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Abstract

The spike‐timing‐dependent plasticity (STDP) characteristic of the memristor plays an 
important role in the development of neuromorphic network computing in the future. 
The STDP characteristics were observed in different memristors based on different kinds 
of materials. The investigation regarding the influences of device hysteresis character‐
istic, the initial conductance of the memristors, and the waveform of the voltage pulses 
applied to the memristor as preneuron voltage spike and postneuron voltage spike on the 
STDP behavior of memristors are reviewed.

Keywords: Memristor, Spike‐timing‐dependent plasticity

1. Introduction

The state‐of‐the‐art artificial intelligence based on traditional von Neumann computation 

paradigm has shown remarkable learning and thinking abilities, for instance, AlphaGo 

created by the Google‐owned company Deep Mind beat the top Go player Lee Sedol by 

4:1 recently [1]. However, the information processing through the digital von Neumann 

computation paradigm is much less efficient as compared to human brains, which is the 

major bottleneck of von Neumann computation paradigm. Synapse plays the key role in 

learning, thinking, and memorizing for a human being, and there are approximately 1014 

synapses in a human’s brain [2]. A synapse is formed between two neuron cells [3], and 

the synapse weight can be precisely tuned by the ionic flowing through them. It is well 

known that the adaptation of the synapse weight between two neurons it connects with 

makes the biological systems functional [4]. In order to build up a system that behaves in 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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a much more efficient way like a human brain, people have never stopped searching for 

an electrical element that mimics the basic function of a synapse until “the miss memris‐

tor found [5].”

Similar to a biological synapse, memristor is a two‐terminal device whose conductance can be 

changed by the input pulses or by controlling the charge through it [4, 6] and in such a way, a 

memristor works as an artificial electronic synapse. Electronic synapses based on memristor 
devices are around three orders of magnitude smaller than a prominent CMOS design [2]; 

thus, the memristor has a great potential for scalability as compared to the electronic synapse 

made by traditional complex circuits [7].

Synapses have different kinds of plasticity, which have been realized and investigated 

in different memristors [8]. And the research on the application of memristors with the 

common synaptic plasticity in some kind of neural networks has also been conducted. For 

instance, HfO
2
‐based memristors were used in a Hopfield neural network to implement 

associative memory [9]. The relationship between the resistance of the memristor and 

the synaptic weight was defined. And the resistances of the memristors were tuned to the 

target resistances through the application of the voltage pulses on the memristors as the  

training process [9]. Prezioso et al. realized pattern classification by using the neural net‐

work based on memristors with synaptic plasticity [10]. The 12 × 12 crossbar with Pt/

Al
2
O

3
/TiO2−x/Ti/Pt memristors at each cross point was fabricated, which is illustrated in 

Figure 1(a). Sixty memristors among them were used to realize the function. The relation‐

ship between synaptic weight and conductance of the memristors is shown in Eq. (1). The 
synaptic weight was changed by applying fixed voltage pulses with the amplitude of ±1.3 

V on the memristors, and the change of conductance under different voltage pulses is 

shown in Figure 1(c).

   W  
ij
   =  G  

ij
  +  −  G  

ij
  −   (1)

Figure 1. Memristor crossbar. (a) Integrated 12 × 12 crossbar with an Al
2
O

3
/TiO

2‐x
 memristor at each cross point. (b) I–V 

curve of the memristor. Inset (b): the cross‐sectional structure of the memristor device. (c) Absolute values of the change 

of memristor’s conductance under voltage pulses (with the width of 500 μs) of two polarities, as a function of the initial 

conductance, for various pulse amplitudes [10].
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2. STDP in memristors

In the common synaptic plasticity mentioned above, the change of the conductance (weight) is 

only related to one voltage pulse applied on the memristors. Another kind of plasticity of the 

synapses is spike‐timing‐dependent plasticity (STDP). STDP is one of the most important syn‐

aptic characteristics. STDP modulates synapse weight based on the activities of the so‐called 

pre‐ and postsynaptic neurons [11]. The spikes from both preneuron and postneuron arrive 

at the synapse occasionally in the opposite direction [7]. In STDP, the change of the synaptic 

weight is the function of relative neuron spike timing ∆t (∆t = t
pre

 − t
post

), where t
pre

 is the time 

when the presynaptic neuron spike arrives and t
post

 is the time when the postsynaptic neuron 

spike arrives [4]. In a typical STDP behavior, if postsynaptic neuron spike arrives after presyn‐

aptic neuron spike (∆t < 0), the synaptic weight increases. If postsynaptic neuron spike arrives 

before presynaptic neuron spike (∆t > 0), the synaptic weight decreases. In electronic synapse 

based on memristor, voltage spikes or pulses are applied on the memristor through the two 

electrodes, which modulates the conductance of the memristor, and the change of conductance 

is related to the relative timing of voltage spikes or pulses. Memristors can realize STDP func‐

tion which is similar with that of biological synaptic systems, which is shown in Figure 2 [4].

Figure 2. (a) The relationship between change of the memristor synaptic weight and the relative timing ∆t of the neuron spikes. 

The synaptic change was normalized to the maximum synaptic weight. Inset (a): SEM image of the crossbar structure of 
memristors. (b) The relationship between the change in excitatory postsynaptic current (EPSC) of rat hippocampal neurons after 
repetitive correlated spiking (60 pulses at 1 Hz) and relative spike timing. The figure was reconstructed with permission from Ref. 
[8, 12]. Inset (b) is the phase contrast image of a hippocampal neuron, which was adapted with permission from Ref. [4, 13, 26].
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STDP have been intensively investigated in the different memristors with different materi‐
als. The memristors are usually composed of two electrodes and memristive materials sand‐

wiched between two electrodes. Metals such as Au, Pt, Ag, Cu, conductive nitrides such as 

TiN, and conductive oxides such as ITO are usually used as the materials of electrodes. The 

memristive materials can be grouped into binary oxides, ternary and more complex oxides, 

polymer, and other kind of materials.

The STDP of binary memristive materials such as TiO
x
 [6], WO

x
 [3], Al

2
O

3
/TiO

2
 [14], CeO

x
 [15], 

TaO
x
/Ta

2
O

5
 [16], and HfO

2
 [17, 18] have been investigated very intensively; Seo et al. tested 

the STDP function of the memristor based on TiO
x
, and they demonstrated the potential of 

such memristor as electronic synapses in neuromorphic network. The results are shown in 

Figure 3. Matveyev et al. demonstrated the STDP functionality of HfO
2
‐based memristor with 

the structure of TiN/HfO
2
/Pt [17]. The function relationship between the relative change of 

the conductance ∆G and the spikes’ delay time Δt was obtained from the 4‐nm‐thick HfO
2
 

40 × 40 nm2 device, which is shown in Figure 4. Tan et al. conducted investigation on the 

memristor with the structure of Pt/WO
3
/Pt. The STDP behavior was demonstrated in such 

WO
3
‐based memristor, which is illustrated in Figure 5(b) [3]. Wang et al. carried out investi‐

gation on memristor device of Pt/HfO
x
/ZnO

x
/TiN. The STDP characteristics of the memristors 

were measured with voltage pulses with the amplitude of the V−/V+ = −1.0 V/1.0 V. Those 
voltage pulses were applied on the top electrode and bottom electrode as presynaptic and 
postsynaptic spikes. The relationship between the relative change of the synaptic weight and 

relative spike timing is illustrated in Figure 6(b), which is basically consistent with the STDP 

behavior of biological synapse.

Memristors based on ternary and more complex oxides such as BiFeO
3
 [19], InGaZnO [20], 

and so on, were also investigated.

Wang et al. reported that STDP was observed in the memristors based on amorphous 

InGaZnO. As shown in Figure 7(c, d), a pair of voltage spikes with amplitude of V+/V− = 5 

Figure 3. STDP synaptic characteristic of the memristor. Inset shows the anti‐STDP synaptic characteristic of the 

memristor [6].
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Figure 4. Asymmetric STDP characteristic emulated in crossbar 4‐nm‐thick, 40 × 40 nm2 HfO
2
‐based memristors [17].

Figure 5. Experimental results of the STDP characteristic of Pt/WO
3
/Pt memristor. (a) Current decay after the application 

of a sequence of positive and negative pulses was measured with reading voltage with the amplitude of 0.05 V. The 
transition from volatile to nonvolatile is indicated in the dotted square. (b) The relationship between the change of the 
synaptic weight and the relative timing of the prespike and postspike. Inset (b): waveform of prespike and postspike [3].
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Figure 6. Nonlinear transmission characteristics and STDP of the memristor device. (a) Response of a memristor to 
different pulses; (b) emulation of STDP characteristics of memristor with the structure of Pt/HfO

x
/ZnO

x
/TiN—the 

relationship between the relative change of the memristor synaptic weight (ΔW) and the relative spike timing (Δt). And 

the solid line is the exponential fitting curve to the experimental data. The insets (b): schematics of various spikes.

Figure 7. Demonstration of STDP characteristics of memristor. (a) The variation of the current with the interval of voltage 

pulses. (b) The formation and decay of spike‐induced EPSC. (c and d) The preneuron spike and postneuron spike applied 
on the memristor for STDP. (e) The relationship between the relative change of the memristor synaptic weight (ΔW) and the 

relative spike timing (Δt). The exponential fitting results for the experimental data are illustrated by the solid lines in the graph.
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V/−5 V was applied on the two terminals of the memristors with relative timing Δt to test the 

STDP characteristics. As shown in Figure 7(e), the ΔW changed with Δt, which is a typical 

STDP characteristic of biological synapses.

The STDP behavior was also observed in polymer such as poly(3,4‐ethylenedioxythiophene):

poly(styrenesulfonate) (PEDOT:PSS) [21], EV(ClO
4
)

2
/BTPA‐F [22], and so on. Li et al. imitated 

the STDP of Ag/PEDOT:PSS/Ta structure [23]. A pair of temporally correlated voltage pulses 

with amplitudes V+/V− = 2 V/−2 V was used as presynaptic spikes and postsynaptic spikes, 
which was applied to the memristors, respectively. The change of the synaptic weights related 

to the precise timing between pre‐ and postsynaptic spikes is shown in Figure 8(c).

In addition, the investigations on the STDP of the memristors based on other kind of materials 

such as Si/Ag mixture [4], polycrystal CH
3
NH

3
PbI

3
 [24], have also been conducted.

Some factors in the STDP measurements can change some characteristics of the STDP, for 

example, the waveform of voltage spikes used to imitate the presynaptic neuron spike and 

postsynaptic neuron spike influences the STDP behavior significantly. It has been reported 
that the STDP function can be strongly influenced by the shape of the input voltage spikes 
[25]. The shape of voltage spike generated from presynaptic neuron is the same with that gen‐

erated from postsynaptic neuron. Zamarreño‐Ramos et al. investigated the influence of the 
shape of the voltage spikes (spk(t)) on STDP learning function ξ (∆T). The results are shown 

in Figure 9. The results reveals that the voltage spikes with a narrow short positive pulse of 

large amplitude and a longer relaxing slowly decreasing negative tail are needed in order to 

obtain the STDP function similar with the behavior of the biological synapses [25].

Figure 8. Simulation of STDP. (a) EPSC. The preneuron spike was V+/V− = 2 V/−2 V. The current value gradually decayed 
back to zero within 50 ms after the spike. A pair of temporally correlated pulses with amplitudes V+/V− = 2 V/−2 V was 
applied to the TE and BE as preneuron spikes and postneuron spikes, respectively. (b) Δt is the interval between the 

beginning of the preneuron spikes and the beginning of the postneuron spikes. (c) STDP characteristics. The relationship 

between the change of synaptic weight and Δt defined in (b).
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Cederström et al. investigated the role of device hysteresis characteristic of the memris‐

tors played in the operation of its STDP function. Hysteresis characteristics of memristors 

based on BiFeO
3
, Ag/Si, TiO

2
, and chalcogenide (PCM) were compared. STDP character‐

istics were simulated with different models of different memristors, and the results are 
shown in Figure 10. The influence of switching characteristics on the operating region 
used for STDP was discussed. A smooth switching characteristics leads to a much wider 

operation region, and a steep switching characteristics leads to a much narrower operation 

region [26].

Du et al. reported that the learning time constant can be adjusted through changing the 

duration of the voltage spikes. The scheme of the voltage spikes is shown in Figure 11, and 

pulse width (t
p
) is one of the parameters of the voltage spikes. The range of the delay time 

∆t where the normalized current is larger than 50% is called learning window. As shown 

in Figure 12, learning window decreases from 25 ms to 125 μs with the decrease of pulse 

width (t
p
) from 10 ms to 50 μs. In addition, energy consumption of the memristors was 

also discussed in this work, the authors showed that energy consumption of the Au/BFO/

Pt/Ti memristor is 4.7 pJ. A method to reduce the energy consumption was proposed and 

tested, and the results indicate by decreasing the pulse width (t
p
) energy consumption can 

be reduced to 4.5 pJ.

Xiao et al. reported the STDP characteristics of the memristor with the structure of Au/poly‐

crystal CH
3
NH

3
PbI

3
/ITO/PEDOT:PSS. Different waveforms were used as presynaptic neuron 

voltage spike and postsynaptic neuron voltage spike, which are shown in Figure 13(b–e). Four 

different kinds of STDP characteristics, including asymmetric Hebbian rule, asymmetric anti‐
Hebbian rule, symmetric Hebbian rule, and symmetric anti‐Hebbian rule, were obtained cor‐

responding to four different waveforms applied to the memristor as shown in Figure 13(f–i).  

And the four kinds of STDP behaviors were fit by different equations [24].

Figure 9. Illustration of influence of shape of waveform of the voltage spikes on the STDP learning function ξ(∆T). X1 is 

spike waveform applied on the memristor, and X2 is resulting STDP learning function, where X goes from A to H [25].
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Figure 10. STDP simulations by the implementation of SPICE models, and for each ∆t, a sequence of 60 pulses has been used to 
change the conductance. The waveforms used were adapted (a) for the TiO

2
 device model and (b) for our BFO device model [26].

Figure 11. Schematic of the waveforms for memristor initialization, single pairing STDP, and memory consolidation. 

(A) A pre‐post spike order is used for long‐term potentiation (LTP). (B) A post‐pre spike order is used for long‐term 

depression (LTD) [19].
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Figure 12. STDP characteristics of a BFO‐based memristor with single pairing pulse width (A) t
p
 = 10 ms, (B) t

p
 = 1 ms, 

(C) t
p
 = 500 μs, and (D) t

p
 = 50 μs, measurement waiting time t

w
 = 10,000 ms, pulse amplitude V

p
 = 3.0 V, reading pulse 

amplitude V
r
 = +2.0 V, and reading pulse width t

r
 = 100 ms. The memristor was preset in HRS and LRS with a writing 

pulse amplitude of V
w
 = −8.0 V and V

w
 = +8.0 V, respectively [19].

Figure 13. STDP characteristics of memristor: (a) schematics of a biological synapse. The voltage spikes for (b) asymmetric 

Hebbian rule, (c) asymmetric anti‐Hebbian rule, (d) symmetric Hebbian rule, and (e) symmetric anti‐Hebbian rule. (f‐i) 

The current change with the applying of corresponding voltage spikes. The conductance of the synaptic device was read 

with a reading pulse amplitude of −0.75V before and after the applying of the voltage spikes with the interval of 3 s [24].
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Prezioso et al. investigated the STDP characteristics of the memristor with the structure of 

Pt/Al
2
O

3
/TiO2−x/Ti/Pt. Three pairs of preneuron spike and postneuron spike with different 

waveforms, which are shown in Figure 14(a–c), were applied on the memristor. Three dif‐

ferent STDP behaviors were observed, which are illustrated in Figure 14(g–i). The results 

demonstrated the dependence of STDP window on the waveform of preneuron spike and 

postneuron spike. The investigation regarding the influence of the initial conductance 
(G

0
) on the STDP behavior was also conducted. In this set of tests, the waveform shown 

in Figure 14(a) was used. The STDP functions for different initial conductance G
0
 = 25, 50, 

75, and 100 μS were measured and compared. The results shown in Figure 15 indicate the 

influence of the switching dynamics’ saturation of the memristors on the STDP property. 
All the memristors have their own dynamic range of the conductance. When G

0
 is close to 

its maximum value, the increase of the conductance is very low. And when G
0
 is close to its 

minimum value, the decrease of the conductance is very low [14].

Figure 14. Experimental results for STDP characteristics. (a–c) The shapes of presynaptic and postsynaptic voltage 
pulses, marked by black lines and red lines, respectively (d–f) The time maxima and minima of the net voltage applied 

to the memristor, as functions of the time interval Δt between the pre‐ and postsynaptic pulses. (g–i) STDP characteristic 

of the memristors: the relationship between the changes of memristor’s conductance and Δt. The initial memristor 

conductance G
0
 was always set to about 33 μS in all the experiments mentioned above [14].
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3. Conclusions

In summary, the STDP characteristics have been observed in different memristors based on 
different kinds of materials, which make memristors become promising in the bio‐inspired 
neuromorphic application. Great efforts have also been made in the investigation on the 
influence factors of the STDP characteristics such as device hysteresis characteristic and the 
waveform of the voltage pulses applied to the memristor as preneuron voltage spike and 

postneuron voltage spike. Different kinds of waveform were used, and different kinds of 
STDP characteristics were observed.
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