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Abstract

Glutamate and gamma-aminobutyric acid (GABA) are themajor neurotransmitters in the
mammalian brain. Inhibitory GABA and excitatory glutamate work together to control
many processes, including the brain’s overall level of excitation. The contributions of
GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In
this chapter, we first discuss the role of both neurotransmitters during development,
emphasizing the importance of the shift from excitatory to inhibitory GABAergic neuro-
transmission. The second part summarizes the biosynthesis and role of GABA and
glutamate in neurotransmission in the mature brain, and major neurological disorders
associated with glutamate and GABA receptors and GABA release mechanisms. The
final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancre-
atic islets of Langerhans, and possible associations with type 1 diabetes mellitus.

Keywords: glutamate, GABA, CNS, pancreatic islets, neurological disorders
autoimmune diabetes

1. Introduction

Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the

brain. Inhibitory GABA and excitatory glutamate work together to control many processes,

including the brain’s overall level of excitation. A balanced interaction is required to maintain

the physiological homeostasis, while prolonged imbalance can lead to disease. Glutamatergic/

GABAergic imbalance can be found in autism spectrum disorders and anxiety disorders with

elevated glutamatergic neurotransmission, while high levels of GABA produce more relaxa-

tion and even sedation. Neurotransmitter levels can be affected by external factors, for exam-

ple, alcohol. Alcohol potentiates the sedentary effects of GABA, while inhibiting the excitatory

aspects of glutamate, resulting in an overall increase in GABA/glutamate ratio. This leads to
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sensations of relaxation and in later stages to loss of control with slurred speech, unsteady gait

and loss of social anxiety. The GABA/glutamate balance can also be affected by autoimmunity

and genetic disorders. The contributions of GABA and glutamate in extra-neuronal signaling

are by far less recognized. We will discuss extra-neuronal GABAergic and glutamatergic

signaling and its relevance in insulin secretion from the pancreatic islets of Langerhans.

2. Glutamate and GABA during development

Both glutamatergic and GABAergic neurons are highly diversified in the central nervous

system (CNS). More than half a century after the discovery of the effects of GABA, it is now

established that in mature neurons, neuronal excitability is characterized by a balance between

glutamatergic excitatory input and GABAergic inhibitory transmission. This balance is reached

during development. However, the functions of GABAergic signaling are not restricted to a

pure inhibitory mechanism at the synaptic level. This is a too simplistic view. For instance,

GABA influences patterns and oscillations that are very relevant from the behavioral point of

view [1]. GABA and glutamate expression are already widespread in the embryonic stage, and

glutamate receptors are expressed in neurons even before glutamatergic synaptogenesis [1].

While glutamate receptor activities tune the developing GABAergic synapse [2], GABA is now

considered the main excitatory transmitter during early development, acting not only at a

synaptic and network level, but also on cell cycle and migration [1]. This excitatory function

of GABA is caused by elevated neuronal intracellular chloride concentration at the early

stages of development. The efflux of chloride mediated by GABA in immature neurons is

excitatory, triggering sodium spikes and activating voltage-gated Ca2+ channels [1]. With time,

a progressive reduction of chloride efflux occurs. This explains the shift from a depolarizing to

a hyperpolarizing effect. Obata and colleagues were the first to suggest this developmentally

regulated shift at the level of the spinal cord [3]. Neuronal chloride homeostasis is regulated by

channels, exchangers and co-transporters. The developmental changes of sodium-potassium-

chloride cotransporter 1 (NKCC1) (ensuring chloride uptake; higher expression in immature

neurons) and potassium-chloride transporter 2 (KCC2) (principal chloride extruder; higher

expression in mature neurons) are the masterpieces for the changes in chloride efflux associated

with maturation. The developmental shift from local to large-scale network activity occurs in

parallel with a gradual shift from electrical to chemical synaptic transmission [4].

It is noteworthy that in immature neurons activation of GABAA receptors leads to an increase

in the intra-cellular concentration of Ca2+, as a consequence of the stimulation of voltage-gated

Ca2+ channels, which exerts trophic effects on neuritic growth, migration and synaptogenesis.

Blocking the GABAA receptor reduces the cytoplasmic concentrations of Ca2+ [5]. In addition,

the activation of GABAB receptors depresses the GABAA receptor-mediated Ca2+ increase and

therefore the GABAB pathway is likely supervising the entry of Ca2+ [6]. In granule cells of the

cerebellum, the changes in the concentrations of Ca2+ outlast the exposure to GABA by several

minutes [7]. The GABAA-activated Ca2+ influx regulates the expression of the chloride extruder

KCC2 [8]. One example of the relevance of this physiological shift in the chloride gradient

occurs during delivery when the maternal hormone oxytocin triggers labor [9].
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The electrical activity of neurons is a guide for the genesis of neuronal connections. Indeed,

neuronal activity exerts a key role in the development of inhibitory GABAergic synapses,

interacting closely with genetic programs. Blocking neuronal activity in developing neurons

decreases the density of inhibitory synapses, confirming an activity-dependent development

[10, 11]. The expression of GABAergic plasticity is related to modifications in the quantity of

neurotransmitter in individual vesicles. Migrating neurons express, already at an early stage, both

GABA and glutamate receptors [1], but GABA receptors are likely to be established first [12].

Interestingly, tangentially migrating interneurons express AMPA but not GABA or NMDA

receptors. Therefore, a modulation/targeting of neurons via selective activation of receptors can

be achieved [13]. This has implications for understanding and treatment of migrating disorders

affecting the nervous system.

The building of brain networks is a highly complex task which requires organized sequential

events, both spatially and from a timing standpoint. While an overdrive of GABAergic signal-

ing slows the development, the overactivity of glutamatergic signaling causes excitotoxicity

[1]. GABA receptors are the first to be active, even when synapses are still non-operant. This

creates a shunting effect preventing excitotoxicity, since the Na+ and Ca2+ spikes triggered by

GABA require only a 30–40 mV driving force. Such a shunt is part of the synergistic interac-

tions between GABA and glutamate. Thanks to these interactions, the neuronal networks in

development generate primitive patterns of discharges, observed in vivo and in cultured

networks, such as the giant depolarizing potentials (GDPs) which allow the building of func-

tional units [1]. GDPs resemble interictal-like epileptiform discharges and provide synchro-

nous Ca2+ oscillations also contributing to the development of networks. GDPs rely on the

release of GABA, glutamate, and glycine at the onset of synaptogenesis [14]. The synchronized

activity is one of the factors controlling the phenomenon of maturation [11]. Synchronization is

also achieved, thanks to gap junctions, intrinsic voltage-dependent conductance [15], and non-

vesicular paracrine release of neurotransmitters [16].

The capacity of developing nervous system to generate spontaneous activity in absence of

external stimulation is a remarkable feature that has been observed in particular in the retina,

the cerebral cortex, the hippocampus, the cerebellum, the hindbrain, and the spinal cord [14].

Recent works highlight that network bursts are driven by AMPA pathways in terms of

coordination, whereas the shaping of the dynamics of spiking activities is regulated by

NMDA- and GABA-associated currents [17].

3. Glutamate and GABA in the mature mammalian brain

3.1. Biosynthesis of glutamate and GABA: the glutamate/GABA-glutamine cycle

Glutamate and GABA do not cross the blood-brain barrier and must therefore be synthesized

within the CNS. As neurons lack the enzyme pyruvate carboxylase and therefore cannot

synthesize glutamate through the TCA cycle [18], they rely on astrocytes for the generation of

glutamate. Astrocytes generate glutamate via de novo synthesis or by “recycling” glutamine

from GABA and glutamate after reuptake. However, de novo synthesis makes up only ~15% of
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astrocytic glutamate [19]. In this reaction, pyruvate is generated from glucose during glycoly-

sis and enters the TCA after conversion to Acetyl CoA. The TCA product α-ketoglutarate can

be converted to glutamate, which is converted to glutamine by glutamine synthetase, an

enzyme that is predominately, if not exclusively, located in astrocytes [20]. Glutamine exits

astrocytes via the bidirectional N system transporters, SNAT3 and SNAT5 [21], and enter

neurons via the unidirectional system A transporters, SNAT1, SNAT2 [21], and SNAT7 [22].

There glutamine is converted back to glutamate by phosphate-activated glutaminase, an

enzyme which is expressed preferentially in neurons [23]. GABAergic neurons require an

additional step to convert glutamate to GABA through decarboxylation. After release from

the neurons, GABA and glutamate reenter the astrocytes to be “recycled” to glutamine. A small

portion of glutamate is oxidatively metabolized, thus making de novo synthesis of glutamate

necessary to maintain adequate glutamate levels [24]. The continuous recycling of glutamate,

GABA and glutamine between neurons and astrocytes is known as the glutamate/GABA-

glutamine cycle [25] (Figure 1).

3.2. Glutamatergic neurotransmission

In glutamatergic neurons, glutamate is packaged into synaptic vesicles (SVs) by vesicular

glutamate transporters (VGLUT1–3) [26]. The loaded SVs then dock near the release site,

where they are primed into a state of competence for Ca2+-triggered fusion-pore opening. Once

glutamate has been released, SVs can either fully collapse into the synaptic membrane, or close

rapidly and undock (“kiss-and-run”) [27].

Released glutamate is recognized by glutamate receptors (GluRs). Binding of glutamate

changes the receptor’s conformation and allows influx of extracellular Na+ and other cations,

and an efflux of intracellular K+ ions. GluRs fall into two major categories: ionotropic and

metabotropic [28]. Ionotropic GluRs are tetrameric ligand-gated cation channels that induce

depolarization of the postsynaptic membrane. The three types of ionotropic GluRs are named

Figure 1. Overview of the glutamate/GABA-glutamine cycle. For details see text.
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after ligands that selectively bind to one receptor only: N-methyl-D-aspartate (NMDA), alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and Kainate, however all three

are bound by glutamate [28]. NMDA receptors (NMDA-Rs) activate slower than AMPA and

Kainate receptors. This delayed reaction is caused by the blockage of the cation pore of

NMDA-Rs by external Mg2+ at resting membrane potential, which is removed upon depolar-

ization of the neurons [29, 30]. Thus, non-NMDA-Rs activation is necessary to depolarize the

neurons allowing NMDA-Rs activation. NMDA-Rs also close slower than non-NMDA-Rs, and

therefore determine the duration of the synaptic current.

NMDA-Rs also allow influx of Ca2+ and have thereby a regulatory role in synaptic plasticity by

connecting synaptic activity with Ca2+-mediated biochemical signaling [31]. Depending on the

nature of the neuron’s depolarization, NMDA-Rs can both strengthen synapses, through long-

term potentiation (LTP) [32, 33], and weaken synapses, through long-term depression (LTD)

[34]. For LTP, repetitive and strong depolarization of the neurons allows significant influx of

Ca2+ into the cytoplasm and activation of protein kinases, including the calcium/calmodulin-

dependent protein kinase II (CaMKII), which (a) phosphorylate and activate AMPA-Rs and

(b) trigger the insertion of additional AMPA-Rs into the postsynaptic membrane [35]. This

increases the postsynaptic neuron’s responsiveness to glutamate leading to LTP. By strength-

ening the neighboring connections of similar activity patterns, the NMDA-R enforces the

Hebbian postulate that ‘cells that fire together, wire together’ [36]. For LTD, weak depolariza-

tion by low frequency stimulation still activates NMDA-Rs, but promotes only a modest

prolonged increase in Ca2+ levels. Protein phosphatases (protein phosphatase 1 and protein

phosphatase calcineurin) have a much higher affinity for calcium/calmodulin compared to

CaMKII and are activated at lower Ca2+ levels. Thus, under the above conditions protein

phosphatases are activated [37], dephosphorylate AMPA-Rs, and induce the removal of

AMPA-Rs from the postsynaptic membrane [38], thereby reducing the postsynaptic respon-

siveness to glutamate and leading to LTD.

Metabotropic glutamate receptors (mGluRs) [39] are overall slower acting than iGluRs. In

difference to iGluRs, mGluRs are not ion channels, but belong to a group of G-protein-coupled

receptors. The associated G-protein consists of three subunits (α, β, and γ), of which the α-

subunit is associated with GDP. Glutamate binding to the receptor induces a conformational

change that allows the replacement of GDP with GTP and consequent dissociation of the three

G-protein subunits. While the Gβ/γ-complex activates K+ and Na+ channels, the α-subunit

interacts with different enzymes [40]. Excitatory Gα-subunits (Gαq or Gα11) bind and activate

phospholipase C-β (PLC-β), initiating a signaling cascade leading to the activation of protein

kinase C (PKC) and the release of Ca2+ from the ER. Another excitatory Gα-subunit (Gαs)

activates the membrane-associated adenylyl cyclase, which catalyzes the conversion of ATP

to cAMP, leading to activation of protein kinase A (PKA). Inhibiting Gα-subunits (Gαi or Gαo)

prevent activation of adenylyl cyclase and the activation of PKA [41]. The three mGluRs

groups (I–III) differ in their alpha subunits. Generally, Group I mGluRs carry activating Gαs

or Gα11 subunits, are localized postsynaptically, and lead to cell depolarization and increased

neuronal excitability. Groups II and III mGluRs carry inhibitory Gαi or Gαo subunits and are

often localized on presynaptic terminals or preterminal axons, where they inhibit neurotrans-

mitter release [42].
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Released glutamate must be rapidly removed to avoid continuous stimulation and exci-

totoxicity [43, 44] (see also glutamate-induced excitotoxicity). Glutamate uptake is mediated

via brain excitatory amino acid transporters (EAATs) on both pre- and postsynaptic neurons

and on surrounding astrocytes [45]. Five subtypes of EAATs (EAAT1–5) have been cloned so

far. A smaller portion of extracellular glutamate is reabsorbed by presynaptic or postsynaptic

neurons.

Another mechanism involved in the extracellular glutamate regulation is the cystine/gluta-

mate exchange transporter xc(�). In contrast to the EAATs, xc(�) is involved in elevating

extracellular glutamate concentrations. Here intracellular glutamate is exchanged for extracel-

lular cystine. The stimulation of xc(�) modulates glutamate release from the presynaptic

neurons [46]. xc(�) regulates glutamate homeostasis through the involvement of the presyn-

aptic mGluR2/3. Moreover, a decrease of xc(�) expression can lead to a reduction in

extrasynaptic glutamate level. This effect may cause a loss of glutamatergic tone on presynap-

tic mGluR2/3, which can lead to a marked increase in glutamate release from presynaptic

glutamatergic neurons [47].

3.3. GABAergic neurotransmission

For the synthesis of GABA, glutamate is decarboxylated to GABA by glutamate decarboxylase

(GAD). GAD is expressed as two isoforms (GAD67 and GAD65) and can be found only in

GABAergic neurons and in certain peripheral tissues, most prominently in the pancreatic islets

[48]. GABA can also be taken up by presynaptic neurons after its release into the synapsis.

However, this recycled GABA is mainly metabolized to generate ATP through the GABA

shunt pathway [49], while newly synthesized GABA is preferentially taken up into SVs [49].

Transport of newly synthesized GABA into SVs is tightly linked to its synthesis, as GAD65 and

the GABA transporter VGAT form a protein complex with chaperone protein HSC70, the

vesicular cysteine string protein (CSP), and CaMKII [49]. In the absence of GAD65 from this

complex, the active site of VGAT may be available to cytosolic GABA, and vesicular transport

of GABA can be restored to a certain extent [49]. GAD65 has also a crucial role in the

trafficking of GABAergic vesicles to presynaptic clusters [50]. Palmitoylation of cysteine resi-

dues located at the N-terminus of GAD65 is required for the transport of GAD65 to synaptic

terminals [51], and decreased palmitoylation impairs GABAergic neurotransmission, as

observed in Huntington’s disease [52]. Similar to glutamate, GABA is released in a Ca2+-

dependent manner upon depolarization of the presynaptic membrane.

GABA receptors present as ionotropic GABAA receptors that cause rapid inhibitory postsyn-

aptic potentials, and metabotropic GABAB receptors that cause slow inhibitory postsynaptic

potentials [53]. GABAA receptors are multi-subunit proteins [54] and consist of three major

subunits (α, β, and γ). A total of five subunits are arranged around the central ion pore. The

major receptor isoform consists of two α1, two β2, and one γ2 subunits. GABA binding to

GABAA receptors on the postsynaptic neuron induces rapid and transient opening of GABAA

receptor Cl� channels [55]. The subsequent influx of anions hyperpolarizes the membrane

(phasic inhibition). GABA overspill can activate extrasynaptical GABAA receptors, inducing a

more prolonged opening of the ion channel (tonic inhibition) [56].
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Metabotropic G-protein coupled GABAB receptors are mostly located extrasynaptically and

can be found both pre- and the postsynaptical. These heterodimers consist of GABAB1 and

GABAB2 subunits. The GABAB1 subunit can be bound by GABA, while GABAB2 is coupled to

the G-protein. Activation of GABAB receptors induces the dissociation of the subunits of the

coupled G-protein. The Gβ/γ-subunit complex activates inwardly rectifying K+ channels [57]

and inhibits voltage-activated Ca2+ channels [58], resulting in hyperpolarization of the neuron

and inhibition of neurotransmission [59]. The Gαi-subunit inhibits activation of adenylyl

cyclase as described above for mGluR. Activation of presynaptical GABAB receptors impedes

opening of voltage-activated Ca2+ channels and thereby reduces neurotransmitter release.

Thus GABA can inhibit its own release through a negative feedback loop via GABAB receptors

present on GABAergic axons [60]. Activation of postsynaptical GABAB receptors reduces

depolarization of the plasma membrane and thereby modulates excitatory signals.

The reuptake of GABA is mediated by GABA transporter protein present in presynaptic nerve

terminals (GAT-1) and surrounding glial cells (GAT-3) [61].

3.4. Neurological diseases associated with glutamate and GABA receptors and GABA

release mechanisms

3.4.1. Limbic encephalitis

The relation between anti-GluR antibodies (Abs) with limbic encephalitis has been investi-

gated during the last two decades [62, 63]. Several autoantibodies against extracellular epi-

topes of GluR involved in synaptic transmission and plasticity, such as AMPA-Rs [64] and

NMDA-Rs [65] are described. The affected patients develop complex neuropsychiatric symp-

toms, such as memory deficits, cognition impairment, psychosis, seizures, abnormal move-

ments, or coma. These disorders affect mainly young women, though cases of men and

children have been reported [62]. Some of these patients present with malignant tumors and

the syndrome can be qualified as paraneoplastic [62], characterized by association of anti-

NMDA-RAb in ovarian teratoma and anti-AMPA-RAb in lung small cell carcinoma.

Paraneoplastic limbic encephalitis can be fatal, but is curable if treated at an early stage by

surgical removal of the tumor and a combination of immunotherapeutic agents [62]. Mecha-

nistically, autoantibodies directed against AMPA-Rs and NMDA-Rs decrease the numbers of

the cell-surface receptors [63] and anti-AMPA-RAb may act as agonists and increase cell

excitability [66].

3.4.2. Immune-mediated cerebellar ataxias

Compared with autoimmune encephalitis affecting the limbic system, autoantibodies to

GluRs, such as anti-mGluR1 Ab and anti-glutamate receptor delta2 (GluRδ2) Ab, are less

frequently associated with immune-mediated cerebellar ataxias (IMCAs). Anti-mGluR1Ab

was reported in two patients with malignant lymphoma and one patient with prostate adeno-

carcinoma [67, 68]. Anti-mGluR1Ab impairs the induction of LTD, which causes ataxia in mice

[67]. Interestingly, IMCAs associated with anti-GluRδ2Ab are always preceded or accompa-

nied by either infection or vaccination [58]. Polyclonal Abs toward the putative ligand-binding
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site of GluRδ2 are known to cause AMPA-R endocytosis and attenuate their synaptic trans-

mission, resulting in the development of ataxia in mice [69].

3.4.3. Autosomal recessive cerebellar degeneration

Autosomal recessive CAs (ARCAs) are affected by several gene mutations. One of these

involves mutations in the GRM1 gene, which encodes mGluR1, known to play an important

role in cerebellar differentiation [70]. Accordingly, the clinical features of this familial form of

CAs appear already during childhood. The child shows global developmental delay, intellec-

tual defects, severe CAs, and pyramidal signs. Brain imaging often shows progressive gener-

alized cerebellar atrophy. Mutations affect a gene region critical for alternative splicing and the

formation of the receptor structure.

3.4.4. Glutamate-induced excitotoxicity

Deficits and mutations in GluR can also affect the level of extracellular glutamate with detri-

mental outcomes for neurotransmission and neuronal health. The level of extracellular gluta-

mate is determined by three factors: (1) vesicular-released glutamate at the synapses, (2) non-

vesicular-released glutamate from the system xc(�) (see above) [71], and (3) glutamate uptake

by EAATs on astrocytes [72]. When glutamate release exceeds glutamate uptake, the excess

glutamate activates a large number of postsynaptic NMDA-Rs, resulting in the induction of

excitotoxic neuronal death by allowing excessive Ca2+ influx through the receptor-operated

cation channels [73]. Excessive activation of NMDA-Rs and the associated Ca2+ influx result in

stimulation of calpain I and nNOS [73]. This causes DNA damage and formation of ONOOd

due to excess NO (nitrosative stress) and other free radicals. The combination of these two

changes ultimately leads to mitochondrial dysfunction and cell death [73]. Recent studies

reported the presence of high glutamate levels in the extracellular space in chronic degenera-

tive diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, and Huntington’s

disease [74]. Taken together, glutamate-induced excitotoxicity may be a common process for

neuronal death throughout the CNS and accelerates the original pathological changes.

3.4.5. Neurological diseases associated with deficits in GABA receptors

Anti-GABAB receptor Ab is associated with limbic encephalitis [75], which manifests clinically

similar to anti-GluRAb-mediated limbic encephalitis. Some patients also develop CAs. About

50% of the patients have neoplastic diseases, especially small cell lung carcinoma [75]. Clinical

studies indicate that surgical removal of the lung tumor and subsequent immunotherapy can

be effective in the relief of the above neurological disorders, especially in the early stages of

disease.

3.4.6. Association of GAD65 dysfunction with neurological disorders

Anti-GAD65Abs are associated with stiff-person syndrome (SPS) and CAs [76]. Titers of anti-

GAD65Ab are high (>1000 U/ml) in both conditions. SPS is characterized clinically by progressive

rigidity and painful-muscle spasms in the axial and limb muscles. Electromyography (EMG)

shows simultaneous activities of the agonist and antagonistic muscles. Anti-GAD65Ab-associated
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CAs affect mostly women in their 50–60s and exhibit subacute or chronic CAs, which are

sometimes associated with SPS or epilepsy [76]. Furthermore, the majority of patients also suffer

from type 1 diabetes mellitus (T1D) [76].

Based on the intracellular location of GAD65 (on the cytoplasmic side of SVs), the pathogenic

role of anti-GAD65Ab in CA and SPS has been questioned. However, recent studies have shed

new light on this issue. First, the pathogenic actions of anti-GAD65Ab have been clarified both

in in vitro and in vivo preparations [77–82], for example, the Cerebrospinal fluid (CSF) of

patients with SPS inhibited GABA synthesis [83]. Furthermore, SPS-like symptoms were

reproduced in experimental rats and mice injected intrathecally or intraventricularly [84] or

intracerebellarly [80] with IgGs obtained from the CSF of CA and SPS patients. Specifically,

IgGs obtained from the CSF of patients with anti-GAD65Ab-associated CA depressed GABA

release in cerebellar brain slices [77, 78, 82, 85], and their intracerebellar injection interfered

with cerebellar control of the motor cortex and resulted in ataxic gait in rats [79]. These actions

were reproduced by human anti-GAD65 monoclonal Ab b78, which binds to an epitope

similar to that recognized in SPS patients positive for anti-GAD65Ab [80–82].

Second, studies in animals have shown internalization of antibodies by cerebellar neurons [81,

86], demonstrating that anti-GAD65Ab can access their intracellular target. Together, these

results indicate the possibility that anti-GAD65Ab may damage sufficient numbers of

GABAergic neurons to result in the appearance of frank neurological symptoms [87].

The pathological effects of anti-GAD65Ab depend on epitope specificity. Specifically, the

pathologic effects of anti-GAD65Abs on GABA synthesis and release were specific to anti-

GAD65Ab b78—representing SPS- and CA-associated anti-GAD65Ab—and could not be

reproduced by monoclonal anti-GAD65Ab b96.11, representing an epitope specificity associ-

ated with type 1 diabetes mellitus [80–82]. This epitope dependence might explain the differ-

ences in neurological phenotypes. Administration of CSF obtained from patients with SPS or

CAs reproduced the clinical features of the corresponding disease in mice [80]. Thus anti-

GAD65Ab in SPS that inhibit GABA synthesis, would attenuate inhibitory Purkinje cell-

mediated depression of the spino-cerebellar loop, resulting in increased muscle tone, whereas

anti-GAD65Ab in CAs depress GABA release, resulting in disruption of Purkinje cell-mediated

modulation of the cerebro-cerebellar loop to elicit disorganized movements [87]. An alterna-

tive explanation of the phenotypic differences is the involvement of other autoimmune-

mediated mechanisms.

In anti-GAD65Ab-associated CAs, anti-GAD65Ab impairs the association of GAD65 with the

cytosolic side of SVs resulting in a decrease in vesicular GABA contents with low release

probability [82]. Under normal conditions, the released GABA spills over to the neighboring

excitatory synaptic terminals and inhibits presynaptic glutamate release through GABA recep-

tors. However, this GABA-induced inhibition of glutamate release is disturbed in patients with

CAs [77]. Taken together, anti-GAD65Ab elicit marked imbalance in neurotransmitters; includ-

ing a decrease in GABA and an increase in glutamate. The imbalance between GABA and

glutamate is accelerated following the involvement of microglia and astrocytes [87]. Microglia

activated by excessive glutamate levels can secrete various cytokines, which facilitate gluta-

mate release presumably through xc(�) on microglia, and suppress the uptake of glutamate
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through EAATs on astrocytes [71, 88, 89]. Thus, the neuroinflammation-induced chain reac-

tions accelerate the imbalance, leading to profound excitotoxicity. In agreement with this

notion, the cerebellar neurons are completely lost in patients with advanced stage CAs [90].

In conclusion, deficits in glutamate- and GABA-mediated synaptic mechanisms, upset the

glutamate/GABA ratio. Notably, the level of glutamate is relatively high compared with that

of GABA, caused by various etiologies, including glutamate release by damage-induced depo-

larization, exaggerated glutamate release through xc(�), and attenuated uptake of glutamate

through EAATs, or a decrease in GABA release with subsequent increase in glutamate release.

The imbalance between glutamate and GABA can trigger excitotoxicity, one of several neuron

death mechanisms.

4. GABA/glutamate signaling pathways in pancreatic islets and

implications in type 1 diabetes mellitus

While GABA and glutamate are best characterized for their role as neurotransmitter, they are

also involved in extra-neuronal signaling. As a major building block in proteins synthesis,

intracellular glutamate is abundantly present in the body. In contrast, GABA is present only in

restricted non-neuronal tissues, including the pancreas [91]. Pancreatic islets are clusters of

endocrine cells located in the exocrine pancreas and regulate blood glucose homeostasis. An

islet typically contains insulin-releasing beta cells, glucagon-secreting alpha cells, somatostatin-

containing delta cells, and pancreatic polypeptide-producing (PP) cells. The metabolic actions

of insulin and glucagon are reviewed in great detail elsewhere [92]. Briefly, insulin is released at

elevated blood glucose levels and acts as an anabolic hormone, causing cellular glucose uptake

primarily in skeletal muscles, the liver, and fat tissue. Here glucose is converted to storable

energy substrates including glycogen and triglycerides, respectively. At low blood glucose

levels, glucagon is secreted from pancreatic alpha cells. Glucagon causes the liver to convert

stored glycogen to glucose and induces lipolysis in fat tissue. Many regulatory mechanisms

are in place to control the secretion of insulin and glucagon to maintain stable blood glucose

levels. Within the islet, extracellular insulin inhibits glucagon secretion from alpha cells, while

glucagon enhances both insulin and somatostatin secretion [93]. In recent years, GABA and

glutamate have gained interest for their respective roles in the regulation of secretion of insulin

and glucagon.

In the following sections, we will review GABAergic and glutamatergic signaling in the islets

of Langerhans and possible implications for type 1 diabetes mellitus.

4.1. Glutamate and GABA in pancreatic islets

Both glutamate and GABA are synthesized from glucose taken up by beta cells. The majority

of glucose is metabolized to produce energy, however a portion is converted to glutamate. The

initial step is catalyzed by pyruvate carboxylase present in the beta cells [94]. Thus, in contrast

to GABAergic neurons, beta cells can synthesize glutamate on their own. In the alpha cells,

glutamate is loaded into glucagon-containing secretory granules via VGLUT1 and VGLUT2
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[95]. Within the beta cells, glutamate is decarboxylated by GAD to yield GABA. GABA is

packaged by the GABA transporter VGAT into small synaptic-like microvesicles (SLMVs)

[96]. A smaller fraction of GABA is present in insulin-containing large dense core vesicles

(LDCVs) [97, 98]. These vesicles also express VGAT, suggesting similar packaging mechanisms

as for SLMVs [98]. GABA is present predominantly, if not exclusively, in the beta cells [96, 99,

100], and GABA and GAD expression levels in beta cells are similar to those in GABAergic

neurons [97].

Both isoforms of GAD have been identified in pancreatic beta cells, GAD65 being the predom-

inant isoform in rat and human beta cells, while mice beta cells only express GAD67 [48]. In

human and rat beta cells GAD65 co-localizes with GABA at the SLMVs [101], while in murine

pancreatic islets, GAD67 is firmly membrane anchored and efficiently transits to presynaptic

clusters [102]. It remains unclear whether GAD is involved in SLMVs transport to the plasma

membrane, in analogy to GABAergic neurons (see also Section 3.3).

As outlined above, GABA is present in both SLMVs and insulin-containing LDCVs. The basal

release of GABA from beta cells is relatively constant [101, 103], but can be modulated

depending on the metabolic state of the cell [104]. The mechanisms involved in GABA release

were first investigated in beta cell lines, where GABA secretion was shown to be dependent on

the presence of extracellular Ca2+ [105], suggesting that GABA is released in response to an

increase in cytosolic Ca2+ levels. A detection system for GABA release involving overexpressed

GABAA receptors in dispersed rat islets allowed the sensitive detection of GABA release as

fluctuations in current in whole-cell patch-clamped beta cells [106]. These studies confirmed

that GABA release is dependent on the entry of extracellular Ca2+ through voltage-gated

channels and not by membrane depolarization itself. The study further indicated that the

observed GABA release originated predominantly from SLMVs rather than LDCVs.

Both beta and alpha cells express GABAA and GABAB receptors [103]. Through the expression

of GABA receptors on beta cells, GABA regulates its own secretion (autocrine regulation).

GABAA receptor activation induces further GABA release (autocrine positive feedback loop)

[97, 107]. However, GABA-mediated regulation of GABA release depends on the extracellular

glucose concentration. At high glucose concentrations, GABA hyperpolarizes the membrane of

isolated beta cells and beta cell lines [108]. This inhibitory effects appears be mediated via

GABAB receptors [106, 109].

Presence of GABA receptors on adjacent alpha cells enables a paracrine regulation of these

cells [110]. Activation of GABAA receptors on alpha cells leads to hyperpolarization and

suppression of glucagon and glutamate secretion [103, 111]. As glucagon and glutamate

trigger insulin release from beta cells, GABAergic inhibition of glucagon and glutamate secre-

tion indirectly downregulates insulin release from beta cells as a negative feedback regulation

(Figure 2). Extracellular GABA is taken up by the plasma membrane GABA transporter GAT3

expressed on both alpha and beta cells [98].

At low concentrations of glucose, alpha cells show high action potentials [103, 112], mediated

by voltage-gated Na+ and Ca2+ channels [113]. This triggers the release of glucagon and

glutamate. At high glucose concentrations, release of glucagon and glutamate is inhibited,
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although the mechanistic details of this regulation remain unclear. Paracrine GABA-mediated

regulation (as described above) is suggested by the finding that isolated rat alpha cells no

longer show reduced glucagon/glutamate release at elevated glucose concentrations [112], and

the observation that in rat islets and purified alpha cells, GABA antagonists suppress glucagon

secretion [114]. Insulin and GABA are suggested to serve as paracrine inhibitors of glutamate

and glucagon release [101, 103, 115].

Once released, glutamate activates GluRs expressed on both alpha and beta cells. The cell-

specific distribution of AMPA-R/Kainate receptors and NMDA-Rs remains debated, and earlier

reports suggested that AMPA-Rs are expressed exclusively on alpha cells, while NMDA-Rs were

reported to be specifically expressed on beta cells [116]. However, later reports suggest that

AMPA-Rs are also expressed on mouse beta cells, and other studies suggest iGluRs expression

only on alpha and not on beta cells [117]. mGluRs mGluR8, mGluR5 and mGluR2/3 are

expressed by beta cells [109, 118], while mGluR4 protein is expressed on alpha cells [119].

Extracellular glutamate activates AMPA/kainate Rs present on alpha cells and triggers the co-

release of glutamate and glucagon (positive feedback regulation) [117, 120, 121]. On the other

hand, activation of mGluR inhibits glucagon/glutamate secretion from alpha cells [119] (nega-

tive feedback regulation). Few studies reported that activation of AMPA/Kainate-R and/or

mGluR on beta cells triggers insulin secretion [118, 120], however subsequent studies could

not confirm these results [117]. Still, through glucagon-mediated insulin release from beta cells,

co-secreted glutamate indirectly stimulates insulin secretion from beta cells [121]. In addition,

glutamate stimulates GABA release from SLMVs in beta cells independently of insulin release,

Figure 2. Schematic outline of presumed GABAergic and glutamatergic signaling in pancreatic islets. At low glucose

concentrations, beta cells release GABA in a glucose-independent manner [97, 108]. This tonic GABA release continuously

activates GABAA receptors on beta cells and alpha cells. GABAA receptor activation leads to further GABA release from

beta cells and suppresses release of glucagon and glutamate from alpha cells, thereby preventing insulin secretion. As

extracellular glucose levels rise, the level of intracellular Ca2+ increases in beta cells, allowing release of insulin. Secreted

insulin inhibits GABAA receptors on the beta cells, thereby decreasing the autocrine positive feedback release of GABA

from beta cells and reducing GABA-mediated inhibition of alpha cells [140]. Moreover, under high glucose concentrations

GABA inhibits its own release from beta cells (via GABAB receptor activation). Reduced extracellular GABA concentra-

tions allow glucagon and glutamate secretion from alpha cells. Glutamate triggers glutamate and glucagon release via

activation of AMPA-Rs and glucagon stimulates further insulin release from beta cells. Counter-regulation: eventually, the

depolarization of beta cells activates NMDA-Rs present on beta cells, initiating the repolarization of beta cells and limiting

insulin release. Reduced insulin levels lift the inhibition of GABAA receptors on beta cells and allow positive feedback

regulation of GABA release. Elevated extracellular GABA levels can now activate GABAA receptors on alpha cells and

inhibit glutamate and glucagon release. Of note, insulin secretion induces GABAA receptors phosphorylation and trans-

location to alpha cell plasma membrane [111]. This renders alpha cells more susceptible to GABA-mediated suppression

of glucagon secretion, and ultimately limits insulin secretion from beta cells [111, 141].
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thus serving as a regulatory factor to limit glucagon/glutamate release [106]. As in the

GABAergic system, glutamate-mediated regulation of beta cells depends on the extracellular

glucose concentration. The high-affinity NMDA-Rs on the beta cell are already saturated at

physiological glutamate concentrations in the islet, and are mainly activated through depolar-

ization of beta cells [121]. As islets are depolarized by external glucose, the NMDA-R-mediated

repolarization of the beta cells is a negative feedback regulation of glucose-stimulated insulin

secretion. Extracellular glutamate is taken up by EAAT1 and 2 expressed on alpha cells [122].

4.2. Proposed GABAergic and glutamatergic signaling in type 1 diabetes mellitus

Type 1 diabetes mellitus (T1D) is an autoimmune disease, characterized by the specific

destruction of pancreatic beta cells. Exogenous administration of insulin is necessary to avoid

hyperglycemia. Additionally, within 5 years of disease diagnosis, almost all patients with T1D

lose their ability to generate an adequate glucagon response to hypoglycemia [123]. This loss

has been attributed to the lack of intracellular regulation of beta- to alpha-cell signaling during

hypoglycemia [124] and may account for the elevated plasma glucagon levels in diabetes

patients, indicating alpha-cell hypersecretion [125, 126]. As observed for neurons, beta cells

are sensitive to elevated extracellular glutamate levels and show signs of secretory defects and

apoptosis at high glutamate levels [122]. This effect was not prevented by AMPA-R and

Kainate-R antagonists and therefore unlikely caused by excitotoxicity. Instead, oxidative stress

appears to be the underlying mechanism of glutamate-induced beta-cell death. As outlined in

detail in the CNS portion of this chapter, the glutamate/cystine antiporter system xc(�)

exchanges intracellular glutamate for extracellular cystine. Excess extracellular glutamate

inhibits and/or reverts the activity of the antiporter, thus depleting the cells of cysteine, a

building block of the antioxidant glutathione, possibly increasing the cells’ vulnerability to

oxidative stress [122]. Upregulation of EAAT1 expression on beta cells protects beta cells from

glutamate-induced toxicity [122], indicating glutamate signaling as a potential therapeutic

target. Notably, many effective antidiabetic drugs such as GLP-1, exenatide, and glitazones

also show significant neuroprotective activity against glutamate-induced cytotoxicity in the

brain [127, 128]. Moreover, topiramate, an anti-epileptic drug that provides neuroprotection by

preventing glutamate toxicity, has antidiabetic and beta-cell cytoprotective effects [129] and

long-lasting remission was observed in a T1D patient after treatment with topiramate for

generalized seizures [130].

GABA has an overall anti-inflammatory effect on the immune system [131]. GABAA receptors

are expressed by T cells, B cells, and other mononuclear cells, and their activation suppresses

lymphocyte proliferation [132, 133]. This GABA-mediated inhibition of T cell responses may

provide the mechanism of GABA-associated protection of animal models for development of

T1D [134]. GABA also promotes a shift from an inflammatory to an anti-inflammatory cyto-

kine profile in vivo and in vitro [107]. Another aspect of GABA activity in regard to pancreatic

beta cells has been only recently reported. Through activation of GABAB receptors, GABA

significantly increases beta-cell viability [135] and replication [136]. In mouse models, GABA

administration prevented and even reversed T1D [107]. One of the involved mechanisms may

be GABA-mediated conversion of alpha cells to beta cells [137, 138]. While the details of the
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mechanisms involved need to be further investigated, these studies open the intriguing poten-

tial to use GABA treatment to re-generate beta cells in T1D [139].

It remains unclear what may cause impaired GABAergic and glutamatergic signaling in the

pancreatic islets. No mutations of receptors or other elements of the signaling mechanisms

have been identified in T1D so far. GAD65Ab are present in the majority of patients with T1D

and are regarded as a byproduct of the immune response without significant relevance for the

disease progression. However, it is possible that in analogy to their role in neurological

disorders, GAD65Ab are taken up by pancreatic beta cells and (a) uncouple the balanced

regulation of insulin and glucagon secretion and (b) induce beta cell apoptosis through

prolonged exposure to elevated extracellular glutamate levels. Further research is needed to

determine whether GAD65Ab have a pathologic role in the development of T1D.
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