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Abstract

The mechanical behavior of plant seeds as a granular or particulate material dramati-
cally differs from the mechanical behavior of solid materials. This difference is caused by
the possibility of partially autonomous movement and rotation of seeds, their mutual
contacts, or due to the occurrence of the second fluid phase among the seeds at the stage
of their moving or processing. For obtaining the economic effects from the seeds (energy,
nutrients, livestock, etc.), seeds must often be subjected to mechanical treatment. In this
context application of mechanics as science concerned with the behavior of physical
bodies when subjected to forces or displacements is very important and needed. One of
the goals of this chapter is therefore to provide an overview for readers who are not
primarily concerned with mechanics but who are interested in the behavior of seeds in
the context of biology, agriculture, and pharmacy or food industry. This chapter is
therefore focused on both an overview of the principles of mechanics of granular or
particulate materials and the presentation of experimental results particularly in the area
of mechanical extraction of oil from seeds.

Keywords: seed, mechanics, granular material, particulate material, rheological model,
FEM model, oil extraction

1. Introduction

Human life has become dependent on plants for the qualities and developments that they

provide, which include agriculture, food production, and chemical industry. Plant seeds are

one of the most important agricultural materials which affects billions of people. Seeds are the

result of sexual reproduction in plants. Seeds are of immense biological and economic impor-

tance. They contain protein, carbohydrate, starch, and oil reserves that help in the early stages of

growth and development in a plant. These reserves are what make many plant seeds important

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



source for a large proportion of the world’s inhabitants. For obtaining the economic effects from

the seeds, they must often be subjected to mechanical treatment (manipulation, conveying,

separation, hulling, pressing, purification, packaging, etc.). That is why studies of mechanical

behavior of seeds are nowadays an important field of science and engineering. The research of

how seeds as granular or particulate material are deformed, cracked, or how they flow has big

importance for industries as biotechnology, pharmacy, agriculture, or food processing and

various nanotechnologies. Results of that research are very important for both proper design of

machines or equipment and for technological processes optimization. Current research has

shown that seeds mechanical behavior is changing over time within the context of their

moisture or oil content, acting forces, geometrical parameters, process of crack formation,

porosity, visco-elastic properties, or in connection with the changes in the mutual arrangement

or reorganization of the seed layers. The resulting nonlinear mechanical behavior and complex

motion or spatial orientation of individual seeds or seed layers are very difficult to study,

analyze, describe, and predict. For these scientific and engineering tasks, it is necessary to

combine knowledge of basic physical seed characteristics, trivial calculations, modeling with

the help of simplified or rheological models, or modeling using numerical methods such as

FEM (finite element method) and DEM (discrete element method) and experimentation com-

bined with relevant measurements. Also, special methods utilizing the principle of FEM with

variable geometry like FDMs (fictitious domain methods) and IB-BCE (immersed boundary—

body conformal enrichment) can be applied. Almost all the physical processes can be solved

using numerical methods. The difficulty lies in the time-consuming calculation of highly

complex and nonlinear problems. In this case, the calculation time can only be reduced by

using supercomputers. The following chapter is therefore divided into several sections dealing

with descriptive seed properties, seed mechanics principles, rheological models, and advanced

modeling of seeds behavior.

2. Geometrical and mechanical properties of seeds

Seeds can generally be seen as granular or particular material (Figure 1). The actual state of the

seeds as a material depends on the time from their harvest, moisture/oil content, and onmechan-

ical, thermal, chemical, or other effects induced by the other subjects or by environment. Granu-

lar material is composed of small, discrete entities as opposed to being continuous. The granules

solid materials granular materials particulate materials viscous liquids

diuqil laedilairetam dilos laedi

seeds

Figure 1. Plant seeds as granular or particulate material.
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can be characterized as a mathematical set of macroscopic particles defined by their shape.

Particulate material is substance composed of mutually contacting solid particles, or structural

units, within the liquid and/or the gaseous phase [1].For various reasons, physical properties of

seeds need to be studied. A physical property is any property of matter or energy that can be

measured. It is an attribute of matter that can be observed or perceived. The physical proper-

ties of seeds can be divided into following categories: geometrical, mechanical, chemical,

electrical, optical, and others. For mechanical engineering tasks, geometrical and mechanical

properties are most important. Geometrical properties are those that can be derived from the

geometry of a seed body. Seeds, however, come in a great variety of shapes and sizes. Seed size

varies among species over a range of 10 orders of magnitude with extremes represented by

orchids, e.g., Goodyera repens (weight 0.000002 g) and by the double coconut palm Lodoicea

maldivica (weight 18,000–27,000 g) [2]. Seeds may be round, egg-shaped, triangular, long and

slender, curved, coiled like a snail or irregular in shape (Figure 2). Some have a groove or

depression with a ridge along the length; others may be flattened at one or both ends. More-

over, the seed shape may vary in immature or poorly developed seed. Since seed shapes are

highly variable, their shapes are simplified (very often on an oval shape), and standardized

geometrical parameters are used for the purpose of solving tasks from basic or advanced

mechanics and simulation. This simplification is very important as a mean by which the size

and shape of an irregular shaped seed can be easily described and quantified whether the seed

is treated as an individual unit or as one that is a representative of many seeds in layer or bulk.

Selected and often used geometrical properties are illustrated in Figure 3 and described in

Table 1. Size of seeds determines the efficiency of processing and storage and the quality of

semi-product or final product. For this reason, it is also necessary during mechanical problems

Figure 2. Different shapes of seeds.

z

y

L
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x

Figure 3. Basic dimensions of seed with oval shape (L—length, W—Width, and T—Thickness).
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solving to take into account the stochastic nature of geometrical properties, for example,

distinguish size fractions of one type plant seed (most commonly divided into groups of small,

medium and large seeds), frequency distribution curves, or coefficient of variation of individ-

ual geometrical property. Mechanical properties are physical properties that a material exhibits

upon the application of forces. Examples of mechanical properties are the modulus of elastic-

ity, tensile strength, elongation, hardness, and fatigue limit. Mechanical properties occur as a

result of the physical properties inherent to each material and are determined through a series

of standardized mechanical tests. Some of important mechanical properties of seeds are listed

in Table 2.

Research on geometrical and mechanical properties has been focused on various types of

seeds, such as rapeseed (Brassica napus L.) [2], Jatropha (Jatropha curcas L.) [4, 5], sunflower

Geometrical property of seed Nomenclature Unit Formula

Length of one seed L mm

Width of seed W mm

Thickness of one seed T mm

Arithmetic mean diameter Da mm Da ¼ LþWþ Tð Þ=3 (1)

Geometric mean diameter Dg mm Dg ¼ L∗ B∗ Tð Þ1=3 (2)

Equivalent diameter ϕ mm 4 Sm=πð Þ1=2 Sm �measured area (3)

Seed surface area S mm2
S ¼ π Dg

� �2 (4)

Sphericity Sϕ — e.g., Sϕ ¼ Dg=L (5)

Volume of one seed V mm3 e.g., V ¼ 4=3π L∗ B∗ Tð Þ (6)

Table 1. Selected geometrical properties of seeds.

Mechanical property of seed Nomenclature Unit

Bulk modulus K MPa

Coefficient of friction μ —

Compression energy WC J mm�3

Consumed energy at rupture point WR J

Deformation coefficient of mechanical behavior BD mm�1

Elasticity modulus E MPa

Energy used for rupture ER MPa

Rupture force RF N

Seed oil dynamic viscosity η Pa s

Shear modulus G MPa

Stress in the structure σS MPa

Table 2. Selected mechanical properties of seeds.
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(Helianthus annuus L.) [6, 7], bean (e.g., Phaseolus vulgaris) [8], arigo seeds (Dacryodes edulis) [9],

pine (Pinus pinea) [10], chia seeds (Salvia hispanical.) [11], wild legumes (e.g., Canavalia cathartica)

[12], melon seeds (Cucumis melo L.) [13], tung seed (Aleurites Fordii) [14], sugarbeet seed (Beta

vulgaris L.) [15], sesame (Sesamum indicum L.) [16], vetch seeds (Vicia sativa L.) [17], green soybean

(Glycine max) [18], quinoa (Chenopodium album L.) [19], hemp (Cannabis sativa L.) [20], and so on.

Geometrical and mechanical properties of selected seeds types are listed in Table 3.

3. Mechanical behavior of single seed

When analyzing the mechanical behavior of individual seed, we can identify states similar to

the mechanical behavior of the elastic body. Therefore, a model of an idealized flexible body

can be used to study and describe the behavior of individual seeds. In this case, the forces and

moments of the forces acting on the seed cause its state of strain accompanied by its deforma-

tion and fracture (Figures 4 and 5)

Initially consider the compression of seed as a compression of linear elastic substance and

constant side pressure coefficient K0|=const.. Then, according to Hook’s law:

ε
E
S ¼

1� 2μ

ES
1þ 2K0ð ÞσES (7)

where εES , σ
E
S are axial deformation and stress in the direction of compression during elastic

deformation, μ is Poisson’s ratio, and ES is initial stiffness modulus.

Seed L (mm) W (mm) T (mm) Dg (mm) ER (Nmm) RF (N) μ (steel) (�)

Brassica napus

(fraction:

medium) [3]

2.12 � 0.108 1.91 � 0.093 13.53 � 2.649

Jatropha curcas

L. (var.

Kanlueang,

nut) [4]

21.02 � 1.03 11.97 � 0.30 9.58 � 0.28 13.40 � 0.3 124.44 � 19.95 146.63 � 14.82

Helianthus

annuus L. (var.

Morden,

moisture

6.2%) [6]

9.27 � 0.68 4.78 � 0.34 3.32 � 0.27 5.39 � 0.416) 0.45

Phaseolus

vulgaris (var.

Hinis) [8]

11.76 � 0.77 8.85 � 0.50 7.66 � 0.58 9.26 � 0.53 63.79 � 23.25

(X ax)

145.88 � 33.54

(X ax)

0.227 � 0.0038

Dacryodes

edulis

(moisture

10.3%) [9]

19.00 � 1.1 12.20 � 0.8) 10.10 � 0.8) 13.2 � 1.4 metal

0.25 � 0.009

Table 3. Selected geometrical and mechanical properties of seeds.
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During an elastic deformation, the structure of the substance does not change, and therefore,

initial stiffness modulus will be constant ES|=const.. Deformation of single seed is a function of

stress σE
S
which characterizes the intensity of structural changes. Then, Eq. (7) can be overwrit-

ten as:

d
w

w0

� �

¼ d
V

V0

� �

¼

dσE
S

ES

(8)

where w0 is the initial seed width.

The stress in the structure of the sample σS (MPa) can be resolved into the sum of stresses

consisting of the stress elastic component σE
S
and stress in the plastic component σP

S
, and which

is characterized by oil viscosity component σ
η

S
. This is responsible for the damping of the

structure. Friction component σ
μ

S
of the seed sample causes significant permanent deformation

with geometrical and physical damage from certain value of strain. By using numerical anal-

ysis of the isothermal compression T=const. for the seed sample, it has been observed that the

F1

deformation fracture destruction max. compression

F2 F3 F4 F5

F1 < F2 < F3 < F4 < F5

Figure 4. Seed deformation at different forces.

F
or

ce

Seed A

Deformation

Seed B

Seed C

rupture zone B

rupture zone A

rupture zone C

Maximal compression

Point of fracture

Compression energy A 

Figure 5. Selected types of deformation diagrams for different plant seeds.
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elastic component of stress a function which is defined approximately by the Hooke’s law [21].

This strain is characterized by a low oiliness point/low point of structure, where the isotropic

properties of the structure can be considered. Values of low oiliness point for example tested

samples of J. curcas L. are shown (Table 4). This area is characterized by a constant volume

strain γ|εS ≤ 40% strain
, which can be defined by Eq. (9), and in principle, it is same as Eq. (8).

γ ¼ d
V

V0

� �

¼ �ψ � ΔC (9)

where V is the volume (in an initial position: compression time t = 0), C is the compression

pressure, and ψ the compressibility [22].

S is the projected area of the seed, and ɛSlow is deformation of the seed (low oiliness point).

This can be visualized as a reversible elastic compression of the Hooke member, which is

defined by the initial elastic modulus E|εS ≤ low point of structure
and which can be supplemented by

the damping factor of the Newtonian viscous member η|εS ≤ low point of structure
. This behavior could

be partly described by a generalized Maxwell rheological model (or generalized Maxwell

model). The higher compression of the test structure from the point of oiliness or oil point

passes the functional dependence of elastic stress in the elastic or plastic or visco-plastic

components σES ¼ f εSð Þ ≤ low point of structure ! σPS ¼ f εSð Þ
�

�

�

�

≥ low point of structure
. This is reflected

in breach of the yield stress of the test sample structure (Figure 5). Here, a comprehensive

change in the volumetric strain γ|≥low point of structure was reflected and spread with the speed

of plastic strain εPS which caused increased friction μ =μS and creep structure due to extrusion

of the oil component from the structure. Functional dependency was reflected in a significant

increase in compression strength with a parabolic character which is different to the elastic-

plastic deformation of elastic structures. There is a whole range of analytical and empirical

relations in the literature that extend the seed deformation description by porosity. Define that

the density of the undried seed is ρS =mS/VS and the density of the dried seed at 105�C is

ρD =mS/VD. The pore volume can be then defined by the porosity number:

e ¼
ρS � ρD

ρD

¼ eS � 1 (10)

where eS =ρS/ρD is the ratio by which the compression can be defined according to (9).

In principle, it is a semi-logarithmic Walker-Balsin’s law applicable to, for example, powder

metallurgy:

Maturity stage T (mm) S (mm2) εSLow (�)

Ripe 10.0 � 1.8 180.1 � 19.3 0.5

Over-ripe 10.2 � 1.4 181.8 � 19.5 0.4

Unripe 9.2 � 1.9 172.2 � 18.3 0.4

Table 4. Dimensions of the seeds prior deformation tests and the coefficients characterizing the deformation of seeds

(data in the table are mean � SD).
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eS ¼ 1þ e0ð Þ 1� C log σSð Þ (11)

where e0 is the initial porosity number at σS = σ0.

Let us assume a single seed is comprised under pressure σS1 to width w1 and subsequently

comprised under pressure σS2 (σS1 < σS2) to width w2 <w1. Then, we can introduce Eq. (12),

which (in the case σ0 is unit pressure) can be generalized to Eq. (13).

w1

w0
�
w2

w0
¼ C

σ0

σ1

� �m

�
σ0

σ2

� �m� �

(12)

w

w0
¼ Cσ�m

S (13)

For FEM simulation of such anisotropic behavior, we can use equilibrium equations or appli-

cations of the constitutive equations of a rheology model with modified parameters like

Maxwell model, Kelvin model, Saint-Venant model or Perzyna model. Acceptance of certain

seed states as a particulate material leads to the use of rheology in describing its mechanical

behavior. The science of rheology is important to the study of the flow behavior of solids

suspended in fluids. Rheological models (visco-elastic models) used to characterize seeds are

classified as non-Newtonian fluids. For these fluids, no constant of proportionality exists

between shear stress and shear rate; their viscosity varies with changing shear rate. For seeds,

it is advisable to use the Perzyna rheological model in particular (Figure 6).

The Perzyna model with visco-plastic parameters includes the strain rate, and its rheological

behavior is applicable not only for the description of elastic–plastic material damage but also

Figure 6. Perzyna rheology model for single Jatropha curcas L. seed compression [21].
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for the behavior of anisotropic structures of compressed seed samples of different crops

(Figure 6) in the plastic strain state εPS

�

�

≥ low point of structure
. The Perzyna model derivation is

based on studies of the stress limit description, which was defined by Bingham in 1920 to

describe a plastic deformation of elastic materials. It is possible to use this model for quasi-

static strain behind yield stress. Also, the model defines the time-dependent response of the

structure cohesion, for example, the determination of oil extrusion initiation (so-called low

oiliness point), immediate friction, and viscous and elastic parameters as functions or con-

stants. Also, the Perzyna model can be used for modeling of the flow of soil such as clay. The

velocity of stress _σS propagation during plastic deformation can be expressed by the constitu-

tive Eq. (14), where the progress of plastic deformations is given by changing of volumetric

strain γ, which can assume various values:

_σS ¼ ES _εS � _ε
P
S

� �

(14)

where _σS is stress rate of structure, ES initial elastic modulus, _εS is strain rate of structure, and

_εPS is visco-plastic strain rate.

The plastic deformation of material structure denoted by the stress σS can be resolved

according to Eq. (15) to the sum of the initial yield stress σS σ ≤ σPS

� �

and product of equivalent

visco-plastic strain γP
S and function of the strain hPS that describes following condition: if hPS < 0,

then a softening of the structure occurs hPS > 0, and then a hardening occurs:

σS ¼ σS þ hPS � γ
P
S (15)

The numerical model can be subsequently designed for isothermal or thermal compression of

different seed types. An example is the numerical isothermal study of three samples of

Jatropha seeds (mature, immature, and precisely mature) with the same initial geometry

ΩS ripeð Þ ¼ ΩS unripeð Þ ¼ ΩS overripeð Þ

�

�

T¼const:

t¼0
. Differently mature seeds show different deformation of

the original geometry during compression t 6¼ t0, which has been described in detail in [21].

The degree of compression of magnitude δ is also the compressibility function ψ according to

Eq. (9). Seed dimensions for the CAD/FEM model for differently mature seeds are based on

data listed in the Table 4. Modeled seeds had almost ellipsoidal shape with dimensions

~17 � 10 � 1.8 � 9.3 mm, as shown in Figure 7.

Compression experiments and simulations of J. curcas L. seeds were performed up to plastic

deformation (Figure 8). The model showed the highest concentration of the main stress on the

seed circumference for each level of maturity of tested seeds. This is because the greatest stress

is concentrated in the center of the seed and consequently causes the extrusion of the structure

from the center toward the periphery. This effect changed and damaged the smallest radius of

the seed shape as seen from Figures 8 and 9. From this, it can be deduced that the seed is

damaged by the internal pressure resulting from external compression forces.

The energetic behavior of individual seeds during compression is shown in the following

figures. Figure 10 shows the comparison of compression forces derived from mathematical
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equations and forces obtained by numerical models. It can be seen from Figure 10 that

mathematical relationships (7)–(13) do not allow to sufficiently describe the “point of fracture”

as they are generally based on the empirical analysis and using graphs of standard mathemat-

ical functions (such as a parabola). Point of fracture can be better and more accurately deter-

mined from numerical models. Numerical and FEMmodels can be used to solve a whole range

of engineering tasks. For example, using a FEM model, it is possible to determine the com-

pressibility of mature, immature, and overmatured seeds (Figure 11) or to effectively assess the

Figure 7. Jatropha curcas L. seed (CAD model, FEM model, and simulation model).

Figure 8. Deformation of Jatropha curcas L. seed (real sample, FEM model, vector plot of FEM model).

Figure 9. Time response of Jatropha curcas L. seed deformation.
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energy intensity of obtaining the oil from the seeds. The results of the experiment also showed

differences in the values of the stress of individual seeds, which depend on their maturity.

Figure 10. Comparison of theory and FEM model of Jatropha curcas L. seed for compressive force.

Figure 11. Strain response: compressive stress, compressive energy, compressibility (individual seed).
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These findings can be used to find a proper seed position to control orientation of the seed in

the press or to optimize the geometry of the press.

4. Mechanical behavior of seeds as a granular or particulate materials

Seeds as a granular or particulate material consists of individual seeds and adjacent voids

filled with gas (air) or/and liquid (e.g., oil). Understanding the mechanical behavior of such

kind of material, we must therefore take into account the geometrical presentation that

describes spatial distribution of seeds and voids, orientation of seeds, and contacts of seeds,

etc. Systems composed of seeds consist of mutually contacting phases, which can be solid

(geometry, solid structure of seed, etc.), liquid phases (oil component of seed), and gas phases

(gaseous environment). The liquid and gas phases fill the pores of the solid skeleton of the

seed. In addition to these basic phases, there are mutual bonds between the seeds which, in

terms of mechanical properties of the compressed seeds, are mainly frictional. When

compressing seeds, we have to study frictional bonds seed-seed, seed-seeds, seeds-container

wall, etc. To understand this complex process, we can start on the general theory of friction of

solids. The two ideal solid particulate seeds, when moved relative to one another, can either

slide or roll in an elastic state. Seeds in a plastic state can penetrate and break into each other.

In solving mechanical problems, generally we have to distinguish dry seed surfaces, hydrody-

namically lubricated surfaces, and limiting friction. The friction or contact bond is given by the

normal stress σn on the geometric contact area ag (Figure 12). The normal stress of the contact

points σcn on the surface area aS is then given by Eq. (16). Similarly, sliding friction τn can be

described by Eq. (17).where τ
c
n is the shear strength of contact point (assumed to be the same

everywhere). From Eqs. (16) and (17) is Eq. (18):

τn ¼

τ
c
n

σ
c
n

σn ¼ νσn (16)

σ
c
n ¼ σn

ag
P

aS
(17)

τn ¼ τ
c
n

P
aS

ag
(18)

According to Eq. (18), we obtain the friction response between the seed surfaces. It follows that

shear friction in the case of seeds also does not depend on the size of the surface and is directly

proportional to the normal stress. The area of contact point plasticity allows a more accurate

description of the plastic state of the stresses in it as well as for the emerging strain. The surface

area ak is inversely proportional to the stress σ
c
n according to Eq. (16) and at the same time

increases the shear stress of the contact point [23]. This effect is particularly evident in elastic

materials such as steel, in which case their friction coefficient ν increases considerably. In the

case of structures such as seeds, this problem is limited by their skeletal fragility. In general,

according to the friction adhesion theory, the intergranular friction coefficient is equal to the
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shear and normal strength of the contact point. Through this theory, we gain a function

dependent on the amount of stress concentration at the boundaries between the seeds.

Therefore, the description of the mechanical behavior of the seeds as granular or particulate

material must, for various reasons, be based on:

• initial seed configuration (seeds geometry, seeds orientation, shape regularity, and ripe-

ness);

• the volume ratio of the individual phases in the press VSi|VA 6¼Vsi 6¼Voi (VA the volume of air,

Vsi the volume of individual seeds, Voi the volume of the oil fraction of each seed);

• the ratio of the initial elastic modules ESi|Eripe 6¼Eunripe 6¼Eoverripe (Eripe the ripe seed mod-

ule, Eunripe the unripe seed module, Eoverripethe overripe seed module);

• initial volumetric modulesGSi|Gripe 6¼Gunripe 6¼Goverripe; and

• initial shear modulesKSi|Kripe 6¼Kunripe 6¼Koverripe.

As an example, we can consider a seed-system that will be compressed in an experimental

container. Such a system will be loaded with axial stress σa and all-sided pressure σr. We will

not consider a homogeneous system where the stress σa ,σr would be totally consistent with

the continuum, but we will consider a particle system where each part of the filled container

(seeds, air, walls, and piston) contributes to σa ,σr. Terzaghi [24] introduced in 1923 the con-

struct of effective stress, which is a function of the total stress and the particle stress. The study

states that the change in chamber pressure does not affect the dependency of (σa� σr) on axial

strain of the system εa. Terzaghi also introduced the boundary condition that we can simplify

the particular systems in the individual planes of symmetry (Figure 13). The greater the seed

filling in the container, the more accurate the calculation will be, not only as a continuous

system but also as a particle system. This claim can be demonstrated by the example of

compressing a system of regularly arranged ellipsoidal shaped seeds (such as J. curcas L.). If

we make a simple axial section of the seeds, we obtain a 2D arrangement of identical circles

with a radius r, where adjacent circles touch each other (Figure 13).

Figure 12. Contact area aS of the seeds on their outer boundary.
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During compression, the radius Δr will change. Radius Δr will be a function of contact forces

that can be derived from the Hertz or Mindlin relationship. Basically, if the contact forces are

known, deformation of the circles for axial strain and lateral strain can be calculated according

to Eqs. (19) and (20).

ε
a

S
¼ 3 1� νSð Þ

ffiffiffi

2
p

GS

 !2=3

� 2
1

1þ νS

σa

σr

� �2=3

� 2
1� νS

1þ νS

σa

σr

� �2=3

� 1

" #

� σr2=3 (19)

ε
r

S
¼ 3 1� νSð Þ

ffiffiffi

2
p

GS

 !2=3

� 2� 1� νS

1þ νS

σa

σr

� �2=3

� 1

" #

� σr2=3 (20)

It can be seen from Eqs. (19) and (20) that the size of the strain depends on the ratio of the main

stresses σ1/σ3� σa/σr. There is a special case, where the contact forces of the ideal circular

arrangement are statically determined (in case of hydrostatic tension, respectively, when

σa =σr). These mathematical derivations of stress and deformation give us insights about

mechanical changes of the compressed seed system. The Terzaghi’s principle is well described

in [23], where a symmetrical numerical model was created to study the strain of the seed

system during compression.

Figure 14 shows the transformation of seeds stored in a regular hexagonal arrangement where

the initial seed filling αS will gradually increase during compression as it αS <αS1 <αSn|t0 < t1 < tn.

Figure 14 also shows the reorganization of the seeds and their subsequent clustering and

joining in the case of a plastic failure. Figure 15 is a comparison of the modeled individual

seeds crack propagation with a real experiment. This gives us insight into the compressive

behavior of individual seeds and thus the knowledge about the efficiency of the pressing

process. By increasing the crack in the individual seeds, we also provide information on the

movement and direction of the extruded oil.

Figure 13. Symmetry planes for modeling (left) and axial section for 2D model (right).
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Consequently, the energy behavior of the seed system during compression can be evalu-

ated, as shown in Figures 16 and 17. Figures compare numerical models and the experi-

mental data (compressive forces and compressibility) for the different cylinder diameters.

The results show a very good match that can be attributed to the simplified 2D symmetric

model, which approximates empirically established relationships (19) and (20). A 2D seed-

system modeling not only simplifies calculation and reduces time for computations but

also allows for more accurate results compared to 3D modeling of single seed behavior

(Figure 10). Appropriate simplification of mathematical models describing the mechanical

Figure 14. Seed-system deformation in time.

Figure 15. Growth of the cracks in seeds during pressing (FEM model—above, experiment—bottom).
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Figure 16. Comparison of experiment and FEM model for compressive force.

Figure 17. Strain response: compressive stress, compressive energy, compressibility (system of seeds).
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behavior of seeds-system (edge conditions, symmetry, etc.) can provide us with results that

are sufficient to comprehend complex processes and to optimize seed treatment technolo-

gies, compared to sophisticated models with disproportionate time-consuming calculation

and interpretation. Mathematical models of seeds mechanical behavior are very important

for different agricultural and engineering tasks (e.g., tillage mode, processing technology

design, treatment control and optimization, procedures effectiveness increasing, seeds

behavior prediction, etc.).

As this topic goes beyond the scope of this publication, we refer readers to various works

focused on various aspects of mechanic behavior of seeds, using different theories, models,

and modeling methods:

• modeling of seeds compression [21, 22, 23, 25, 31];

• modeling of stress or force relaxation of seeds [30];

• modeling of seeds movement and orientation [26];

• various contact and friction models utilization [1, 29];

• FEM application for seeds behavior modeling [21, 23]; and

• DEM application for seeds behavior modeling [27, 28].

5. Conclusion

A detailed understanding of the mechanical behavior of plant seeds is currently an impor-

tant science and technology challenge. Post-harvest geometrical and mechanical properties

of the seeds or seeds mechanical behavior are important from the point of view of treatment

process optimization and machines design. Basic dimensions and geometrical properties

(length, width, thickness, mean diameters, seed surface area, sphericity, etc.) were described

in this overview type of paper. Selected mechanical properties (e.g., compression energy,

stress in the structure, coefficient of friction, rupture force, etc.) were also described. Mechan-

ical behavior of seeds has been described and discussed in terms of both single seed and

seeds-system. Selected experimental results from the research of mechanical behavior of

J. curcas L. seeds were used to bring seeds behavior as a granular and particulate material

closer to readers.
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