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Abstract

Anthropogenic activities, such as mining/smelting, result in the release and accumu-
lation of heavy metal(loid)s in soil, posing serious human health and ecological risks. 
Due to the persistence of metal(loid)s, not undergoing any chemical and biological deg-
radation, they can only be either immobilized or removed by, bioremediation and phy-
toremediation. Biochar is increasingly being recognized as a promising, effective material 
that can be used to remediate various contaminations including excessive heavy metals 
in soil. This chapter provides an overview of the state of the art on biochar resources, pro-
duction processes and result of pyrolysis, surface characteristics of biochar, interactions 
of biochar with soil, and associated biota (microbes and plant). Furthermore, the under-
standing of characteristics of biochar and the interactions of biochar with soil and biota 
is necessary to assess the impacts of biochar on bioremediation and phytoremediation 
of heavy metal contaminated soil.

Keywords: biochar, heavy metal(loid)s, soil contamination, bioremediation, 
phytoremediation

1. Introduction

Soil contamination with heavy metal(loid)s can be attributed to many different sources 
such as agricultural and mining activities, industrial and residential release, which pose 

serious risks to environmental safety and human health. Various remediation techniques, 

based on either mobilization or immobilization processes, have been developed to solve 
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these challenges. Of those methods, bioremediation, especially biochar amended phytore-

mediation, is increasingly being recognized as a promising technology that can be used 

to remediate various contaminations in soil. Many studies have reported that biochar has 

been effectively used to immobilize the metal(loid)s in contaminated soils and influence 
the bioavailability and bioaccessibility of metal(loid)s. Bioremediation, especially phytore-

mediation of metal(loid)s, has been extensively studied. Biochar, the carbon-rich product, is 

perceived to play significant roles on the bioaccessibility and bioavailability, hence biotrans-

formation and bioremediation of heavy metal(loid) contaminated soil. However, biochar 

is often prepared from a variety of feedstocks under different pyrolysis systems, and thus, 
the surface properties could be varying significantly. It is urgent to address some key areas 
of research in order to ensure a safe and sustainable use of biochar. In particular, under-

standing the characteristics of various biochar, illustrating the effects of biochar properties 
on heavy metal(loid) behavior and transport, evaluating the influence of biochar on soil 
structure and nutrients, microbial community, plant growth, and consequently the effective-

ness of bioremediation and phytoremediation are some of the areas that require attention.

This chapter provides an up-to-date review on the state of the art of environmental impacts 

and applications of biochar amended bioremediation and phytoremediation of heavy 

metal(loid) contaminated soil. In addition, the discussion will focus on the remediation 
of highly toxic metal(loid)s such as arsenic (As), cadmium (Cd), chromium (Cr), mercury 

(Hg), and lead (Pb) and different land-use scenarios that can potentially cause human health 
and phytotoxicity problems.

2. Characteristics of biochar

2.1. Physiochemical properties

Biochar is generally obtained from the low-temperature (e.g., 400–700°C) pyrolysis of vari-

ous biomass such as manure [1], agricultural residues [2], bamboos [3], and biosolids 

in the absence of oxygen and is often used as a soil amendment [10], which is therefore dis-

tinguished from fuel charcoal. Table 1 summarizes the physiochemical properties of biochar 

that is derived from wood material, agricultural by products, poultry litter, or sludge under 

different pyrolysis temperatures.

As shown in Table 1, although the physiochemical properties of biochar varied significantly 
due to the production from a variety of feedstocks under different pyrolysis systems, biochar 
is generally alkaline and has high surface area with large porosity, variable charges, and vari-

ous functional groups. These characteristics can further affect its pH, cation exchange capac-

ity (CEC), and surface sorption capacity. The particle size of biochar depends on the initial 

particle size of the feedstock, but it is likely to be smaller than the feedstock due to shrinkage 

and attrition during pyrolysis. An increased pyrolysis temperature could result in smaller 
biochar particles due to the decreased tensile strength of the feedstock at higher pyrolysis 

temperature [9].
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2.1.1. Alkalinity

The alkalinity of biochar is greatly affected by the type of feedstocks and pyrolysis temperature. 
It seems that biochar, derived from agricultural residuals and poultry letter in particular, is 
alkaline even at low pyrolysis temperature (<300°C), whereas biochar that derived from wood 

Feedstock Pyrolysis 

temperature (°C)

pH CEC 

(mmol 

kg−1)

C (%) C/N 

ratio

Total P  

(mg kg−1)

Ash (%) Volatiles (%) Surface area 

(m2 g−1)

Oak wood 

[4, 5, 10]

60 3.7 182 47.1 444 5 0.3 88.6 n.d.

350 4.8 294 74.9 455 12 1.1 60.8 450

600 6.4 75.7 87.5 489 29 1.3 27.5 642

Pine needles 

[6]

300 6.4 n.d. 84.2 22 n.d. 7.2 38.6 4.1

500 8.1 n.d. 90.1 22 n.d. 11.8 15.8 13.1

700 10.6 n.d. 93.7 26 n.d. 18.7 6.2 391

Corn stover 

[4, 5, 10]

60 6.7 269 42.6 83 526 8.8 85.2 n.d.

350 9.4 419 60.4 51 1889 11.4 48.8 293

600 9.4 252 70.6 66 2114 16.7 23.5 527

Poultry 

litter [7]

0 8.2 n.d. 7.9 n.d. n.d. 16.9 74.3 1

350 8.7 n.d. 24 n.d. n.d. 30.7 42.3 4

700 10.3 n.d. 36 n.d. n.d. 46.2 18.3 51

Poultry 

litter [10]

60 7.5 363 24.6 13 16,685 36.4 60.5 n.d.

350 9.7 121 29.3 15 21,256 51.2 47.2 47

600 10.3 58.7 23.6 25 23,596 55.8 44.1 94

Poultry 

litter [8]

450 9.9 n.d. 38 19 11,600 n.d. n.d. n.d.

550 13til n.d. 33 39 1800 n.d. n.d. n.d.

300 5.3 n.d. 25.6 7.7 493 52.8 33.8 n.d.

Sludge [9] 400 4.9 n.d. 20.2 8.4 740 63.3 25.7 n.d.

500 7.3 n.d. 20.3 10 568 68.2 20.7 n.d.

700 12 n.d. 20.4 17 528 72.5 15.8 n.d.

Note: n.d. means not detected.

Table 1. Physiochemical properties of biochar derived from different feedstocks under different pyrolysis temperatures.
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material is acid under low pyrolysis temperature [6, 8, 10]. The content of the carbonates are 

considered as the main alkaline components in biochar [11]. During the pyrolysis process, func-

tional groups such as carboxyl and hydroxyl molecules on the surface of biochar are formed 

and also greatly contribute to the alkalinity of biochar. In general, biochar alkalinity increases 
with the increase in pyrolysis temperature [7, 11, 12] as shown in Table 1.

2.1.2. Nutrient

Biochar contains various nutrients such as P, K, Ca, and Mg, which are concentrated from 

the pyrolysis feedstock. Additionally, dissolved organic matter is formed during the pyrolysis 
process. Thus, the addition of biochar could provide a source of bioavailable nutrients to plants 

and microorganisms. However, the type and amount of bioavailable nutrients in biochar sig-

nificantly depend on the feedstock type and pyrolysis conditions. When biochar is produced 
from poultry manure, peanut husk, and pine tree at 400 and 500°C, respectively, the contents 

of C and N varied greatly in biochar. In addition, the exchangeable P, K, Ca, and Mg were much 
higher in biochar obtained at 500°C than that at 400°C [13]. The difference was mainly attrib-

uted to the higher pyrolysis temperature that increased the mineralization of feedstocks, but 

decreased the CEC. From this perspective, it is most important to obtain nutrient-rich biochar 

from nutrient-rich feedstock under proper pyrolysis conditions. Generally speaking, plant-

derived biochar has a relatively lower nutrient content than manure-derived biochar [14].

2.1.3. Stability

When biochar is added into the soil, it will present as isolated particulates, which distinguish 
from other forms of stable organic matter, either entrapped in soil pores and adsorbed to min-

eral surfaces or occluded in aggregates. Biochar containing more aromatic black carbons onto 

the surface is more persistent in the soil than any other form of organic carbon [15] and thus 

could enhance carbon sequestration in soils [2]. A previous study showed that the miner-

alization rate of biochar is very low, and the half-lives of carbon in biochar range from 102 

to 107 years [16]. Another study has reported that fine biochar particles have remained in soils 
in humid tropical climates, such as in Amazon, for thousands of years [17].

2.2. Interactions between biochar and metal(loid)s

In the environment, biogeochemical reactions play important roles in influencing the fate, 
transport, and transformation of metal(loid)s. Since the ionic metal(loid)s may exist as cationic 

and anionic forms, the behavior of these ions will be affected through the interactions with posi-
tive and negative charges on the biochar surface. When mixed with topsoil, biochar with negative 
charges can tightly adsorb the cationic metal(loid)s such as Cd2+ and Pb2+ [18, 19], while biochar 

with positive charges can retain anionic metal(loid)s such as arsenite (  H  
2
    AsO  

3
  -   ) and arsenate 

(  H  
2
    AsO  

4
  3-  ). For cationic metal(loid)s such as Pb2+, the physical adsorption, surface (co)pre-

cipitation, and surface/inner complexation with functional groups are considered as the major 

mechanism for the immobilization of Pb by biochar. Therefore, the biochar-induced changes 

in soils such as the increase of soil pH can further lower the solubility of cationic metal(loid)s. 

Because the physiochemical properties of biochar are a function of feedstock type and pyrolysis 
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conditions (e.g., temperature and rate of temperature increase), it is necessary to determine suit-

able feedstock for biochar production that have the potential to remediate different metal(loid) 
in particular soils. On the other hand, unlike cationic metal(loid)s, anionic forms of metal(loid)s 

such as As (  H  
2
    AsO  

3
  -    and   H  

2
    AsO  

4
  3-  ),   SeO  

4
  2-   and Cr (  CrO  

4
  2-  or  HCrO  

4
  -   ) are often dominant 

species in alkaline soils and weakly adsorbed by the negatively charged soil particles [20, 21].

It is well known that the oxidation state of metal(loid)s can affect the mobility in soil. For exam-

ples, the lower oxidation state of As (As(III) and As(V)) shows much higher mobility in soil, 
while the higher oxidation state of Cr (Cr(VI) and Cr(III)) presents much higher mobility 
in soils. Additionally, the redox potential in soils can alter the oxidation states of metal(loid)

s. For instance, it was reported that biochar transformed Cr(VI) to the less mobile Cr(III) by 
continuously donating electrons, which may be associated with oxygen-containing func-

tional groups on the surface of biochar [22]. Moreover, microbial metabolism by using bio-

char-derived organic carbon can also reduce Cr(VI) [16]. This reduction process resulted 

in the lower solubility of Cr and thus enhanced the immobilization of Cr in soil.

Soil pH and organic matter content also significantly control the adsorption/desorption pro-

cesses of metal(loid)s in soils, where cationic metal concentrations are higher in acid soil solu-

tion. For example, Cr exists predominantly in the cationic form Cr3+ or Cr(OH)2+ in acid soils 

(e.g., pH 3.5–6.0). The addition of biochar to soil can affect the pH and dissolved organic matter 
(DOC), and as a consequence to influence the mobility of metal(loid)s. Some studies revealed 
that biochar amended soil may increase the mobility of metal(loid)s such as As, Cu, and Sb 

[23–25]. For instance, the mobility of As was enhanced by the increase of pH in biochar amended 

soil [23, 26]. The possible mechanism for the mobilization is the electrostatic repulsion between 

anionic As and Sb species and negatively charged biochar surfaces, resulting in the desorption 

of As and Sb. In the case of Cu, the mobility is strongly correlated with the level of DOC in bio-

char. High DOC contents in biochar (pyrolysis temperature <500°C) can facilitate the organo-Cu 

complexes [27], but biochar with low DOC contents (e.g., pyrolysis temperature >600°C) will 

immobilize Cu by surface adsorption [25].

3. Bioremediation and phytoremediation with biochar

3.1. Bioremediation

Biochar application facilitates bioremediation of organic compounds [28–30]. The main mech-

anism is the increase of petroleum hydrocarbon-degrading microbial populations in bio-

char-amended soils [28]. Heavy metal(loid)s cannot be degraded or completely eliminated 

from the environment, but can be changed from one form to another, from high concentration 

to low concentration. Heavy metal(loid)s can also be accumulated in the biota. Therefore, there 

are two commonly used strategies for bioremediation of heavy metal(loid)s: (1) the absorption 

and accumulation to heavy metal(loid)s in woody plants and bioenergy crops in contaminated 

farmlands, and the removal of heavy metal(loid)s by harvesting the metal(loid)s accumulated 

biomass; (2) the transformation of heavy metal(loid)s into lower toxic products (e.g., complex 

state), and the adsorption by microorganism to reduce their toxicity and migration.
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The potential benefits of biochar application in phytostabilization can be summarized 

in Figure 1. The negative charged surface of biochar and the alkaline nature can adsorb 

and retain toxic metal ions by different mechanisms. Biochar, at the same time, also pro-

vides a more favorable soil environment for beneficial microorganism and the development 
of plant roots by slowly releasing nutrients and maintaining good soil structures.

Microorganisms have been known to develop the resistance to toxic metal(loid)s and even evolved 

metabolic pathways to transform the metal(loid)s using several mechanisms. There are many 

factors affecting the effectiveness of bioremediation of heavy metal(loid)s. It has been reported 
that the reduction of Hg by a thermophilic Streptomyces species was associated with a novel Fe2+-

dependent mechanism in the membrane cytochrome c oxidase [31]. As we discussed before, 

the reductive precipitation of Cr(VI) to Cr(III) in soil was enhanced in the presence of biochar [22], 

which was due to the increased microbial activities promoted by the released carbon and nutri-

ents from biochar [16]. In addition, dissimilative reduction may also facilitate immobilization 
of metal(loid)s such as Cr(VI) and U(VI) [32]; however, no reported evidences have illustrated 

the roles of biochar. Compared to the directly enhanced bioremediation, the presence of biochar 

could also provide indirect mechanism for the bioremediation of metal(loid)s. Microbial-induced 

calcite precipitation can strongly adsorb and/or coprecipitate the heavy metal(loid)s on its sur-

faces. During precipitation of calcite, heavy metal ions with ion radius close to Ca2+, such as Cd2+, 

Pb2+, and Cu2+, may be incorporated into the calcite crystal by substitution reaction [33]. Moreover, 

modern genetic engineering promotes the development of engineering microbes to remediation 

metal(loid) contaminated soils. For instances, genetically engineered Ralstonia eutropha has been 

reported to sequester Cd in soils and further reduce the availability of Cd [34]. Biochar facilitated 

Figure 1. An overview of the potential positive effects attained by combining phytoremediation and biochar 
for bioremediation of heavy metal contaminated soil. Cationic metal ions expressed as M2+. The potential benefits 
of biochar to phytoremediation are (1) physical adsorption of cationic metal(loid)s from soil pore water; (2) (co)

precipitation with phosphate, carbonates, silicate, and chloride, e.g., the formation of pyromorphite; (3) complexation 

with functional groups on the surface of biochar; and (4) nutrients release such as N, P, K, Ca, and DOC. The processes 

(1)–(3) can reduce the bioavailable metal concentrations in soil pore water and further reduce the phytotoxicity. 

The process (4) can produce nutrients to plant roots and microorganism in rhizosphere.
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this process by creating a microbe-favorable soil environment in the presence of biochar and thus 

potentially increased the bioremediation efficiency. Recently, a bamboo biochar oxygen-releasing 
bead (ORB) was reported to be a potential oxygen-releasing material for use in soil and ground-

water bioremediation [35]. This type of biochar can potentially promote dissimilative oxidation 

of metal(loid)s such as As(III) to less mobile form.

3.2. Phytoremediation

Phytoremediation is a combined multidiscipline consisting of soil chemistry, microbiology, 

and plant physiology, aiming to (im)mobilize pollutants from various environmental media [36]. 

In general, phytoremediation includes phytoextraction, phytostabilization, phytodegradation, 
phytovolatilizationan, and rhizoremediation. In this chapter, phytoextraction and phytostabili-
zation are discussed in detail. Compared with other remedial practices for heavy metal(loid)s, 

digging and dumping or chemical immobilization, phytoremediation is attracting more attention 
because of the effectiveness and low cost. Other benefits such as prevention of erosion or contami-
nant leaching are also very important for further land management and development. Table 2 

summarizes some biocar amended phytoremediation for heavy metal(loid)s contaminated soils.

Feedstock Dose Metal(loid)s Effects Plant species

Wood [51] 1, 2.5, 

and 5 

%w/w

Ni, Mn, 

and Cr

Decrease exchangeable Ni, Mn, and Cr; 

improved plant growth

Lycopersicon esculentum L.

Hardwoods [26] 20% v/v As Increased pore water As but no effect 
on As uptake

Miscanthus x giganteus

Miscanthus [52] 1, 5, 

and 10% 

w/w

Cd, Pb, Zn Decreased bioavailable metal 

concentrations and that in shoots but 

the biomass tripled

Brassica napus L.

Pruning residues; 

fir tree pellets 
and manure [43]

0, 1.5, 

and 3% 

w/w

Cd, Cr, Cu, 

Fe, Ni, Pb, Tl, 

and Zn

Decreased water extractable Cd, Cr, Cu, 

and Zn due to increased pH; No effect 
on Pb and Ni

Anthyllis vulneraria, 

Noccaea rotundifolium 

and Poa alpina

Oka, Ash, 

Sycamore, 

and Birch [53]

20% v/v Cu and Pb Decreased pore water Cu and Pb 

concentration and that in shoots

Lolium perenne L. var. 

Cadix

Hardwood [18, 

24, 26]

– As, Cu, Cd, 

and Zn

Increased pore water As and Cu; 
immobilization of Cd and Zn 

due to enhanced pH and DOC

Solanum lycopersicum L.

Sewage sludge [54] 0, 5, 

and 10% 

w/w

As, Cd, Cr, 

Co, Cu, Ni, 

Pb, and Zn

Decreased pore water As, Cr, Co, 

Ni, and Pb due to increase soil pH; 

mobilization of Cu, Zn, and Cd 

due to high available concentrations 

in biochar

Rice plants

Chicken manure 

and green waste 

[27]

1, 5, 

and 15% 

w/w

Cd, Cu, 

and Pb

Reduced NH
4
NO

3
 extractable Cd, Cu, 

and Pb; increased plant dry biomass by 

353% for shoot; reduced Cd, Cu, and Pb 

accumulation by plants

Indian mustard (Brassica 

juncea)

Note: v/v means volume/volume and w/w means weight/weight.

Table 2. Biochar amended phytoremediation for heavy metal(loid) contaminated soils.
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3.3. Phytoextraction

Phytoextraction, generally based on the hyper-accumulators or energy plants to uptake 

metal(loid)s, is the main method to remediate the metal(loid) contamination in soils. So far, 

hundreds of plant species have been used to accumulate As, Cu, Cd, Zn, Pb, Ni, Co, and Cr 

from soils. Ideally, plant species used for phytoextraction not only accumulate high amounts 
of the target metal(loid)s, but also have high biomass yield, tolerate the toxicity of the heavy 

metal(loid)s, be adaptive to soil and climate, be resistant to pests and diseases, and be easy 

to cultivate [37]. There are two factors as yield and the metal(loid) concentration determin-

ing the efficiency of phytoextraction. Hence, metal(loid) uptake, which is the product of these 
two parameters, can be either positive or null [38]. As far as we know, no studies meet all 

of the criteria mentioned above. However, there is a study reported that biochar-amended 

soil significantly improved the biomass of willow, yet the concentration of Cd and Zn in wil-
low remained unchanged. Yet, phytoextraction is enhanced [39]. Phytoextraction in practice 

is often used in agricultural soils to lower the concentrations of toxic metal(loid)s below soil 

quality standards to improve soil environmental quality and to ensure food security. In highly 
contaminated soils, such as mine tailings, phytoextraction could cost hundreds of years. Thus, 

the contamination levels of the target agricultural soils should not be too high for phytoex-

traction. Although a hyper-accumulator could accumulate much higher metal(loid) concentra-

tions, its slow growth rate often limits its application. Instead, energy plants such as sunflower 
and rapeseed plants are used to extract Cd from agricultural soils [40, 41]. Several studies 

have combined biochar and phytoextraction in practice. For instance, Brassica napus L. is used 

to extract Cd in the presence of biochar [42]. And different plant species and biochar have been 
also used in multicontaminated soils [43]. However, very few studies are available with a focus 

on the combination of biochar on phytoextraction of soil heavy metal(loid)s. For example, bio-

char amended phytoextraction was performed using Amaranthus tricolor L. to remediate the Cd 

contaminated soil [44]. Until now, most research results indicate that the addition of biochar 
reduces the bioavailability of heavy metal(loid)s, but plants require high concentrations of solu-

ble metal(loid)s to extract and accumulate them. The benefits of biochar are to improve the char-

acteristics of the polluted soil (water-holding capacity and nutrients) [45], enhance the soil 

microbial activity [10, 44–47], and have the potential to increase agricultural yields. Thus, 

using biochar to treat these soils not only immobilizes the heavy metal(loid)s but also increases 

the microbial biomass [48], which further lowers the ecological risk of heavy metal(loid)s in soil.

3.4. Phytostabilization

Phytostabilization is another phytoremediation process widely used for stabilization and con-

tainment of mine tailings [49]. The vegetative cover diminishes eolian dispersion and water ero-

sion, while roots prevent leaching, which contribute to the immobilization of heavy metal(loid)

s. The mechanisms involved in phytostabilization include precipitation, root sorption, complex-

ation, or metal valence reduction. Phytostabilization, contrary to phytoextraction, primarily 

focuses on the heavy metal(loid) sequestration within the rhizosphere, but not in plant tissues. 

Metal(loid) stabilization is usually achieved through in situ application of soil amendments 

and microorganisms that effectively promote the metal immobilization and plant growth [42].
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Most studies for biochar enhanced phytostabilization of metal(loid)s in soils include As, 

Cd, Cu, Cr, Ni, Zn, and Sb [25]. It is well known that As behaves differently from other 
metal(loid)s as a function of pH, since the As mobility can be reduced in acid soils 

due to increased adsorption on iron oxides under acidic conditions. Hartley et al. [26] showed 

that biochar can be used in combination with Miscanthus for phytostabilization. However, 

the results showed that the addition of hardwood biochar did not increase the As transfer 

to Miscanthus plants in three soils, whereas the alkaline biochar could mobilize As in soils. 

Cu and Pb were relatively easy to stabilize in biochar amended soil, while Cd and Ni var-

ied greatly on the type of biochar added to soils [25]. The mechanism of stabilization is 

most likely due to the increase of soil pH. Extensive studies reported that soil amendments, 

such as lime, have the potential to be combined with phytoremediators so as to reduce 

the bioavailability of heavy metal(loid)s. By comparison, biochar seems to be more effec-

tive to regulating the availability of toxic elements and improving the biomass production 

of plants and remediation efficiency [39]. Improvements of plant yield with biochar addi-
tion are attributed to increased water and nutrient retention, improved biological properties 
and CEC, and buffed soil pH. Thus, biochar has a potential as an amendment for reduc-

ing metal uptake by plants. However, changes of soil pH in rhizosphere can potentially 

affect the effectiveness of biochar to immobilize metal(loid)s in soils and the acidification 
of the rhizosphere should be minimized [42].

It is perceived that biochar can interact with soil components for a prolonged period of time. 
As a result, the redox processes might result in the alteration of biochar, a process known 

as aging. The immobilization of heavy metal(loid)s by biochar was related to the metal lability 

(e.g., Pb2+ is prone to be immobilized first other than Cd2+). During the aging process, a large 

variety of functional groups such as carboxylic, phenolic, and hydroxyl could be formed, 

and immobilization of cationic heavy metal(loid)s was not affected by biochar aging in soils 
with aged biochar [50].

4. Application of biochar to the bioremediation of mine area

Mining activities can cause the destruction of soil structure and change of soil biology 

and vegetation, resulting in extensive soil degradation. The contaminated soil after mining 

causes the devoid of vegetation due to metal toxicity and high acidity. Remediation and reha-

bilitation of these contaminated soils can be achieved via phytostabilization, a long-term 

and cost-effective rehabilitation strategy, promoting the revegetation to reduce the risk of pol-
lutant transfer and ecological restoration [43], although these are difficult without proper soil 
amendments. The addition of biochar to contaminated soil may increase soil pH, water-hold-

ing capacity, and soil fertility, reduce the mobility of plant-available pollutant, and promote 

the revegetation [55]. Phytostabilization of mine tailings with biochar, produced from orchard 

prune residues and manure, at four different dosages (0, 1, 5, and 10%) showed the signifi-

cant benefits of biochar to revegetate the plant species [43]. And the bioavailability of Cd, Pb, 

and Zn decreased proportionally with the increase of biochar content [43].
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Biochar can reduce toxicity of heavy metal(loid)s and promote the plant growth in heavily 

contaminated soils [19, 56, 57], as shown in Figure 1 (process 4). Soils with high available 

concentrations of toxic metal(loid)s are generally very acidic, unlikely supporting plant ger-

mination and growth.

4.1. Acid mine wastes

In highly multi-contaminants polluted soils, such as mine tailings, the phytoextraction pro-

cess could take hundreds of years because of slow growth rate and low biomass of phy-

toextractors. Considering these limitations, revegetated phytostabilization, a long-term 

and cost-effective rehabilitation strategy, is one of the most promising remediation technolo-

gies to enhance metal stabilization in soils and reduce the risk of toxic metal(loid) transfer via 

leaching and water erosion [43]. However, when this technology is applied to mine tailings 

or contaminated soils, there are several issues that need to be addressed: (1) high metal(loid) 

contents cause high toxicity; (2) high acidity promotes metal release and enhances the toxic-

ity; (3) the iron- and sulfur-oxidizing bacteria are dominated in acidic tailings that further 

increase acidity [58]; and (4) low nutrients cannot support plant growth. So far, no effective 
amendments have been developed to simultaneously fix these problems. Usually, the first 
step in practice is to add some liming materials such as limestone to increase alkalinity 

and increase the soil pH. Furthermore, the added alkalinity could be rapidly lost. And even if 

a higher soil pH is maintained, the lack of nutrients also makes the revegetation fail. However, 

the application of fertilizers to the lime-amended mine soils could further cause a higher acid-

ity, which led to the rapid leaching out of added nutrients [59].

By comparison, biochar is one of the most relevant organic amendments. The addition of bio-

char to contaminated soil and waste rock piles can increase soil pH, water-holding capacity, 

and soil fertility, reduce the mobility of plant-available pollutants, and promote the revegeta-

tion [55]. Phytostabilization of mine tailings with biochar, produced from orchard prune resi-

dues and manure, at four different dosages (0, 1, 5, and 10%) exhibited the significant benefits 
to improve the revegetation of the plant species [43]. Additionally, the pH, nutrient retention, 

cation exchange capacity, and water-holding capacity of mine tailings increased, and the bio-

availability of Cd, Pb, and Zn decreased proportionally with the increase of biochar con-

tent [43]. Soils developed on or around mine tailings are generally very acidic, with high 

available concentrations of dissolved toxic metal(loid)s, unlikely supporting plant germina-

tion and growth. Biochar is very stable with slow-releasing nutrients and readily reduces 

the plant-available concentrations of cationic metal(loid)s, resulting in the decrease of phy-

totoxicity of metal(loid)s to plants [19, 51, 56, 57], as the increase of the germination rate [60], 

root length, and better plant growth [51] are found in the presence of biochar.

4.2. Alkaline tailing soils

Alkaline tailing soils are another type of common metal(loid) contaminated soils, resulted 

from mining (e.g., Pb and Zn), smelting activities, or mining in arid regions [49]. These 

unclaimed or abandoned mining sites generally remain unvegetated for dozens or hundreds 

of years, and gradually, the contamination can greatly expand via eolian dispersion and water 
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erosion [49]. The main concerns of high alkaline tailings and soils are that tailings and mining/

smelting-affected soils become a significant source of air pollution, due to the formation of tiny 
particulate matter (e.g., PM 10 and PM 2.5), and as a consequence, they increase the expo-

sure of heavy metal(loid)s to local residents. Therefore, it is urgent to improve the vegetation 

in alkaline tailing sites so as to control the release of particulate matter. Phytostabilization 
of mine tailings can be a promising strategy for metal immobilization in a long run, since veg-

etation will reduce the tiny metal-containing particles, while roots will prevent water erosion 

and immobilize metal(loid)s by adsorption or accumulation.

Although total metal(loid) contents in soils are very high (e.g., total Pb over 6000 mg kg−1 

soil), the aqueous concentrations in soil solution (e.g., Pb below 10 μg l−1) can be very low, 

due to the high soil alkalinity and the large fraction of nonchemical reactive metal(loid)s [61]. 

The addition of alkaline biochar will not improve the soil pH as it is already very high (e.g., 8), 

which reduce the solubility of metal(loid)s and prevent their bioavailability to plants.

However, because the replacement of topsoil with continuous addition of organic matter 
and nutrients is very expensive for extensive mine tailings sites, organic amendments such 

as biochar are commonly used as a substitute. Biochar can provide a slow-release fertilizer 

and serve as microbial carriers to improve soil quality, creating a favorable environment 

for further vegetation practices. In addition, biochar can improve soil structure, reduce ero-

sion, and increase infiltration. Soil amendments such as biochar facilitate grassland recovery 
and revegetation in severely degraded habitats, such as mining waste and contaminated soils. 

For example, biochar reduced the toxicity of heavy metal(loid)s to plant growth in heavily 

contaminated soils [19, 56, 57]. Furthermore, biochar can improve soil structure and aera-

tion and provide some necessary nutrients that promote microbial activity and diversity. 

Moreover, biochar can adsorb metal(loid)s on the surface and reduce the toxicity to micro-

organism. The improvement of soil enzymatic activities and microbial growth and diversi-

ties have been found in biochar-added soils [44, 46, 47, 51]. Biochar can alter soil microbial 

community, possibly including an increase in beneficial organisms that produce antibiotics, 
and can protect plants against pathogens [62]. However, some studies using wood-biochar 

as soil amendment do not show the same benefits [63].

5. Defects of biochar amended bioremediation

5.1. Phytoextraction of arsenic

From the perspectives of  fate, transport, and transformation of the metal(loid)s, As behaves 

differently with other cationic metal(loid)s such as Cd. As exists predominantly as anionic 
form such as   H  

2
    AsO  

3
  -    and   H  

2
    AsO  

4
  3-   in soil solution. The mobility of As is pH-dependent 

and also greatly influenced by the biogeochemical interactions with soil minerals (e.g., iron 
oxides) in soils. The negatively charged As (As(III) and As(V)) are strongly adsorbed on iron 
oxides. However, when alkaline biochar is added to acidic or slightly acidic soils, the soil pH 

increased, which contributes to the increase of negative charges on the soil surface, promoting 

the release of adsorbed As into soil solution through charge repulsion. Several studies have 
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reported that the As concentration in soil pore water increased with the increase of soil pH, 

induced by the presence of biochar derived from hardwood- or Eucalyptus saligna [18, 23, 24, 26, 

64, 65]. Another intriguing factor that potentially increases the mobility of As is the introduc-

tion of dissolved organic matter from biochar. It is well known that the mobility of As and Fe 
also is greatly affected the by soil redox condition. An increase in dissolved organic matter can 
decrease the soil redox potential and enhance the reductive dissolution of solid iron oxides 

and release the adsorbed As to aqueous phase. In addition, the mobility of As(III) is higher 
than As(V). The reduction of As(V) to As(III) was predominantly (>83%) attributed to the bio-

logical reduction, stimulated by increased dissolved organic matter from biochar. The As(III) 
released from sediment upon biochar amendment (656 μg l−1) was significantly higher than that 
from sediment without biochar addition (98 μg l−1) after 49 days of cultivation [66]. Furthermore, 

the phosphate-extractable As in soil increased with biochar, because of the release of phosphate 

from biochar derived from hardwood [67]. Other anionic metal(loid)s, such as Sb, Cr, Mo, and Se, 

may also demonstrate the similar pattern as As in biochar-amended soils. To prevent the dis-

similatory As reduction and mobility, a bamboo biochar oxygen-releasing bead (ORB) (104 
days) was used to inhibit Fe(III) and As(V) reduction [35]. However, biochar derived from other 

feedstocks has not been well examined. Therefore, it is important to determine the impacts 

of biochar on the biogeochemical interactions that control the mobility of metal(loid)s in soil.

5.2. Phytoremediation of sewage sludge

Biochar seems to be very effective in controlling metal(loid) availability and facilitates 
the application of phytostabilization [68]. Sewage sludge, as an important feedstock for bio-

char production, is often used as soil amendments. However, there are concerns of patho-

gens and high available metal concentrations from sewage sludge and derived biochar. So far, 

the application of sludge-derived biochar is limited in both laboratory and field studies. 
The risk of using sludge in agricultural soils has still not been well evaluated, although there 

are reports that the concentrations of heavy metal(loid)s (i.e., Cu, Pb, Zn, Cd, and Cr) were 

concentrated in biochar, without increasing the metal uptake by Chinese cabbage [69].

Additional concerns raised for other metal(loid)-rich biochar, derived from plants used 

for phytoremediation or agricultural straw from contaminated soils. Although some stud-

ies claimed that metal(loid)s in feedstocks can mostly be fixed in biochar without the risk 
of leaching, the mechanism of fixation is still unclear. Pyrolysis temperature greatly affected 
the metal distribution in biochar product. With the increase of pyrolysis temperature, metal 
contents such as Zn and Pb decreased and perceived to form volatile metal chlorides [70]. 

However, the rest of metal(loid)s in biochar seem not increase the available metal(loid)s 

in soil in a 3-year field trails, even after repeated agricultural applications [71].

6. Future research

6.1. Characterization of biochar

Biochar has great potential as an amendment for phytoremediation, but its effect depends 
on the type of pyrolysis feedstock and temperature. Since most researches used different 
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biochar produced from various feedstock, the impacts on the bioremediation varied greatly. 

However, these results are not comparable, and thus, a systematic evaluation is urgently needed 

for biochar-making procedure. The characteristics of the feedstock and pyrolysis conditions 

are crucial for the biochar selection. If the characteristics of feedstock can be qualitatively 
and quantitatively correlated with the properties of biochar, the selection and optimization 

of biochar becomes more promising [72]. The characterization of a range of surface proper-

ties of biochar and its biological effects on bioremediation are essential in order to implement 
these approaches effectively in practice [73]. The biochar-assisted phytoremediator target-

ing at different heavy metal(loid)s is strongly dependent on the interactions between spe-

cific metal(loid)s and biochar. How these properties are relevant for the adsorption of heavy 
metal(loid)s and how they contribute to the different mechanisms of heavy metal(loid)s 
immobilization need further examination.

6.2. Evaluation of biochar stability

Until now, the stability of biochar is still not well understood. The effectiveness of biochar 
on the improvement of soil quality has not been examined on a large timescale. In a 3-year field 
trail, the alkalinity associated with the biochar had been fully neutralized and most of the cations 

(i.e., K, Na, and Ca) from the biochar had been lost, but microbial community had built up [74]. 

The addition of biochar to soil causes small and potentially transient changes in a temperate 

agroecosystem functioning. However, most of these experiments for biochar amended biore-

mediation of heavy metal(loid)s (both under laboratory conditions and in field scale) have been 
conducted in the short term, which poses an interrogation on the long-term effectiveness. In fact, 
it could be expected that, due to aging processes, the ability and capacity of biochar to seques-

ter heavy metal(loid)s decreases with time. More research is needed to understand the aging 

process in biochar. In addition, the degradation of biochar may not be avoided, and the deg-

radation rate may vary greatly depending on feedstocks and pyrolysis conditions. It is still 
unclear which factors, e.g., feedstock type, pyrolysis conditions, or soil properties, determine 

the long-term stability of biochar. Thus, well-designed, large-scale and long-term field trials 
will be essential to evaluating the feasibility and stability of biochar amended bioremediation.

6.3. Elucidation of the mechanisms of biochar-assisted bioremediation

It is urgent to explore and improve the understanding of mechanisms involved in the biochar 
amended bioremediation of heavy metal(loid) contaminated soils. Biochar-induced changes 

in the soil ecosystem must be clarified before broad application, including the interactions 
among biochar, soil components, and soil microbial communities and plant roots. Until now, 
very few studies have been reported to systematically evaluate the joint application of biochar 

with phytoremediators under laboratory conditions or in field scale. For examples, although 
various approaches have been developed to remediate Pb contaminated soil, in which soil 

amendments with biochar for phytoremediation are the most suitable, practicable, and publi-

cally acceptable, but this practice still have some constraints due to the insufficient informa-

tion to understand the immobilization processes. For other cationic metal(loid)s, biochar seem 

not work well in the phytoremediation of either acid or alkaline soils in some cases. In this 
case, without full understanding on the impacts of biochar on phytoremediators, this can 

result in an overestimation of heavy metal(loid) extraction and stabilization.
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7. Conclusion

Biochar amended bioremediation is one of the important remedial technologies to remedi-

ate heavy metal(loid) contaminated soils. The biochar-enhanced phytoremediation has great 

potential to immobilize cationic heavy metal(loid)s in mine wastes and tailing soils, particu-

larly those with high acidity. Biochar can reduce the bioavailability and leachability of cat-

ionic heavy metal(loid)s in soils, and improve the soil fertility and revegetation, and create 

a suitable environment for soil microbial diversity. However, the application of joint bio-

char and phytoextraction may be only capable of remediating the multicontaminated arable 

soils with low contamination levels, because biochar seems to be less effective to stabilize 
the potentially toxic cationic metal(loid)s such as Cd that have a high mobility in soils. 

In addition, it is important to select appropriate biochar so as to develop effective strategy 
to immobilize anionic metal(loid)s in situ. Furthermore, more thorough studies are needed 

to evaluate the efficiency of biochar amended bioremediation of highly contaminated alka-

line soils. Future research should be performed with focuses on: illustrate the correlations 

among pyrolysis feedstocks, physic-chemical properties of biochar, and soil bioremediation; 

evaluate the biochar stability and its influence on fate and transport of metal(loid)s in mining 
tailings and soils on a large timescale; and understand the mechanisms of biochar-assisted 

bioremediation, especially involved in the interactions among biochar, soil particle, and soil 

microbial/plant roots, which is the key point for the development of cost-effective remedia-

tion strategies.
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