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Abstract

Inflammation is a common feature in end stage renal disease (ESRD) that might contrib-
ute to increase DNA damage. ESRD patients present increased circulating cell-free DNA 
(cfDNA) and different types of DNA injury. The underlying inflammatory process in ESRD 
may be associated with increased genomic damage and cfDNA contributing to further 
enhance inflammation. We analyzed the degree of genomic damage in ESRD patients under 
hemodialysis therapy, using the comet assay and cfDNA quantification. ESRD patients pre-
sented significantly higher C-reactive protein (CRP) and cell damaged DNA. The cfDNA 
correlated with age and inflammatory stage. Nine out of 39 patients died during the one 
year follow-up period and presented significantly higher cfDNA, than those who persisted 
alive. At lower CRP values, the increased DNA damage is still within the cell, and at higher 
CRP the damaged DNA is released in to plasma. The higher degree of genomic damage in 
ESRD might be a consequence of inflammation and aging, and may contribute to increase 
cancer and cardiovascular mortality risk. Our data suggest that the comet assay is more sen-
sitive for low-grade inflammatory conditions, while cfDNA appears as a good biomarker for 
more severe inflammatory conditions, and as a biomarker for the outcome of ESRD patients.

Keywords: chronic kidney disease, end-stage renal disease, inflammation, genomic 
damage, comet assay, cell-free DNA

1. Introduction

Kidneys are important in homeostasis, ensuring the excretion of toxic substances and regulat-
ing blood volume, blood pressure, concentration of electrolytes, plasma osmolarity and the 
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acid/base balance. The kidneys also have endocrine functions, producing hormones, such as 
erythropoietin and calcitriol.

Chronic kidney disease (CKD) is characterized by a decline in kidney function and/or 
altered renal structure, leading to a gradual to permanent loss of kidney function over time. 
End-stage renal disease (ESRD), the worst stage of chronic kidney disease (CKD), requires 
dialysis to prevent accumulation of toxins, excessive water and electrolytes, or kidney trans-
plantation [1].

Inflammation is a common feature in CKD, especially enhanced in ESRD patients on hemo-
dialysis (HD). This chronic inflammatory state seems to contribute to aggravate kidney dys-
function and favor the occurrence of comorbidities and the risk of mortality [2, 3].

Chromosomal abnormalities, reduced DNA repair and DNA lesions have been reported in 
CKD patients [4]; increased levels of circulating cell-free DNA (cfDNA) [5], DNA-histone com-

plexes [6] and different types of DNA injury [4, 7, 8] were also reported. The DNA-histone 
complexes have been proposed as markers of cardiovascular (CV) events in CKD and ESRD 
patients [6]. These genetic changes may explain, at least in part, the increased risk of cancer in 
these patients. In ESRD patients the HD treatment seems to contribute per se to enhance inflam-

mation and, thus, it may also favor genetic damage and the associated complications [9, 10].

2. Chronic kidney disease and inflammation

CKD is associated with high mortality rates and its prevalence is increasing worldwide. The 
five clinical stages of CKD are based on the values of glomerular filtration rate and albumin-
uria (Table 1). At stages 1 and 2, patients are usually asymptomatic, presenting kidney dam-

age and/or loss of kidney function. Stages 3 and 4 are associated with deterioration of renal 
function, from mild to severe dysfunction. In stage 5 (or ESRD), loss of kidney function is 
irreversible and the patients need renal replacement therapy [1, 11, 12]. Given the increasing 
prevalence of ESRD patients on HD treatment, CKD is a major health public problem, with 
significant socio-economic consequences and a considerable impact on functional status and 
quality of life of patients [13].

Diabetes mellitus and arterial hypertension are the two most common causes of CKD [15, 16]. 
Other possible causes, although less common, include glomerulonephritis, nephrolithiasis, 
pyelonephritis and polycystic kidney disease [17, 18].

Regardless of technologic improvements in dialysis, ESRD is associated with substantial 
morbidity and mortality risks [19]. Actually, the improvements in dialysis procedures and in 
membrane flux, with higher clearance of small solutes, do not necessarily improve patient’s 
survival [20, 21].

In CKD patients, the CV disease (CVD) events are the most frequent causes of death [22], 
while infections and malignancies are the most common non-cardiovascular causes, par-
ticularly in ESRD patients on HD. The high incidence of CVD in CKD patients has been 
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associated with the high prevalence of traditional and non-traditional CV risk factors. 
Diabetes mellitus, arterial hypertension, dyslipidemia, obesity, sedentarism, smoking hab-
its and age are important traditional CVD risk factors. Non-traditional CVD risk factors 
in CKD patients are more specifically related to the disease itself and/or to dialysis asso-
ciated complications (e.g., inflammation, anemia, oxidative stress, hyperphosphatemia, 
left ventricular hypertrophy, endothelial dysfunction, insulin resistance and high levels 
of lipoprotein(a)). Comorbidities, such as infection, inflammation, oxidative stress, iron 
deficiency, anemia, vascular calcification, uremia and volume overload, are associated 
with a poor outcome and increased mortality risk in patients undergoing HD [3, 23–25]. 
Associations of these risk factors in CKD patients seem to represent a cumulative and addi-
tive risk for CV events. Actually, it has been difficult to find a biomarker or a panel of bio-
markers that allows the evaluation/prognostic of the clinical condition. This is particularly 
complex for ESRD patients in HD, as they present several processes associated with renal 
tissue damage and, thus, some markers of renal injury may become relevant.

Inflammation, a hallmark of CKD, is triggered by harmful stimuli, able to activate polymor-
phonuclear cells and monocytes, which produce several inflammatory cytokines, reactive 
oxygen metabolites and proteases that can amplify the inflammatory response to a systemic 
level, by inducing the activation of other inflammatory cells and the production of other cyto-
kines and of several acute-phase proteins. It seems that the persistent inflammation in CKD 
triggers self-enhancement of the inflammatory cascade and exacerbates wasting and vascular 
calcification, amplifying the risk for poor outcome [26]. Actually, inflammation is a morbidity 
and mortality risk factor for CKD patients. In ESRD patients on HD treatment, the chronic 
inflammatory state is especially enhanced, as well as vascular calcification, endothelial dys-
function and wasting [27, 28]. Thus, several biomarkers of inflammation have been largely 
studied as predictive markers of CVD risk and mortality in CKD patients.

The inflammatory biomarkers, C-reactive protein (CRP), interleukin (IL)-6 and tumor necro-
sis factor (TNF)-α, have been reported to be enhanced in CKD [2, 29]. According to Chronic 

Albuminuria (mg/g)

CKD stages GFR (ml/min/1.73 m2) <30 30–300 >300

1 ≥90 LR MIR HR

2 60–89 LR MIR HR

3a 45–59 MIR HR VHR

3b 30–44 HR VHR VHR

4 15–29 VHR VHR VHR

5 <15 VHR VHR VHR

LR, low risk; MIR, moderately increased risk; HR, high risk; VHR, very high risk.

Table 1. Prognosis of chronic kidney disease (CKD), according to glomerular filtration rate (GFR) and albuminuria 
(adapted from Ref. [14]).
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Renal Insufficiency Cohort (CRIC) study, the inflammatory biomarkers IL-1β, IL-1 receptor 
antagonist, IL-6, TNF-α, CRP and fibrinogen, are correlated negatively with markers of kid-
ney function, and positively with albuminuria [30]. A cytokine and a T cell imbalance have 
been also reported in ESRD [31]. CRP measurement was reported as a good predictor of 
mortality in HD patients [32], while IL-6 was considered a predictor of all-cause and CVD 
mortality [33, 34]. In a recent study by our team we found that CRP was an independent risk 
factor for mortality in HD patients [3].

There are other factors that may contribute to the persistence of inflammation in CKD 
patients, besides the pro-inflammatory factors released along the inflammatory response. 
The impairment in immune response, involving neutrophils and T cells, favors the risk of 
infection [35]. In HD patients, infections, such as catheter-related bloodstream infections 
and access site infections, as well as thrombotic events, are common and enhance inflam-

mation [36]. An increase in pro-inflammatory cytokines alongside with a reduction in their 
clearance also favors the pro-inflammatory state. Inadequate antioxidant defenses to face 
the enhanced production of reactive oxygen species (ROS) may favor the inflammatory 
milieu. Retention of uremic solutes, such as guanidines, interferes with monocyte/macro-
phage inflammatory activity, which may favor CVD and infection [37]. Obesity increases 
the risk for kidney disease in the general population [38] and is associated with an altered 
production of adipokines and a low-grade inflammatory state. For instance, hyperlepti-
nemia has been associated with several CVD risk factors, namely, inflammation, insulin 
resistance, protein energy wasting and with progression of CKD [39]. Adiponectin, an anti-
inflammatory adipokine that is usually reduced in obesity, is increased in CKD patients, 
probably due to the development of adiponectin resistance, and has been associated with 
increased mortality risk [40]. In HD patients the overproduction of pro-inflammatory cyto-
kines, the enhancement in phagocyte oxidative burst, activation of NADPH oxidase and 
the removal of antioxidants by the dialysis procedure [41], produce an additional inflam-

matory stimuli.

Malnutrition and protein-energy wasting, common in CKD, may also contribute to the inflam-

matory condition of CKD patients [42]. Mineral and bone disorders, comorbidities associated 
with CKD, are also linked to the inflammatory process [42].

The close relationship between inflammation and anemia, a common complication of CKD, 
is well known. Anemia mainly results from a reduced production of erythropoietin (EPO) 
by the failing kidneys. The increase of the inflammatory cytokine IL-6 in CKD patients 
leads to an increase in the production of hepcidin that is able to induce the development 
of a functional iron deficiency. Hepcidin inhibits iron absorption by the enterocytes, and 
the mobilization of iron stores, from the macrophages of the reticuloendothelial system, 
compromising iron availability for erythropoiesis. The increase of hepcidin often leads 
to a functional iron deficiency in CKD patients. Iron deficiency, either absolute or func-
tional, can contribute to the development or worsening of anemia in CKD patients [3, 43]. 
Inflammation is enhanced in patients who develop resistance to recombinant human EPO 
(rhEPO) therapy; however, the mechanisms responsible for the development of the hypore-
sponse to rhEPO are not fully understood [5, 43].
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Inflammation is also common to other inflammatory conditions, such as aging, obesity, diabe-
tes mellitus and CVD. Thus, the coexistence of these diseases with CKD may further enhance 
inflammation, contributing and/or aggravating the inflammatory-associated complications, 
namely the risk for CV events [44]. Indeed, several pro-inflammatory cytokines that are 
enhanced in CKD present proatherogenic properties, such as up-regulation of adhesion mole-
cules, enhancement of endothelial dysfunction, promotion of vascular calcification and insulin 
resistance, and oxidative stress generation [31].

3. Inflammation and DNA damage

More recently, inflammation and inflammatory conditions, including CKD, have been associ-
ated to DNA damage. The positive correlation between the levels of DNA damage and the 
mortality risk in CKD patients suggests that genomic damage can be valuable for prognosis 
in these patients [8].

The chronic inflammatory state in CKD patients favor genomic damage, which may be induced 
by inflammatory products and mediators, as well as by external environmental factors, as 
those associated to the HD procedure [45]. Unrepaired or incorrectly repaired nuclear or mito-
chondrial DNA damage leads to cell cycle arrest and apoptosis or to mutations. Mutations 
include intra- or interstrand cross-links, cross-links between DNA bases and proteins, single-
strand breaks (SSB), double-strand breaks (DSB) and oxidized DNA bases. DNA repair capac-
ity is essential to correct DNA damage, reduce the genomic damage and, therefore, to reduce 
cancer risk that appears to be higher in CKD [4].

The genomic damage can be detected by sensitive biomarkers, like unscheduled DNA syn-
thesis (UDS), sister-chromatid exchange (SCE), mitotic index, telomere length, mitochondrial 
DNA, micronucleus (MN) assay, comet assay fluorescence in situ hybridization (FISH) with 
DNA or with protein (Immuno-FISH), comparative genomic hybridization (CGH); array-
comparative genomic hybridization (array-CGH), spectral karyotyping (SKY), G-banding and 
flow cytometry [4, 8, 46–48]. These approaches can be used for the identification of genomic 
lesions, susceptibility to environmental genotoxins and inadequate DNA repair in CKD and 
HD patients [46].

3.1. Comet assay

The comet assay or single cell gel electrophoresis (SCGE), introduced in 1984, is a sensitive 
and simple technique for detecting DNA damage at the level of a single cell, under neu-
tral or alkaline conditions; this test can be complemented with the use of repair enzymes. 
This assay is useful for measuring SSB, DSB and alkaline labile sites (ALS) in cells and is 
dependent on the ability of breaks to relax DNA supercoiling linked to the nuclear matrix 
[49–51]. Concisely, the comet assay requires a suspension of cells embedded in low melting 
agarose, cellular lyses (to remove plasmatic membranes, cytosol, nucleoplasm and proteins), 
DNA denaturation (release of histones from DNA), and electrophoresis at neutral or alkaline 
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conditions, where DNA moves to the anode, in a way that is dependent on the number of 
lesions in the nucleoid, forming a comet. The neutral method (pH = 8.4) only detects DSB, 
while the alkaline method (pH > 13), with higher sensitivity, identifies both SSB and DSB 
[51]. For this procedure, it is important to optimize agarose concentration (0.6–0.8%), alkaline 
unwinding time (40 minutes) and electrophoresis conditions (time, voltage and current, usu-
ally 1.15 V/cm), to achieve reliable data on the degree of DNA damage [52]. After electropho-
resis, samples are neutralized, stained with a DNA-binding fluorescence dye and analyzed by 
fluorescence microscopy [49–51, 53, 54]. The comet is composed by a head that contains the 
undamaged DNA of the nucleus, and by a comet tail, which includes SSB and DSB [49, 50]. 
The number of DNA breaks is shown by the intensity and length of the tail to the head of the 
comet [49]. The percentage of DNA in the tail (%T), the tail length and tail moment, provided 
by an adequate software, measures the DNA damage. The tail moment represents the product 
of %T and tail length [55, 56].

The scoring systems for the comet assay can use a computer-based image system (semi-
automated or automated) coupled to a microscope, and the results are expressed in arbi-
trary units (AU). Using this visual scoring system, a total of 100 comets per 2 replicate 
gels are observed, and each comet is assigned to 1 of 5 classes, according to the tail and 
head intensity. In class 0, there is no DNA in the tail (undamaged DNA); and from class 
1 to class 4 (severe damage), the increase of DNA in the tail is proportional to DNA dam-

age. The average extension of DNA migration is calculated by assigning numerical values 
to each migration class. The comet scoring into classes should be randomly performed in 
the gel, avoiding edges and areas/cells close to bubbles or artifacts of the gel; ideally, the 
same operator should perform all scorings. For each sample, the score is calculated apply-
ing the following formula: (percentage of cells in class 0 × 0) + (percentage of cells in class 
1 × 1) + (percentage of cells in class 2 × 2) + (percentage of cells in class 3 × 3) + (percentage 
of cells in class 4 × 4) [57, 58]. Afterwards, DNA damage is calculated in arbitrary units (AU) 
using the formula:

  AU = [((0 × N0) + (1 × N1) + (2 × N2) + (3 × N3) + (4 × N4)) × 100
                 number of analyzed comets]  (1)

where N0, N1, N2, N3 and N4 are the numbers of comets in classes 0, 1, 2, 3 and 4, respec-
tively. The values of DNA damage reported in AU may be transformed into estimated per-
centage of DNA in the tail (E%T), using: E%T = (AU/5) + 10, that converts the visual score to 
a pseudo-percentage score, ps (ps = vs/5 + 10) in a scale range limited to 10–90% [59]; or the 
conversion curve E%T = (AU − 25.87)/4.46 [60].

More recently, several methodological modifications of the comet assay were developed to 
detect and quantify DNA damage. The OpenComet, an automated software tool, allows the 
quantitative measurement of SSB, DSB, ALS and DNA crosslinks with high accuracy and repro-
ducibility, with the advantage of a shorter analysis time [61]. The CometQ is an innovative, 
fully automated tool to analyze the images of comet assay with high accuracy, sensitivity and 
good predictive positive value [62]. The high throughput comet (HT-COMET) assay provides 
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accuracy, efficiency and gives DNA damage profile that allows the determination of the pro-
portion of highly damaged cells [63]. The Comet-FISH measures the percentage of DNA lesions 
or DNA modifications in the comet tail, which can be enzymatically or chemically converted 
into strand breaks, providing a way to study the molecular mechanisms of different repair 
pathways and the screening of drugs, as potential specific inhibitors for repair pathways [64]. 
Comparing with the MN assay, the comet assay allows the study of non-proliferating cells and 
does not need to use cell cultures [4]. However, the assay of MN, also known as Howell-Jolly 
bodies, is recognized as robust, sensitive, fast and reliable method, which analyses cytogenetic 
damage, namely, chromosomal breaks (clastogenesis), disruptions of mitotic apparatus with 
chromosomal losses (aneugenesis) and amplifications [51, 53].

3.2. Cell-free DNA

Human plasma contains cell free nucleic acids, including genomic DNA, mitochondrial 
DNA, mRNAs and miRNAS, all with different functions [65]. DNA is released following 
cell damage and is raised in several clinical conditions, such as diabetes, trauma, cancer, 
systemic lupus erythematosus, age-associated inflammation and inflammation-associated 
diseases [65, 66].

In diabetes mellitus, one of the most common causes of CKD, cfDNA levels were reported to 
be increased, both in patients with and without microvascular complications, though higher 
in those with microvascular disturbances [67]. It was hypothesized that in diabetes, the reac-
tive oxygen and nitrogen species cause DNA strand-breakage, which may activate the nuclear 
enzyme poly (ADP-ribose) polymerase-1 (PARP-1) [68, 69]. The activation of PARP induces 
depletion of DNA, reducing glycolysis, electron transport and ATP formation; moreover, it 
inhibits the synthesis of glyceraldehyde 3-phophate by poly-ADP-ribosylation dehydroge-
nase. All these mechanisms seem to lead to acute endothelial dysfunction, favoring the devel-
opment of diabetic complications [67].

As referred, inflammation is a hallmark of CKD and is particularly enhanced in ESRD patients 
under HD. The underlying inflammatory process might contribute to increase DNA dam-

age [66]. In ESRD patients on HD, the cellular necrosis and apoptosis occurring along the 
HD process [70], the enhanced production of ROS and toxins, such as advanced glycation 
end products derived from oxidative peroxidation [71, 72], may contribute to a higher rise in 
cfDNA levels. Modifications in DNA repair mechanisms may also favor the increase of DNA 
damage [8]. Epigenetic variations, including DNA methylation patterns, histone modifica-
tions, chromatin remodeling, microRNAs and long non-coding RNAs, can change the flow of 
gene expression, acting as genotoxic modifiers by promoting DNA damage and chromosome 
abnormalities [51].

The traditional method for DNA quantification is the ultraviolet absorbance spectroscopy 
assay, which is not applicable to biological samples. In this case, after DNA extraction from 
the biological fluid, cfDNA can be quantified, using specific dyes, by colorimetry or emission 
fluorometry; however, these methods are complex and expensive. Goldshtein et al. [73] devel-
oped a simple, inexpensive and accurate test for cfDNA evaluation that does not require prior 
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processing of samples. Briefly, SYBR® Gold stain is diluted in dimethyl sulfoxide (1:1000 dilu-
tion) and phosphate buffer (1:8 dilution); the biological fluid (serum, whole blood, urine or 
supernatant of cell cultures) is mixed with SYBR® Gold solution (final stain dilution: 1:10,000) 
and cfDNA fluorescence is measured with a fluorimeter (emission wavelength 535 nm, exci-
tation wavelength of 488 nm). Czeiger et al. applied this method to a study using an animal 
model and patients with colorectal cancer; and found that mice inoculated with patient’s 
cancer cells, presented a positive correlation between cfDNA and tumor size [74]; compar-
ing cfDNA levels between controls and preoperative patients, cfDNA levels were higher in 
patients; 1 year after, the levels of cfDNA were higher in patients who remained with the 
disease or died, as compared with those without disease; in accordance, the authors proposed 
that in colorectal cancer patients the levels of cfDNA had a prognostic value, for death and for 
the outcome of the disease [74].

4. DNA damage in ESRD patients

Our team has been interested in studying DNA damage and its correlation with the enhanced 
inflammatory state observed in different inflammatory conditions, as in ESRD under HD 
treatment and in psoriasis vulgaris; in both these clinical conditions we found that cfDNA 
levels were increased and correlated with inflammatory markers, as IL-6 and CRP in ESRD 
[66]; and, in psoriasis, cfDNA levels were correlated positively with IL-6, suggesting a linkage 
with psoriasis severity [75].

In a more recent work, we analyzed the degree of genomic damage in ESRD patients under 
HD therapy for more than 1 year, using two different approaches, the alkaline in vitro comet 
assay and the cfDNA quantification (according to Goldshtein et al. method [73]), in order to 
evaluate DNA damage within the cell and the circulating free DNA, respectively. We studied 
39 ESRD patients (24 males and 15 females with a median age of 68, [58–77] interquartile 
ranges) that were under HD therapeutic, 2–3 times per week, 3–5 hours each HD session, for a 
median time of 67, [40–94] months; high-flux polysulfone FX-class dialyser of Frenesius (Bad 
Hamburg, Germany) was used for the HD procedure. The main causes of renal failure were 
diabetic nephropathy (n = 12), hypertensive nephrosclerosis (n = 11), pyelonephritis (n = 5), 
IgA nephropathy (n = 4), polycystic kidney disease (n = 3), other diseases (n = 2) and of uncer-
tain etiology (n = 2). Besides rhEPO therapy, patients were under iron and folate prophylac-
tic therapies, in accordance to the recommendations of “KDIGO Clinical Practice Guideline 
for Anemia in Chronic Kidney Disease” [76], to avoid nutrient erythropoietic deficiencies. A 
group of 15 healthy volunteers, 2 males and 13 females, with normal hematological and bio-
chemical values, without history of renal or inflammatory diseases, was also studied. This con-
trol group was matched as far as possible for age, once the age of HD patients is usually high. 
ESRD patients and controls were matched for body mass index, but not for gender (Table 2).

We found that ESRD patients presented significantly lower values of erythrocytes, hemo-
globin concentration and hematocrit; the erythrocytes were less hemoglobinized, as 
showed by the significantly lower value of mean cell hemoglobin concentration; however, 
iron stores were increased, as ferritin was significantly increased (about sixfold the control 
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value). These findings suggest a functional iron deficiency that seems to be linked to the 
high inflammatory state observed in ERSD patients, with significantly higher CRP values 
(Table 2). Considering that inflammation regulates iron absorption and iron availability for 
hemoglobin synthesis, the enhanced inflammatory state in ESRD patients contributes to 
worsening of anemia and to the reduction in erythrocyte hemoglobinization.

We used the comet assay to evaluate DNA structural damage in blood cells from controls and 
ESRD patients on HD. The distribution of comets was obtained by visual scoring into five 
classes (Figure 1), based on the length of migration and/or in the relative proportion of DNA 
in the head and in the tail [57, 58].

Controls (n = 15) ERSD patients (n = 39) P-value

Sociodemographic data

Age (years) 52 [40–55] 68 [58–77] 0.001

Gender [(M/F); n (%)] 2 (13%)/13 (87%) 24 (62%)/15 (38%) 0.002

BMI (kg/m2) 22.9 [20.6–27.2] 25.2 [21.5–27.8] 0.329

Hematologic data

RBC (×1012/l) 4.60 [4.20–5.00] 3.70 [3.50–3.90] <0.001

Ht (%) 40.3 ± 4.7 35.8 ± 4.1 0.001

Hb (g/dl) 13.6 ± 1.5 11.8 ± 1.5 <0.001

MCV (fl) 89.0 [84.0–94.0] 96.9 [95.2–99.2] <0.001

MCH (pg) 30.7 [28.1–31.6] 31.9 [30.8–32.6] 0.006

MCHC (g/dl) 33.7 ± 1.1 32.8 ± 1.1 0.008

WBC (×109/l) 7.3 [5.4–8.1] 5.8 [5.1–7.7] 0.164

Biochemical data

Iron (μg/dl) 69.5 [64.5–110.8] 65.0 [56.0–87.0] 0.299

Ferritin (μg/dl) 68 [15–137] 461 [351–680] <0.001

Transferrin (mg/dl) 307 [238–338] 173 [158–194] <0.001

Transferrin saturation (%) 20.5 [15.9–26.7] 27.8 [22.2–42.5] 0.008

CRP (mg/l) 0.7 [0.6–0.4] 2.9 [1.7–12.5] 0.017

Cell-free DNA (ng/ml) 116 [90–267] 371 [217–563] 0.002*

BMI, body mass index; CRP, C-reactive protein; F, female; Ht, hematocrit; Hb, hemoglobin; M, male; WBC, white blood 
cell; MCV, mean cell volume; MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin concentration; RBC, red blood 
cell. P < 0.05 was accepted as statistically significant.
Results are presented as mean ± standard deviation or as median [interquartile range]; differences between groups were 
tested using chi-squared test and Fisher’s exact test for categorical variables; for continuous variables, the unpaired 
Student’s t-test or the Mann-Whitney U test were used, according to the distribution of the variable.
*Loss of significance after statistical adjustment for age (analysis of covariance (ANCOVA)).

Table 2. Sociodemographic data, hematologic, biochemical, and cell-free DNA values in end-stage renal disease (ERSD) 
patients and controls.
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DNA damage presented as AU, for controls and patients, are displayed in Figure 2. We found 
that DNA damage (AU) was significantly higher in ESRD patients (71 [36–127]), when com-

pared to controls (34 [0–61]). A significant increase was also observed for %T in ESRD patients, 
when compared to controls. We found a %T of 24.2 [17.2–35.4] and 16.8 [10.0–22.2] (expressed 
in pseudo percentage), and 10.12 [2.27–22.71] and 1.82 [−5.80–7.88] (using the conversion curve) 
for patients and controls, respectively (Figure 3). The conversion curve provides a better fitting 
between %T and AU [55, 60] and showed negative values of %T for AU below 26, indicating 
that %T was zero; above 400 AU, the %T was 84%, in accordance with others [55, 60]. Our data 
is in accordance with other studies reporting that the levels of DNA breaks and oxidative DNA 
lesions, measured by the comet assay, are higher in dialysis patients then in controls [77].

We also found that %T was negatively correlated (Spearman’s rank correlation) with CRP 
(r = −0.368; P = 0.021) and ferritin (r = −0.404; P = 0.011), in ESRD patients; no significant corre-
lations were found between DNA lesions and the rhEPO dose used to treat anemia (r = 0.171; 
P = 0.306), or the time of HD treatment (r = −0.186; P = 0.256). In a cross-sectional study, the 
oxidative DNA lesions found in dialysis patients were inversely correlated with the duration 
of the dialysis sessions [77, 78].

Figure 1. Comet images of lymphocytes from end-stage renal disease (ERSD) patients showing different migration 
patterns, according to the levels of DNA damage, from class 0 (undamaged) to class 4 (severe damage).

Figure 2. DNA damage, presented in arbitrary units, for each of the 15 healthy controls (A) and for the 39 ESRD patients (B).
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Figure 3. (A) Mean values in arbitrary units and the estimated percentage of DNA in the tail (E%T) calculated using two 
equations: (B) the pseudo percentage score (ps = vs/5 + 10) and (C) the conversion curve = (AU − 25.87)/4.46, in controls 
and end-stage renal disease (ESRD) patients (differences between groups were tested using Mann-Whitney U test).
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We did not find significant differences in DNA damage (comet tail length or tail intensity) for 
diabetics and nondiabetic ESRD patients, as reported by Ersson et al. [77]; however, our find-
ings are in accordance with Mamur et al., reporting no difference in comet tail length or tail 
intensity between diabetic and non-diabetic ESRD patients on HD [78].

Our data suggest that long-term dialysis treatment or diabetes mellitus do not affect DNA 
damage, however there are still few studies and controversial data. Ersson et al. reported 
lower levels of DNA damage in salivary gland tissues of ESRD patients, as compared to con-
trols, suggesting that ESRD might affect DNA in different ways, in peripheral tissues and in 
blood mononuclear cells [77].

Concerning cell-free DNA, we found that ESRD patients had a significantly higher value, 
compared to control; however, after statistical adjustment for age, the significance was 
lost (Table 2). Cell-free DNA correlated (Spearman’s rank correlation) significantly and 
positively with age in both groups (r = 0.342, P = 0.033; r = 0.589, P = 0.021; in patients 
and controls, respectively), and with CRP in ESRD patients (r = 0.483; P = 0.002). Our 
results are in accordance with others reporting increased levels of cfDNA in hemodia-
lyzed patients [79].

To study the predictive risk of mortality associated with DNA damage, we recorded the num-

ber of deaths that occurred along 1 year after the analytical study of the 39 ESRD patients; 9 
out of the 39 ESRD patients died. We compared the analytical data from ESRD patients who 
were alive and from the patients who died in the 1 year follow-up period (the Mann-Whitney 
U test was used). The latter patients presented significantly higher (P = 0.006) cfDNA values 
(713 [415–809] ng/ml) than those who were still alive (337 [192–484] ng/ml). A trend towards 
(P = 0.149) higher CRP levels (7.5 [1.6–45.7] mg/l) in those who died, compared to those who 
were still alive (2.7 [1.7–9.3] mg/l), was also found.

The differences in DNA damage, observed between controls and ERSD patients, could be 
higher, if we were able to gather a gender matched population. It is known that DNA lesions 
are higher in women, both in healthy [43, 80–82] and in pathological conditions [83].

Divergent results have been reported for the levels of DNA damage and the time of dialysis 
treatment. Some studies showed a reduction of DNA damage on long-term maintenance 
HD [84, 85], while others showed an increase [8, 86, 87]. Recently, it was reported that online 
hemodiafiltration (OL-HDF) reduced the levels of DNA damage in these patients, as this 
approach provides a reduction of inflammation and oxidative stress [10]. In fact, a reduc-
tion of binucleated cells with micronuclei in patients that changed from low-flux HD to 
post-dilution OL-HDF, as well as an increase in plasma antioxidant capacity, were shown 
[88]. Both single high-flux HD and OL-HDF remove circulating mitochondrial DNA, a pro-
inflammatory agent, which has been correlated with the chronic inflammatory grade of 
hemodialyzed patients [89]. Moreover, OL-HDF procedure has been associated with lower 
levels of the inflammatory markers, IL-6 and CRP, and with an improvement on endothe-
lial (dys)function, in ESRD patients [90, 91]. Aberrant DNA hypermethylation has been 
also observed in dialysis patients and associated with the inflammatory state and with the 
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dialysis technique; patients under OL-HDF showed lower DNA methylation patterns than 
patients under HD, although higher than controls, suggesting a reduction in DNA hyper-
methylation, with decreasing inflammation [92].

Dietary supplementation with folic acid [87, 93], vitamins A, B and B12 [93], zinc [94] and sele-
nium [87] may also contribute to reduce/avoid genomic damage, once nutritional supplemen-
tation has antioxidant effects, prevents cancer, increases DNA repair capacity, and improves 
CV and all-cause mortality rates [87].

The inverse correlation that we observed between %T and CRP in ESRD patients, suggests 
that as CRP (inflammation) levels increase, the damage in DNA also increases; however, it 
seems that for lower CRP values the damaged DNA is still within the cell, while at higher CRP 
values the increasing damaged DNA is released into plasma.

The increase of cfDNA in ESRD patients was also reported by others [5, 65, 66, 70, 79]. The 
slightly lower cfDNA values found in our study, compared with those found by others in HD 
patients [5], may be related with time of sample collection, as the levels of cfDNA increase 
during and after HD, returning to pre-HD levels half an hour post-HD [95].

We should notice that our study has some limitations, namely, the small sample size, the 
lack of age and gender matched controls. Thus, further studies in larger populations are 
needed to strengthen the value of cfDNA as a biomarker of inflammation and poor out-
come in ESRD patients. A recent study showed that circulating free DNA, by favoring 
calcium phosphate precipitation and crystallization, may be involved in arterial calcifica-
tion [96], a common feature in ESRD patients under HD. Thus, cfDNA, appears to be a 
biomarker for CVD risk, and a direct contributor for CV events, the main cause of death 
in ERSD patients.

5. Conclusions remarks

ESRD is characterized by a low-grade chronic inflammatory state, which favors the develop-
ment of comorbidities. Genetic damage has been reported in ESRD patients, especially in those 
under HD. The higher degree of genomic damage in ESRD patients might be a consequence of 
inflammation and aging, and may contribute to increase the risk for cancer and cardiovascu-
lar mortality. Several associations with DNA damage (evaluated by cfDNA and comet assay) 
have been reported and support this hypothesis; however, data is limited and controversial 
(Table 3).

Our studies showed that cell damaged DNA is increased in ESRD patients, and suggest that 
at lower CRP values the damaged DNA remains within the cell, while at higher CRP values 
damaged DNA is released into plasma and may contribute to further enhance inflammation 
in ESRD patients and increase mortality risk. Actually, we found that ESRD patients who 
died within the one year follow-up period of the study, presented higher circulating damaged 
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DNA and inflammation. Moreover, our data suggest that the comet assay is more sensitive 
for low grade inflammatory conditions, while cfDNA appears as a good biomarker for more 
severe inflammatory conditions, as well as a biomarker for the outcome of ESRD patients. In 
summary, the genomic damage in ESRD patients seems to result, at least in part, from inflam-

mation and aging, and may contribute to increase the risk for cancer and CV mortality.
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Comet assay

Positive association Negative association No association

Male gender [9] CRP* Gender [78]

Diabetes [9] Ferritin* Diabetes [78]*

Mortality [8, 97] Dialysis sessions duration [77] Duration of HD [78]*

Frequency of micronuclei [98] Ferritin [78]

BMI > 25 kg/m2 [78] Age [78]

Intact PTH > 300 pg/ml [78] Hb [78]

Leptin [99] Hypertension [78]

Treatment modality [9] rhEPO dose*

cfDNA

Positive association No association

Age* TNF-α [70]

CRP [66]* IL-10 [70]

IL-6 [66, 70] Dialysis duration [100]

All-cause mortality (post-dialysis) [5] WBC count (before HD) [100]

Last 3-month mean: SBP, WBC, serum albumin, Cr, normalized protein catabolic 
rate [101]

Length of the HD session [95]

In HD diabetic patients: SBP, Hb A1c, and serum albumin [101]

BMI, body mass index; Cr, creatinine; CRP, C-reactive protein; Hb, hemoglobin; IL, interleukin; PTH, parathyroid 
hormone; rhEPO, recombinant human erythropoietin; SBP, systolic blood pressure; TNF, tumor necrosis factor; WBC, 
white blood cell.
*According to our data.

Table 3. Associations reported for comet assay and cell-free (cf) DNA on hemodialysis (HD) patients [96–101].
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