandwidth of the absorption effect increases with a larger absorber mass. However, in most

practical applications, a mass ratio of ½ will not be acceptable, so the passive TVA is restricted

to situations where the disturbance frequency is known to be constant over time or where the

added mass of a heavy TVA does not matter.

When the relevant frequency range of the host structure contains a resonance, the mobility

formulation for Ym becomes:

Ym ¼
s

s2Mþ 2θH ω0,H sþ ω2
0,H

, (4)

where ω0,H is the resonance and θH is the damping coefficient of the host structure. The TVA is

then used as a Tuned Mass Damper (TMD). The main difference is that a significant damping

is needed to reach optimal vibration control performance [2]. This effect is demonstrated in

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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Figure 3 (right). Also, the TMD is usually designed with a lower mass ratio. In the given

example, a ratio of mN

M
¼ 0:1 already provides a sufficient vibration reduction performance. It

should be noted that the formulae for optimal tuning of a TMD are restricted for the applica-

tion example of a single-degree-of-freedom oscillator excited by a harmonic force. In case of

other excitation mechanisms like base acceleration, which is relevant for seismic vibration

reduction, other TMD parameter values might provide the optimal vibration reduction perfor-

mance [9]. For structures with several resonances or larger objects which cannot be treated as

simple point mass oscillators any more, the design of distributed TMD systems requires some

advanced methods like numerical optimization [3].

2.2. Adaptive tuned vibration absorbers

Adaptive tuned vibration absorbers have been proposed to overcome this weakness of passive

TVAs. By using actuating elements, the resonance frequency of the absorber can be adjusted. In

turn, an adaptive TVA can be designed with a smaller inertial mass [10]. In the last decades,

numerous concepts have been investigated [11–14], but the designs can be traced back to some

basic principles of adaptation [15] (Table 1).

Figure 3. Accelerance of a 1 kg mass with a TVA tuned to 50 Hz (left); and a 50 Hz mass-spring-system with a TMD

(right).

Concept Static prestress Variable geometry Dynamic forces

Actuator principle Static – high force Static – high stroke Dynamic force actuator

Actuator types Motor, piezoelectric,… Motor, shape memory alloy wires,… Piezoelectric, electrodynamic

Table 1. Basic concepts for the realization of adaptive tuned vibration absorbers [15].

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems4



A common approach to alter the resonance frequency of a mechanical oscillator is the adjust-

ment of the mechanical stiffness via the geometry of the spring element; for instance, by

moving the inertial mass on a bending beam, which adjusts the effective beam length, as

demonstrated for vibration control at ship engines [16]. The most advanced concept is the

application of an active dynamic control loop for the adjustment of the resonance frequency.

The principle can be briefly explained with a TVA represented by a simple mechanical oscilla-

tor (Figure 4), which can be excited by an integrated actuation force FA. The differential

equation of this system reads:

mN €x þ d _x þ kx ¼ FA (5)

where d is the damping coefficient and k is the stiffness of the oscillator. The feedback loop is

closed by using the acceleration €x as the control input and the actuation force as output. If a

simple proportional controller

G sð Þ ¼ g (6)

is applied, Eq. (5) can be reformulated to:

mN � gð Þ€x þ d _x þ kx ¼ 0 (7)

Thus, by feeding back forces proportional to the acceleration of the mass, the effective mass of

the system can be altered. Similarly, by using an integral controller, a velocity feedback loop

can be realized to adjust the damping of the system. In order to enhance the vibration absorp-

tion effect, active removal of system damping can be considered [8]. Also, a further integration

can be implemented in order to obtain the position of the mass. By feeding back this signal, the

stiffness of the absorber can be adjusted [17].

The frequency range that can be covered by the adaptation mechanism is a key performance

parameter for an adaptive TVA. As studied in [15], the active control system is limited by the

stability margins of the control loop. These margins are mainly defined by the inherent phase

lag of many signal processing components, but also by the geometrical arrangement of the

sensor and the actuator.

By applying an electrical shunt circuit to the piezoelectric element, the stiffness can be varied

without using a sensor component [18]. By using active circuits to realize negative capaci-

tances, a broad adaptation frequency range can be realized. However, the active circuits have

Figure 4. Feedback control to adjust the resonance frequency.

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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to be designed with respect to the high voltages that occur at the piezoelectric elements, which

still remain a challenge [19].

2.3. Active systems with inertial mass actuators

2.3.1. Inertial mass actuators

Most versatile are active vibration control systems using dynamic actuation [20]. In this case,

the force is generated by an inertial mass, which is excited by an active element. To enable a

broad band actuation, the inertial mass is usually mounted with soft springs to the host

structure, which causes a resonance in the system. Thus, the resulting force exciting the host

structure exhibits a dynamic behavior, and the inertial mass actuator can be treated as a

constant force generator only when being driven well above the resonance frequency. The fre-

quency response of an inertial mass actuator with a mass m, resonance frequency ω0, damping

coefficient θ, and an internal actuation force FA reads:

F sð Þ

FA sð Þ
¼

s2

s2 þ 2θω2
0sþ ω2

0

: (8)

A simple example of an inertial mass actuator with a resonance frequency of 10 Hz is shown in

Figure 5.

Inertial mass actuators have been used for active vibration control in cars [21], trains [22], or

building floors [23]. For very large structure like wind turbines actuation for the first dominat-

ing mode with a large force is required. Then, the concepts of the TMD and the inertial mass

Figure 5. Basic model of an inertial mass actuator and its frequency response function.

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems6



actuator converge to the active tuned mass damper [24]. Recent developments also treat non-

linearities in the host structures by extending the theoretical considerations for tuning of the

system and the control law [26].

If the host structure is a non-linearly oscillating system, extended considerations are necessary

in the design of those systems.

Mostly, electrodynamic actuation is preferred, because it enables a straightforward system

design for a low resonance frequency.

Still, some work is dedicated to the integration of piezoelectric actuation. Since piezoelectric

actuators possess very high resonance frequencies, proper designs have to be found that make

such stiff actuators applicable for an oscillator with a low resonance frequency. However, the

advantage of using piezoelectric actuation is the capability of the piezoelectric actuators to

function as structural elements and partly carry the inertial mass, enabling compact systems

with less movable parts.

Piezoelectric TVA systems can also be used in a hybrid mode. While being tuned to one

resonance frequency, they can be actively driven at higher frequencies and work as inertial

mass actuators [25].

2.3.2. Control methods

When the inertial mass actuator is driven well above its resonance frequency, it represents an

ideal force generator. Thus, arbitrary active vibration control methods are applicable. Two

basic concepts should be briefly repeated (Figure 6).

The feedback control system (Figure 6, left) is often applied to implement skyhook damping or

other concepts which aim at influencing the characteristics of the host structure. Further details

on control methods like velocity feedback or positive position feedback can be found in [27].

Feedforward control is usually implemented with adaptive digital filters [28]. The main field of

application for active control of vibrations is narrowband or harmonic disturbance forces

exciting the host structure. To compensate those, a reference signal with the same frequency is

Figure 6. Feedback and feedforward control of an inertial mass actuator.

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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generated and filtered in order to match the phase angle and amplitude for an optimal

suppression of the disturbance.

2.4. Comparison of the methods

To illustrate the characteristics of the introduced vibration control systems, the basic example

(Figure 1) is used once more [7]. As disturbance, a harmonic excitation force of 1 N with slowly

sweeping frequency between 40 and 60 Hz is considered. As a performance indicator, the RMS

of the acceleration of the host structure is used. A passive TVA, an adaptive TVA, and an active

system with an inertial mass actuator driven by an adaptive FXLMS algorithm are compared.

The mechanical parameters of the different devices are summarized in (Table 2).

The result summarizing numerical simulations of all three configurations is presented in

Figure 7. Obviously, the active system shows the best performance using just a moderate

System Passive Adaptive Active

Resonance frequency [Hz] 50 50 (+/ 5Hz adaptation range) 10

Mass [kg] 0.5 0.1 0.1

Damping coefficient [�] 0.01 0.01 0.03

Table 2. Parameters of the compared vibration control systems (from [7]).

Figure 7. RMS acceleration of a vibrating host structure with different vibration control systems.

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems8



additional mass, however at the expense of a complex system set up using digital signal

processing and a dynamic actuation, which can cause issues when scaling the system for

vibration control of very large structures. The adaptive and the passive vibration absorber

cause similar vibration reduction; however, the passive system uses a five times higher mass

than the adaptive (Figure 7).

Summarizing, the solution for an optimal vibration control system depends to the given

vibration problem and the respective requirements and restrictions like allowed amount of

added mass, possibility for energy supply, or the characteristics of the disturbance (Table 3).

This motivated the development of a vibration control system that can be used to realize

passive, adaptive, and active vibration control systems, which will be introduced in the next

section. This might be especially useful for prototyping purposes when an evaluation of

different system concepts is needed. Furthermore, the system can be used to implement hybrid

systems that combine passive, adaptive and active control.

3. Design of a hybrid piezoelectric absorber and inertial mass actuator

The vibration control device introduced here utilizes piezoelectric actuators due to their ability

to carry high static mechanical loads while providing static and dynamic actuation forces. This

should enable a multifunctional system. The design follows the well-known mechanical oscil-

lator consisting of a bending beam as spring element and a tip mass. In parallel to the bending

beam, two piezoelectric stack actuators are connecting the base and the tip mass (Figure 6).

In phase static actuation or static preloads by the screws apply tensile forces to the bending

beam, which alters the stiffness and enables adaptation of the resonance frequency. Alterna-

tively, out-of-phase dynamic operation of the piezoelectric actuators generates bending move-

ments of the beam, which causes transverse dynamic forces at the base of the absorber. More

details on the design can be found in [29, 30].

3.1. Adaptation by static preloading

The adaptation by static preloading can be described by the differential equation for the axially

loaded Euler-Bernoulli beam:

System Passive Adaptive Active

Vibration reduction Medium Medium High

System complexity Low Medium High

Energy supply None During adaptation (depending to the concept) Continuously

Added mass High Low Low

Bandwidth Low Medium High

Table 3. Comparison of passive, adaptive and active control systems.

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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EIw
0 0 0 0

þ FNw
0 0

¼ 0 (9)

Here, additional beam stiffness is generated by the tensile force FN. This force can be provided

mechanically by the preloading screws or electrically by applying static voltages to the piezo-

electric actuators. To compute the tensile beam force, a serial connection of actuators and beam

with the respective stiffness’s kA and kN,b has to be considered. The overall longitudinal

stiffness kN, eff of this configuration is defined by:

kN, eff ¼
2kAkN,b

2kA þ kN,b
(10)

Thus, for the mechanical preloading the force is evaluated by:

FN ¼ kN, effus with us ¼ ηα (11)

Hereby, the displacement of the screw us is defined by the product of their thread pitch η and

turning angle α. For the electrical preloading the tensile force is calculated differently to Eq. (11):

FN ¼ kN, eff uel with uel ¼ d33nAUel (12)

The product of the electro-mechanical constant d33, the number of actuator layers na and

electrical voltage Uel yield to piezo actuator’s displacement uel.

To solve the aforementioned differential Eq. (9), an adequate trial function is chosen and the

boundary conditions are defined. From this, follows the system of equations to be solved to

gain the constants of the trial function [30].

Also, the effective transverse stiffness of the beam kt, eff w.r.t. to the position x ¼ lþ a (refer to

Figure 8) is derived from this solution:

kt, eff ¼
w x ¼ lþ að Þ

F

� ��1

(13)

Considering a tip mass at position x ¼ lþ a, the natural frequency of the system can be

evaluated depending on the tensile preload. In Section 3.3, the analytical and experimental

results are compared. A good match is observed for both, mechanical and electrical tuning.

3.2. Generation of dynamic forces

As mentioned above, the piezo actuators can be used in dynamic operation (out of phase) to

generate transverse forces. This enables the system to work as an inertial mass actuator at

frequencies above its first natural frequency. To estimate the characteristics of the force F

generated in transverse direction, a simplified analytical model with respect to the actuator

force is used. Since the inertial mass at the tip is expected to be much heavier than the actuation

unit depicted in Figure 8, the mass of the latter is neglected here in order to simplify the

calculations using again the theory of the Euler beam. The system can be represented by a

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems10



bending beam with a tip force F and momentMy. The respective tip displacement w and angle

w0 can be found too by solving Eq. (9). The moment My at the tip due to the actuator force FA

and the restoring force of the actuator stiffness kA can be expressed by:

My ¼ 2 h FA � kA h2 w0 x ¼ lð Þ
� �

(14)

In order to include the geometry of the mass, the distance from the end of the beam to the

center of gravity of the mass is defined by a (refer to Figure 8). In Eq. (15), the displacement

w x ¼ lþ að Þ is evaluated

w x ¼ lþ að Þ ¼ w x ¼ lð Þ þ a w0 x ¼ lð Þ (15)

The free stroke at this point due to the actuator force FA can be calculated by setting the force F

to zero and using the solution of Eq. (9) for w x ¼ lð Þ and w0 x ¼ lð Þ and applying this to Eqs. (14)

and (15).

In a similar manner, the stiffness k ¼ F=w can be calculated by setting FA ¼ 0. The block force

of the actuator system can be calculated by multiplying the free stroke due to out-of-phase

actuator excitation and the stiffness of the system:

F ¼ k w x ¼ lþ að Þ (16)

Hence, considering a tip mass m at position x ¼ lþ a all quantities are defined in order to

calculate the dynamic behavior of the system due to actuator excitation.

3.3. Experimental characterization

According to the sketch (Figure 9) a prototype was built that is shown in Figure 10.

A thin beam is clamped between two steel blocks, which represents the mounting of the

inertial mass actuator. The width of the beam is large compared to its length to prevent torsion.

The whole pattern of the mounting is suited for a connection to a shaker, a heavy breadboard

or the test structure addressed subsequently. On the other side of the beam, the inertial mass is

attached. Two simple steel blocks are used to realize the clamping of the beam, which can be

changed easily for experiments. For assembling the piezoelectric actuators the beam is

Figure 8. Mechanical model of the vibration control device.

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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equipped with slotted holes. Monolithic multilayer actuators by CeramTec with a base area of

7:6� 7:1 mm and a length of 30 mm are integrated. On both sides of the piezoelectric actua-

tors, spherical ceramic caps are glued to reduce damaging bending and shear forces. To ensure

the force transmission of the actuators and to avoid loosening and, therefore, the non-linear

behavior, the actuators have to be pre-loaded. This is done by screws in the two masses next to

the beam with a distance of 7:5 mm to the beam’s surface. The tips of the pre-loading screws

are concave as counterparts of the actuator’s ceramic caps. There are corresponding holes at

the mounting at the same distance from the beam. This prevents shifting of the piezoelectric

actuators in operation. The parameters for the actuator system are depicted in Table 4.

Figure 10. Implemented prototype of the adaptive vibration absorber/inertial mass actuator.

Figure 9. Design of the vibration control device.

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems12



3.3.1. Adaptation of the resonance frequency by static preloads

To analyze the dynamic characteristics of the inertial mass actuator, tests were performed. The

whole actuator was mounted to a rigid, heavy base plate which can be treated as an infinitely

small mechanical admittance in the considered frequency range (Figure 11). The tip mass was

instrumented with an accelerometer and excited by an impulse hammer in order to gain the

resonance frequencies by evaluating the respective frequency response functions depending

on both conditions—mechanical and electrical preload.

Exemplarily the frequency responses for electrical tuning are depicted in Figure 12. Obviously,

the effect of preloading is significant and has to be taken into account. The analytical model

which is introduced in the preceding section is validated by the experimental results. Some

differences between experimental and analytical frequency responses can be observed for very

low DC voltages, where the absorber does not exhibit perfect characteristics of a single-

degree-of-freedom oscillator. This could be caused by a poor mechanical coupling between

the piezo stacks and the structure when nearly no pre-load is applied. For very high pre-loads

around 140 V, the model predicts higher tuning effects than measured in the experiment

(Figure 12). In this case, the analytical model might not perfectly predict the contact character-

istics of the ball joints, which can be non-linear for high mechanical loads.

The comparison of the measured and the calculated resonance frequencies is shown in Figure 13

for both cases (mechanical and electrical tuning). By mechanical preloading a larger frequency

shift compared to electrical preloading is realized. This can be explained by the limited blocking

force of the piezo actuators. However, a good match between the experimental values for the

resonance frequencies and the calculated results is observed for both cases.

The performance of both tuning concepts is comparable to adaptive absorbers, which use

motors for the variation of the spring geometry investigated in preliminary work [15].

Quantity Symbol Value Unit

Beam

Length l 41.5 mm

Width b 60 mm

Thickness d 0.5 mm

Young’s modulus E 2.2∙1011 N/m�2

Mass

Mass m 1.078 kg

Actuator

Stiffness kA 42∙106 Nm�1

Max. block force FB,max. 2000 N

Table 4. Parameters of the actuator systems.

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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Figure 11. Test set up for the dynamic analysis of the adaptive vibration absorber.

Figure 12. Frequency response functions of the adaptive vibration absorber for different DC voltages (electrical tuning) -

simulation results (left) and experimental results (right).

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems14



3.3.2. Dynamic force generation

For the evaluation active force generated by the device, the piezoelectric actuators were driven

with a swept sine signal by the analyzer. A simple analogue circuit realizes an out of phase

driving signal for one of the actuators in order to excite the bending mode of the actuator

system to produce transverse forces, and the acceleration of the tip mass was measured

(Figure 14). Since the mounting can be assumed to be rigid, the block force can be directly

derived from the acceleration and the mass.

Figure 13. Variation of resonance frequency by mechanical (left) and electrical preloading (right).

Figure 14. Test set up for the measurement of the dynamic block force of the actuator.

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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For this test, different preloads from 20 to 120 VDC were applied to the actuators. The resulting

frequency responses between applied driving voltage and the generated force show the

expected characteristics (Figure 15).

In the frequency range above the first resonance and 250 Hz, no further resonances are excited.

However, it was observed that, compared to the analytical frequency responses, the measured

ones are influenced by the pre-load. Additionally, the block force is underestimated by the

analytical frequency responses. Above the resonance the block force increases slightly with the

pre-loading voltage. This might be caused by a non-linearity in the piezoelectric elements, i.e.,

a dependency of the piezoelectric constant to the pre-load. In the next section, the application

of the actuator system to a truss structure is conducted. Therefore, the adaptive and active

mode of the actuator system is used simultaneously in order to attenuate unwanted vibration

in different frequency regions.

4. Application to an elastic truss structure

To evaluate the performance in an active vibration control system, the actuator was mounted

to a lightweight truss structure (Figure 16). The actuator was instrumented with accelerome-

ters at its base and at the inertial mass.

In the first step, the adaptive absorber was tuned by mechanical pre-load to a structural mode,

which resulted in a vibration absorption effect at 43 Hz (Figure 17). This effect was enhanced

by choosing an additional electrical pre-load of 50 VDC, which resulted in an absorption

frequency of 50 Hz. Although this frequency does not match the structural resonance at

48 Hz exactly, this configuration served well as a basis for adjusting the active control system.

In the next step, the active control system was set up and tuned. Two control loops were

implemented successively and connected (Figure 18). First, an active velocity feedback loop

Hv sð Þ was used to enhance the damping of the inertial mass actuator, which caused the better

Figure 15. Calculation (left) and measurement (right) of the dynamic block force of the actuator.

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems16



performance of the absorption at the first mode at 48 Hz and a higher robustness against the

interaction between different control loops. In order to derive the dynamic velocity from the

measured acceleration at the tip mass, an integrator is used. In a practical control system, this

is implemented with a low pass filter:

Figure 16. Test set up for the active control experiment (left) and detail of the actuator instrumentation (right).

Figure 17. Tuning of the adaptive absorber to the first elastic mode of the truss.

Passive, Adaptive, Active Vibration Control, and Integrated Approaches
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Hv sð Þ ¼
gv

sþ ωLP
(17)

The cut-off frequency ωLP is set well below the resonance of the actuator, here at about 5 Hz,

and gv is chosen appropriately. Second, an acceleration feedback loop was tuned to the second

Figure 18. Block diagram of the control system.

Figure 19. Control results for the truss structure.

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems18



mode of the truss at 125 Hz (Figure 19). The corresponding transfer function is a second order

low pass filter:

Ha sð Þ ¼
gaωc

s2Mþ 2θ ωc sþ ω2
c

(18)

Here, ωc is the tuning frequency and θ the damping coefficient, while ga is the control loop

gain. The control system was implemented with analog circuitry.

Since the actuator is not symmetric, a bending moment is exciting at its base additional to the

transverse force. This results in lowering of a higher resonance frequency from 180 to 160 Hz

and a deterioration of the vibration amplitudes in this frequency region.

5. Conclusions

Adaptive and active vibration control systems can outperform passive systems in terms of

additional mass and vibration reduction. However, the different systems cause an increase of

system complexity and need for additional power supply. Thus, alternative feasible approaches

should be evaluated to find the optimal solution for a given vibration problem. To enable

experimental prototyping, a design for a TVA has been introduced, that can be used for passive,

adaptive, and active vibration control. It has also been shown that an advantage of such an

integrated system can be applied to hybrid systems that work as passive absorbers in the lower

frequency range and a can excite active forces at higher frequencies.
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