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Abstract

Most of the current knowledge concerning fundamental genetic mechanisms, evolution-
ary processes and development, cellular physiology, and pathogenesis comes from stud-
ies of different animal model systems. Whereas mice, rats, and other small mammals 
are generally thought of as the typical model systems used by researchers in biomedi-
cal studies, aquatic models including both freshwater and marine organisms have long 
proved to be essential for the study of basic biological processes. For over a century, 
biologists have used the sea urchin embryo as a prototype for the investigation of devel-
opmental mechanisms that contribute to building the embryo body plan. Here we high-
light the contribution of the sea urchin embryo as a simple model for studying aging 
and age-associated neurodegenerative diseases, as well as the pathways and mechanisms 
involved in cell survival and death. Moreover, we point out the role of this embryonic 
system as a potent and affordable tool for learning about developmental effects and toxic-
ity responses to environmental contaminants and chemical compounds.

Keywords: embryonic model system, developmental effects, neurodegeneration, 
senescence, chemical compound assays

1. Introduction

Sea urchins are well-studied marine organisms belonging to the Echinoderm phylum. Since 
the mid-nineteenth century, the amazing transparent sea urchin embryo has been one of 

the favored animal models for descriptive experimental work on embryo development. 
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Afterward, it has been used for studying intercellular communication and cell adhesion [1–3], 

cell cycle control mechanisms [4], calcium signaling [5], fertilization [6], cell differentiation [7], 

and cell survival and death [8].

Added benefits of this system are low maintenance costs, small size, high fecundity, and the 
transparency of embryos, features that allow the direct observation of cell division and move-

ment inside the living embryos and larvae. Moreover, as invertebrate species, sea urchins are 
not subject to restricted animal welfare concerns. Notably, this trait meets the strategy of the 
European Partnership for Alternative Approaches to Animal Testing for the development of 

alternative approaches to using animals in biological assays.

Studies on different sea urchin species have, indeed, identified maternal molecules which are 
spatially restricted and involved in the determination of cell fate [9–12], molecular mecha-

nisms that respond to cellular stress such as heat shock [13–15], apoptosis [16], and autophagy 

[17]. More recently, researchers have used sea urchin embryos as a model for elucidating the 
role of cellular and molecular mechanisms involved in human health and disease. The poten-

tial of using the sea urchin as a model for disease research relies on the fact that general cel-

lular properties are common to many organisms. The complete sequencing of the sea urchin 
genome has also revealed that sea urchins are more closely related to humans than other 

invertebrates [18, 19], including the model organisms D. melanogaster and Caenorhabditis ele-

gans which are commonly used as disease models. Research on the sea urchin animal model 
now extends over a wide range of areas, such as immunology, microbiology, pathology, toxi-
cology, and microbiology.

Recently the sea urchin embryo has played an important role as a model in the study of neu-

rodegenerative disorders that can cause dementia and memory loss. This is possible because 
of the presence of a larval nervous system that arises during gastrulation within the ectoderm 

of the embryo [20]. Later, a set of neurons and neurites begins to be present in the structure 
called the ciliary band. Several clusters of neurons with associated neuropil are organized in 
ganglia, the largest of which is the apical organ of the larva, composed of some bilaterally 

positioned sensory cells containing serotonin. Thus, dysfunction in the cellular processes of 
these cells can be compared to what occurs in human neurons during pathological dysfunc-

tions. In neurodegenerative disorders, such as Alzheimer’s disease, neuronal loss occurs due 
to a buildup of a particular protein called Amyloid beta (Abeta) that, in this pathological 

condition, is misfolded and prone to aggregating, forming fibrils and plaques [21]. Abeta is a 
peptide derived from the proteolysis of a membrane-spanning precursor protein called amy-

loid precursor protein (APP); to strengthen the view that sea urchins can be utilized in these 

studies, an antigen related to human APP was identified [22, 23].

Another interesting opportunity presented by sea urchins is the possibility of gaining new 

insight into aging mechanisms. Aging is a multifactorial process, and many theories, such 
as telomere loss, oxidative stress, and free radical theories, have been proposed to explain 
this phenomenon at the molecular, cellular, systemic, and evolutionary levels [24]. Some 
reports indicate that different life spans have been found for different sea urchin species rang-

ing between few years and 100 years. The sea urchin Strongylocentrotus franciscanus, indeed, 

shows a negligible senescence with decreased mortality and retained reproductive capacity 
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for a long time [25]. In contrast, Lytechinus variegatus has an estimated life span of only 4 years 

[26], while Strongylocentrotus purpuratus has an estimated maximum life span of more than 
50 years [27]. Thus, to study sea urchin species with different life spans could be relevant for 
understanding mechanisms involved in aging.

Animal models also give an invaluable contribution to our knowledge of all biological aspects 

and processes, including the discovery and development of new chemical compounds by 

studying their properties and functions. The researcher’s first choice is often to select mod-

els that are highly similar in biology and physiology to humans, although a combination of 

experimental data from different models can be more informative than those from a single 
organism, even evolutionarily closer. In vivo high-medium-throughput assays using small 
aquatic model organisms provide significant advantages for bioassay development, generat-
ing molecular and physiologically relevant responses. Among them, the sea urchin embryo is 
considered a valuable model to test and assess the safety of biomolecules, even those devel-

oped for therapeutic purposes [28–31] but also to discover basic molecular mechanisms and 

gene regulatory networks with which they may interfere.

In this chapter, we describe the role of the sea urchin embryo in studies of aging and age-
related neurodegenerative disorders. Furthermore, we provide an update and underline the 
relevance of this model for assessing the developmental responses and/or toxicity effects of 
small molecules, many of which are used for medical purposes.

2. The sea urchin as a tool for studying neurodegenerative disorders

Neurodegenerative diseases are defined as hereditary and sporadic conditions, which are 
characterized by the progressive dysfunction of central or peripheral structures of the ner-

vous system. These disorders are often debilitating disorders affecting memory, learning, 
skilled movements, and feelings. They include common diseases such as Alzheimer’s dis-

ease (AD) and Parkinson’s disease (PD) and rarer disorders such as multiple sclerosis, amyo-

trophic lateral sclerosis (ALS), Huntington’s disease (HD), spinocerebellar ataxia, and prion 
diseases. Even though their clinical manifestations and symptoms are completely different, 
neurodegenerative disorders share some common features, such as their appearance with 

aging, neuronal loss and synaptic anomalies, and mainly the presence of cerebral deposits 

of misfolded protein aggregates [32]. Although the presence of extracellular deposits is a 
common feature of these diseases, the protein component and distribution of the aggregates 

are specific to each pathology. Thus, for example, β-amyloid is the main component of the 
deposits in AD, α-synuclein in PD, and polyglutamine-rich in HD, and the accumulation of 
the protease-resistant aggregates of the prion protein (PrP) is present in the diverse forms 

of transmissible spongiform encephalopathy. The presence of abnormal aggregates in dam-

aged regions of the brain is due to protein misfolding, which is one of the main causes of 

neurodegenerative diseases. Generally, the specific native protein is mainly composed of an 
unordered α-helical structure, but in the pathological condition, it is misfolded in a β-sheet 
structure that aggregates to form ordered protofibrils, fibrils, and plaques. Today, it is widely 
accepted that small oligomers, rather than compacted aggregates deposited in the brain, are 
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the real causes of  neurodegeneration [33, 34]. However, regardless of the different sizes of 
aggregates, the induced toxicity leads to different cellular dysfunctions that culminate in the 
neuronal apoptotic process, though the mechanism by which protein misfolding and aggre-

gation trigger neurodegeneration is still unclear. Since molecular mechanisms and basic 
pathways are conserved during evolution, the use of a simple model system can help us to 

understand the derived dysfunction and the pathways affected by a specific insult. Among the 
neurodegenerative diseases, AD is a pathology that is rapidly increasing with longer human 

life expectancy. AD is, indeed, the most common cause of dementia in elderly people and 
typically begins with subtle and weakly recognized failures of memory and slowly becomes 

more severe. It leads to the progressive loss of mental, behavioral, and functional abilities. 
The pathological hallmarks in the AD brain present two different abnormal structures, extra-

cellular amyloid plaques, composed of amyloid-β (Aβ) peptides, and intraneuronal neuro-

fibrillary tangles, composed of hyperphosphorylated tau [21]. Amyloid-β peptides (Aβ) are 
proteolytic fragments of 40–42 amino acids, derived from the transmembrane amyloid pre-

cursor protein (APP), whereas tau is a brain-specific, axon-enriched microtubule-associated 
protein. Depending on cellular conditions, Aβ is misfolded, and the establishment of ordered 
structures rich in β-sheet, prone to self-assembling, produces aggregates typical of amyloid 
assemblies. For a long time, large aggregates of Aβ, found in amyloid plaques, have been 
considered the major cause of neuron damage and degeneration in AD. Recent studies have, 
instead, demonstrated that Aβ soluble oligomers, also known as Abeta-derived diffusible 
ligands (ADDL), are the more toxic form [35]. The combination of biochemistry, molecular 
and cell biology, and systems biology has been utilized for understanding some of the main 

molecular mechanisms leading to AD onset, but other efforts and knowledge are required. 
AD is probably caused by complex interactions among multiple genetic, epigenetic, and envi-
ronmental factors; thus, interdisciplinary approaches leading to the identification of useful 
biomarkers are necessary for the development of suitable drugs for prevention and treatment.

In this scenario, how can a simple model system help AD neurodegeneration research? What 
questions can we ask and what answers can we have from a simple model system? For this 
aim, the first issue to be addressed is to obtain evidence that Aβ induces toxicity on the chosen 
model system. As mentioned earlier, the sea urchin is a suitable model system to test effects 
induced by chemical or natural toxic agents on biochemical pathways and embryo morphol-
ogy. The sea urchin has a primordial nervous system, and the same neurotransmitters used 
in embryonic development are conserved between sea urchins and the mammalian brain. The 
sea urchin embryo, indeed, synthesizes, stores, and releases acetylcholine (Ach) and other 

neurotransmitters and possesses analogous receptors and downstream signaling cascades, 
all of which appear over a well-defined developmental period and act as morphogens in con-

trolling cell differentiation and embryo and larva assembly [36]. Furthermore, under specific 
stimuli, the sea urchin embryo triggers apoptosis [16], the death mechanism by which neu-

rodegeneration occurs (Figure 1). Studies from different laboratories have utilized two sea 
urchin species, Paracentrotus lividus and Sphaerechinus granularis, to test Aβ toxicity.

By using the sea urchin as model system, one of the first questions to be addressed was to 
establish if different structural Aβ species have the same toxicity. To this aim, it was pro-

duced a recombinant Aβ
42

 peptide by using the pQ30 expression vector [37]. Different sizes 
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of aggregates, either small oligomers or larger aggregates, were obtained upon dissolving 

the recombinant Aβ
42

 under different pH conditions (7.2 or 3, respectively); different ionic 
strengths, indeed, change the kinetic of oligomer formation. By using a light scattering 
instrument, it was established that at pH 7.2, small Aβ

42
 species were present in solution; 

in contrast, at pH 3, larger aggregates were detected. To define a structure-toxicity relation-

ship, Aβ
42

 was dissolved in the two solutions and administered, in different concentrations, 
to a two-cell-stage embryo culture of Paracentrotus lividus. Under these conditions, embryos 

were allowed to develop until controls had reached the pluteus stage, and different percent-
ages of surviving or degenerating embryos, with respect to the controls, were observed. 
After only 4 h of embryo development, morphological defects in the cell membrane were 

observed. After 1 day of development, instead, retardation of embryo development as well 
as cellular disorders visible inside the blastocoele was detectable. After 48 h of develop-

ment, cellular degeneration in two different pathological phenotypes, the occluded blastulae 
and the occluded prism, was present [37]. In general, small oligomers were more toxic than 
larger aggregates, in agreement with the discovery that small ADDLs are highly toxic [35], 

indicating that the Aβ
42

 state of assembly appeared to influence its biological activity. Based 
on the obtained results, it was supposed that more diffusible small oligomers could be more 
easily internalized than larger aggregates in the developing embryo, producing cellular and 

molecular dysfunction. Thus, the sea urchin was a suitable in vivo organism for Aβ
42

 toxic-

ity studies and could be used as an indicative tool for the pharmacological evaluation of a 

therapeutic agent.

Regarding Aβ
42

 toxicity, another group identified both the critical periods in which different 
types of anomalies are induced by Aβ

42
, and the protective role played by acetylcholine and 

other neurotransmitters such as serotonin and cannabinoids [38]. The sensitivity to Aβ
42

 is 

Figure 1. Sea urchin embryos have neurons and neurites, and respond to classical mechanisms involved in 

neurodegeneration processes, such as apoptosis or oxidative stress. P. lividus gastrula and pluteus stage embryos 

are depicted. (A, D), nuclei of pluteus and gastrula stage embryos are stained with Hoechst 33258; (B), late-stage 
larva stained with anti U-295 antibody (kind gift of Dr. David R. McClay) that specifically recognizes neurites at the 
ciliary band; (C) reactive oxygen species detected by a fluorescent dye in a pluteus stage embryo.
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greatest when the peptide is introduced at the mid-blastula stage, in a particular period called 

“mid-blastula transition,” when new genes become expressed by the embryonic genome. 
Thus, the neurotoxic effects of Aβ are associated with changes in gene transcription. Further, 
the morphological changes correspond to a level of toxicity indicating that sea urchins pro-

vide a system that allows for the rapid screening of potential therapeutic interventions [38]. 
Furthermore, the morphological anomalies were inhibited by the addition of lipid-permeable 
analogs of acetylcholine (arachidonoyl dimethylaminoethanol), serotonin (arachidonoyl sero-

tonin), and cannabinoids (arachidonoyl vanillylamine), indicating that they can prevent the 

neurotoxicity associated with Aβ and be used for therapies that enhance cholinergic function, 
as well as for AD.

By using S. granularis, the effect of a specific 15-amino acid sequence (NWCKRGRKQCKTHPH) 
placed in positions 96–100 within the extracellular domain of the APP protein (APP

96–110
) was 

evaluated and compared to that of Aβ
42

 [39]. This fragment corresponds to a proteoglycan-
binding domain that specifically controls neurite outgrowth and other aspects of neurode-

velopment [40]. Sea urchin embryos at the 2–4 cell stage, blastula stage, or at late gastrula to 
early pluteus stages were treated with the two peptides, with or without neurotransmitters or 
neurotransmitter-related agents, and embryonic malformations were observed. With respect 
to Aβ

42
, APP

96–110
 had a weaker effect in disrupting development, requiring higher concentra-

tions to produce the same malformations caused by Aβ
42

. APP
96–110

 was dangerous only within 

a defined window of vulnerability corresponding about to the mid-blastula stage, whereas 
Aβ

42
 had adverse effects from early cleavage to the pluteus stage [39]. For both peptides, 

developmental anomalies were prevented or reduced by the addition of neurotransmitters. 
This finding indicated a role for APP in development and identified specific interactions with 
neurotransmitter systems that act as morphogens in developing sea urchins as well as in the 
mammalian brain.

3. The APP gene is conserved in the sea urchin genome

As mentioned above, Aβ is a peptide derived from a multiple proteolytic cleavage at the 
C-terminal position of a large transmembrane protein called APP [21]. To validate the sea 
urchin embryo as a model system in the study of Aβ-induced toxicity, it was necessary to 
demonstrate the presence of an antigen related to human APP. APP is a protein conserved 
during evolution, and APP-related genes have also been found in less evolved organisms, 

such as Drosophila melanogaster and the worm Caenorhabditis elegans. This suggested that 
common mechanisms and responses to pathological stimuli could be conserved [41–43]. 
Thus, the possible presence of an antigen related to APP in sea urchins was investigated. 
For this aim, the presence of APP was examined in proteins extracted from gastrula stage 
embryos and pluteus larvae at 48, 120, and 288 h of development [22]. The choice of these 
developmental stages was based on the moment at which a primordial nervous system 

appears. The sea urchin larval nervous system consists of an array of neurons that control 
swimming and feeding, and a more defined organization begins to be present at the late 
gastrula stage [20].
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The presence of an antigen related to APP, called Paracentrotus lividus APP (PlAPP), was 

detected, and in addition, a fragment of lower molecular weight was identified at late plu-

teus stage, suggesting that after the gastrula stage, a portion of the PlAPP was proteolytically 

cleaved, producing a peptide as occurs in higher organisms. Immunofluorescence colocaliza-

tion experiments with serotonin, a neuronal antigen, confirmed that PlAPP was present in sea 

urchin primordial neurons [22]. Furthermore, clear proof of the presence of a gene encoding 
for PlAPP was obtained by cloning and sequencing a full-length cDNA.

Subsequently, the possibility that P. lividus embryos could trigger different apoptotic path-

ways was investigated after stimulation with Aβ aggregates of different sizes. Aβ-induced 
apoptosis generally occurs through caspase-dependent pathways, even if caspase-indepen-

dent pathways have also been described [44, 45]. In sea urchin embryos, apoptosis is never 
found during cleavage stages. It begins to manifest between the early blastula and late gas-

trula stages [16, 46]; thus, we performed apoptosis analysis only in embryos after the gastrula 

stage. In light of this evidence, Paracentrotus lividus embryos at the two-cell stage were incu-

bated with small oligomers or fibrillar aggregates and cultured until the controls arrived at 
gastrula and pluteus stages [22]. By microscopic inspection, a higher percentage of malformed 
or dead embryos was observed upon treatment with Aβ oligomer forms with respect to the 
Aβ aggregate forms. By TUNEL assay, apoptosis on surviving embryos treated with the dif-
ferent aggregation forms was detected. In addition, it was found that aggregates employed an 
exclusively extrinsic apoptotic pathway via caspase 9 activation, whereas oligomers activated 
both extrinsic and intrinsic apoptotic pathways via caspase 9 and caspase 8, respectively. 
These findings suggested that a part of the smaller soluble oligomers was able to penetrate 
the cells and produce mitochondrial damage that activated caspase 9. In contrast, other oligo-

mers could attach to a neuron surface-specific binding site and, perhaps, seed the aggrega-

tion process, mimicking what occurs in human pathology. In summary, these studies of the 
sea urchin embryo give information about the possibility that small oligomers may cross the 

membrane and penetrate the intracellular environment. This appears to be in agreement with 
biophysical and modeling studies that have demonstrated the ability of Aβ to interact with a 
lipid bilayer due to its obliquity and hydrophobicity [47].

4. Species-specific sea urchin longevity and senescence

Aging, also called senescence, is the process of becoming older. The term is particularly used 
to refer to humans, but all living organisms generally share this process. It is a well-defined 
biological route characterized by a progressive functional decline and increasing death over 

time. Because aging and life span characteristics diverge extremely between similar species, 
it has been believed that intrinsic organism life span is genetically determined and developed 

through an evolutionary process similar to the one that determines other species-specific 
characteristics. Furthermore, many theories have been proposed to explain this phenomenon 
at different levels such as loss of telomeres or enhanced free radical generation [24]. Telomeres 
are chromosome regions made up of repetitive sequences which function to protect chro-

mosome deterioration. During aging, telomeres become shorter, and their attrition can be 
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 counteracted by telomerase activity. Thus, telomere attrition contributes to aging. The free 
radical, or oxidative stress, theory of aging, instead, proposes that the accumulation of oxi-
dative cellular damage is a major contributor to the aging process and a key determinant of 

species longevity. The latter, referred to especially long-lived members of a population, is 
the challenger of aging. Studies on human longevity suggest that some of it is attributable 
to genetic factors and the rest is influenced by epigenetic and environmental factors [48]. 
Lifestyle and nutrition influence longevity at all stages of development and levels of human 
diversity [49, 50].

However, there are a number of different animals that show slower senescence, with decreased 
mortality and no reduction in reproductive capacity, no increase physiological dysfunction, 

and increased disease resistance with age [51, 52]. The study of these animals may furnish 
new insights about effective defenses against the degenerative process of aging. The sea 
urchin offers an ideal model to investigate mechanisms of longevity and reduced senescence. 
Different species of sea urchins, indeed, have very different natural life spans, ranging from 4 
to more than 100 years, thus providing a unique model to investigate the molecular, cellular, 

and physiological mechanisms underlying both life span determination and negligible senes-

cence. As told before, the species Strongylocentrotus franciscanus lives in excess of 100 years 
[25, 53]; L. variegatus has a life span of only 4 years [26], while S. purpuratus has an estimated 

life span of more than 50 years [27]. Identification of molecules involved in specific pathways 
that could be activated or inhibited in species with different longevity may provide insight 
into mechanisms involved in senescence. Thus, sea urchins represent an interesting alterna-

tive model for aging research [52]. To demonstrate that the red sea urchin, S. franciscanus, is a 

long-lived organism, some studies were carried out in two different localities of Washington 
State, USA [53]. By using a chemical marker, tetracycline-HCl, that binds to calcium ions and 
becomes incorporated into the skeleton during calcification [54], growth rates were deter-

mined. Further, since aging can be defined as the time-related deterioration of the physio-

logical functions necessary for survival and fertility, these parameters were analyzed. Some 
individuals were tagged, and diameters (diameter test) of all sea urchins and their gonads, as 

survival and fertility parameters, were measured at the time of tagging as well as when col-

lected after a year or more in the field, to establish the size structure of the populations. Gonad 
size, indeed, changes during the seasons, reaching a maximum in spring and minimum in 
summer, and these different sizes are correlated to reproductive capacity.

No decrease in gonad size with respect to the increasing diameter of individuals was found. 
By applying a mathematical model, change in survival and increasing reproductive esteems 

were done, and it was concluded that S. franciscanus shows no evidence of senescence. This 
was in contrast with the disposable soma theory [55], in which generally organisms have a 

limited amount of metabolic resources that have to be used to maintain the reproductive and 

nonreproductive activities of the organism (soma), including the repair of cellular damage. 
Senescence occurs when metabolic resources are exhausted and survival mechanisms, which 
operate throughout life, are altered. The data obtained on S. franciscanus, the long-lived spe-

cies, indicate that it is subject to negligible or slow senescence [51] or none at all. As related 
above, life span differences among different species of the same organism have been found. 
This means that the biological changes leading to senescence occur at different ages, and 
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 comparison among long-lived (S. fraciscanus), intermediate-lived (S. purpuratus), and short-

lived (L. variegatus) species could give new insights regarding the molecules, mechanisms, 

and key cellular pathways involved in life span determination and aging.

With the aim of finding the biomarkers involved in the longevity/senescence process, a pro-

teomic study has been carried out using coelomic fluid of the three sea urchin species [56], 

whose age was determined by diameter test. Similarly to the blood, the coelomic fluid of 
sea urchins contains a miscellany of cells and macromolecules that provide essential func-

tions such as nutrient transport as well as immune and clotting activities. Further, it contains 
proteins that are actively secreted as well as proteins released through cell lysis and cellular 

turnover. Proteomic analysis of the three sea urchin species revealed that the ectodomain of 
low-density lipoprotein receptor-related protein 4 (LRP4) was among the proteins that mainly 
increased with age. It has been proposed that since LRP4 is considered to be involved in Wnt 
signaling, the role of Wnt in negligible senescence should be better investigated [56].

5. Senescence and oxidative stress

According to the oxidative stress theory, both of the processes of aging and longevity are reg-

ulated by the accumulation of reactive oxygen species (ROS). ROS are partially reduced deriv-

atives of oxygen that are highly reactive with major cell components such as proteins, lipids, 
and DNA, causing their damage. Many physiological cellular processes generate ROS, but 
others are produced by exposure to various external stimuli, such as ultraviolet light, ionizing 
radiation, and environmental toxins. Oxidative stress results from an imbalance between the 
production of ROS and the cell’s intrinsic ability to inhibit damage through the production 
of antioxidant molecules or mechanisms that repair or eliminate damaged molecules. Thus, 
it is an imbalance between oxidants and antioxidants in favor of oxidants, which probably 
leads to damage. The existence of sea urchin species with different natural life spans, includ-

ing some species with extraordinary longevity and negligible senescence, represents a model 
to study the accumulation of cellular oxidative stress with age. Oxidative cellular damage, 
antioxidant capacity, and proteasome enzyme activities were measured in different tissues of 
the three sea urchin species with different life spans, L. variegatus, S. purpuratus, and S. francis-

canus [57]. No aged-related change in the marker of oxidative damage was observed in tissues 
of sea urchins with different life spans. Furthermore, levels of 8-hydroxy-2-deoxyguanosine, 
a marker of oxidative DNA damage, measured in cell-free coelomic fluid showed no general 
increase with age. Thus, the results suggested that negligible senescence is accompanied by a 
lack of accumulation of cellular oxidative damage with age; thus, the maintenance of antioxi-
dant capacity and proteasome enzyme activities may be an important mechanism to mitigate 

time-linked damage.

Oxidative stress and mitochondrial dysfunction are the basis of aging and, consequently, to 
neurodegenerative diseases including AD. Thus, the use of natural antioxidants suppressing 
or reducing oxidative stress could be a neuroprotective strategy for blocking cell death. Ferulic 
acid (FA) (4-hydroxy-3-methoxycinnamic acid) is an antioxidant naturally present in plant cell 
walls. It has a phenolic nucleus and a long side chain, so it readily forms a resonance-stabilized 
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phenoxy radical with high antioxidant [58] and anti-inflammatory [59] activities. It has been 
suggested that FA can act as a free radical scavenger [60]. Ferulic acid was used in vitro to 
block damage induced by beta amyloid, in the presence or not of drug delivery systems that 

could improve its transport and release in an in vivo system [61, 62]. P. lividus embryos were 

used as models to test the ability of FA to reduce cytotoxicity induced by Abeta. By morpho-

logical and fluorimetric test, it was possible to demonstrate that FA reduced the number of 
perturbated embryos induced by Aβ

42
 [63]. Under this stimulus, sea urchins induced ROS 

generation and mitochondrial dysfunction, leading to embryo degeneration, and this process 

was counteracted by FA addition. Furthermore, after Aβ
42

 treatment, a modulation of the mol-

ecules involved in the apoptosis process and activated by oxidative stress, such as the tran-

scription factor foxo3a, was observed. In agreement with its antioxidant role, FA was able to 
inhibit the degenerative process through the downregulation of foxo3a. As happens in higher 
organisms, the sea urchin embryo exploits molecules, pathways, and mechanisms involved in 
both survival and death processes.

6. Sea urchin cells and embryos respond to external agents: humans 

exploit their skills!

Echinoderms, together with the Hemichordates, are sister groups of the Chordate phylum 
which includes humans and other vertebrates. As revealed by the analysis of the genome 
of the sea urchin S. purpuratus, the first nonchordate marine deuterostome to be completely 
sequenced [18, 64–66], a significant amount of the sea urchin gene repertoire is genetic mate-

rial exclusive to the deuterostome superclade. Notably, a large part of the human gene cata-

logue, including orthologs of many human disease-associated genes, is expressed in sea 
urchins. Genome drafts, together with transcriptomes and other expression data from sea 
urchins and other Echinoderm species, are available at the SpBase and Octopus websites 
(http://www.echinobase.orghttp://www.echinobase.org/Echinobase/ and http://octopus.obs-
vlfr.fr/, respectively).

A large number of studies have highlighted the power of the sea urchin embryonic system. 
The discovery of conserved gene regulatory networks (GRNs) driving development and mor-

phogenesis has been a milestone in biology. Interactions between sequence-specific DNA bind-

ing molecules and DNA regulatory regions, together with signaling interactions and cofactors, 
control transcription and gene spatial temporal and expression [67–71]. Development, cell-type 
specification, and differentiation depend on these hardwired processes. A canonical and wide-

spread developmental event, the embryonic epithelial mesenchymal transition (EMT), has been 

intensely studied in sea urchins. Primary mesenchyme cell (PMC) ingression during embryo-

genesis is evolutionarily conserved and is an excellent model of EMT in vivo [72, 73]. In humans, 
reactivated EMT drives organ fibrosis and tumor progression [74–76]. The approach to the 
identification of the GRN and subcircuits controlling EMT in sea urchin embryos constitutes a 
beautiful example of the strength of this system, as an excellent model system for the analysis 
of the transcription factors controlling EMT [77]. In addition, more traditional approaches have 
helped to discover networks and signaling pathways and even highlight the contribution of 

single molecules participating in embryo patterning along the embryonic axes [78–86].
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The US National Institutes of Health has designated the sea urchin embryo as a model system 
helping to explain processes related to human health and disease [18]. Medical research and 
studies on environmental contaminants rely on the development of simple and affordable 
bioassays in cell systems and model organisms. These experimental activities are essential to 
elucidate mechanisms through which chemical compounds may exert their effects. Sea urchin 
embryo assays show high sensitivity and experimental reproducibility, providing rapid evi-
dence of gamete abnormalities, developmental defects, and molecular changes in gene tran-

scription and signaling pathways involved in constructing the embryo. The activity of several 
chemical compounds has been evaluated using sea urchin embryos along their early develop-

mental stages, allowing the use of hundreds or even thousands of embryos in single screens. 
The high-throughput properties of this system benefit from the large amount of molecular 
and evolutionary data in the literature joined to the availability of powerful molecular tools 

that researchers of the sea urchin scientific community exchange each other [87].

Sea urchins express gene families that participate in response to environmental stressors. A 
genome-wide survey of the chemical defense gene network in S. purpuratus revealed around 

400 genes, whose products contribute to the response to environmental stressors and cellular 

homeostasis. They include genes encoding for cytochrome oxidases, conjugating enzymes, 
ATP-dependent efflux transporters, oxidative detoxification proteins, and transcription fac-

tors involved in their regulation, many of which are expressed during embryogenesis. A great 
part of this repertoire is extraordinarily conserved during evolution [88, 89].

Members of the ATP-binding cassette (ABC) superfamily transport-specific molecules and sub-

strates across membranes and mutations in these genes contribute to several human genetic 

disorders [90]. In sea urchin embryos, efflux transporter genes act as a first line of defense 
against toxic xenobiotic compounds; their expression is upregulated after fertilization [91], 

and this process is accomplished with relatively small energy costs [92, 93]. Cytochrome P450 
family (CYPs) enzymes catalyze the oxidation of many xenobiotics, environmental chemi-
cals, and drugs and protect the embryo from toxicants. Cytochrome P450-dependent oxidase 
activities have been used as potential markers for the assessment of environmental quality in 

marine areas, using different Mediterranean species including the sea urchin P. lividus [94].

In the sea urchin embryo, inducible forms of the heat shock proteins HSP70 (HSP70/HSP72) 
mainly mediate the cellular stress response. In sea urchin embryos, HSPs were first identi-
fied after heat treatment [14], although their expression has also been induced by heavy met-
als [95], UVB radiation, and other environmental pressures [96, 97]. It has been shown that 
proteins involved in stress responses cross talk with the immune signaling pathways [98]. In 
contrast to mammals that use both adaptive and innate immune responses, sea urchins only 

developed innate immune functions, as testified by the presence of an immune system with a 
rich repertoire of recognition receptors, regulators, and effectors [99]. This complex repertoire 
provides a nonspecific response to infection and/or injury [100, 101]. Immune receptor genes 
include molecules participating in the recognition of pathogens. Toll-like receptors (TLRs) and 
the echinoid-specific 185/333 gene family are expressed in different classes of adult immune 
cells, known as coelomocytes, while NACHT domain-LRR (NLR) cytoplasmic receptors have 
been found in the gut epithelium. Another expanded gene family present in the sea urchin 
genome encodes for the scavenger receptor cysteine-rich (SRCR) proteins [89, 102–104]. The 
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expression of many of these factors is also activated during the larval stages and is medi-
ated by a heterogeneous set of specialized immune cells [105, 106]. The adaptive behavior of 
the powerful sea urchin immune cells and the modifications of their parameters have been 
recently used as tool for monitoring disease susceptibility and to establish water quality stan-

dards and for nano-safety/nano-toxicity analyses [107–109]. In comprehensive review articles 

about the use of sea urchin embryos for assessing the toxicity of environmental contaminants, 
the chemical and physical effects of stress during development or in adults are reported in a 
thematic book focused on the molecular marine biotechnology of Echinoderms [110].

Methods for assessing pharmaceutical and pollutant embryo toxicity and teratogenicity in sea 
urchin embryos have been developed in sea urchins, indicating that gametes and embryos 

function as sensitive indicators of environmental toxicity and mutagenicity. Several biologi-
cal endpoints can be simultaneously evaluated [111, 112], and the long history of sea urchin 

developmental biology has enormously contributed to these studies.

Teratogenic effects of lithium on sea urchin embryos were first reported more than one cen-

tury ago [113]. After treatment with LiCl, sea urchin embryos developed as exogastrulae, 
characterized by an increase in endoderm and mesoderm tissues at the expense of ectoderm. 
The most visible sign was the alteration in the balance between animal and vegetal regions, 

with an abnormal and exaggerated presence of vegetally derived cells [114, 115]. It was later 
shown that embryos cultured in high Li+ concentration delayed the cell cycle, arresting cells at 
metaphase and at cytokinesis, and that lithium affected the phosphoinositide cycle [116, 117]; 

this block was, in fact, reversed either after removing lithium or by counteracting its effects by 
adding myoinositol [118, 119]. Molecular analyses have added information on the properties 
of lithium, which shift the border between the vegetal and animal embryonic regions. Lithium 
dramatically increased the expression of vegetal-specific molecular markers [120], even in iso-

lated animal caps [121], and restricted the expression domain of the hatching enzyme toward 
the animal pole [122, 123]. Lithium, which has been successfully employed in the treatment 
of bipolar disorders [124], mimicked the activation of Wnt/beta-catenin signaling, producing 
embryonic phenotypes similar to those elicited by GSK3β inhibition [80]. More recently, it has 
been reported that sea urchin female gametes had enhanced sensitivity and embryo develop-

ment was more affected when LiCl was applied before rather than after fertilization [30].

The metallic element nickel perturbs the sea urchin embryo dorsoventral axis, altering the 
commitment of ectodermal cells. Embryos treated with NiCl

2
 showed an overrepresentation 

of oral (ventral) ectoderm cells, causing an increase in the expression of the oral ectoderm-
specific markers EctoV and Orthopedia [125, 126].

The effects of specific inhibition of the epidermal growth factor receptor (EGFr) are another 
example of the strength of sea urchin embryonic assays to analyze perturbations at cellu-

lar and molecular levels. EGFr inhibition by Tyrphostin AG1478 determined the decrease of 
mesoderm and endoderm marker expression, the ectopic distribution of the ectoderm-specific 
hatching enzyme, and the reduced level of β-catenin nuclearization; effects on development 
were mediated by the MAPK-ERK signaling pathway. The addition of TGF-alpha ligand of 
EGFr to AG1478-treated embryos completely rescued the embryonic phenotypes either at 
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early or late developmental stages, indicating that the effects of this compound were EGFr-
specific (Figure 2). Furthermore, AG1478 negatively controlled the expression of the EMT-
linked transcription factors Snail and ScratchX/Snai2 and inhibited primary mesenchyme cell 

specification and EMT [31, 127].

The sea urchin embryo has also been used as model for the assessment of antiproliferative, anti-

mitotic, and cytotoxic effects of small molecules. Due to the structural and functional similarities 
of tubulins among species, including sea urchins [128–130], a number of chemical compounds 

Figure 2. Effects of EGFr inhibition and developmental rescue by TGFα. (A,B) 48 h pluteus stage embryos treated with 
10 μg/ml AG1478 from fertilization or from hatching blastula stage, respectively. (C, D) Embryos co-treated with 10 μg/
ml AG1478 and 80 ng/ml TGFα. (E) Plutei after treatment with 80 ng/ml TGFα; (F) control plutei.
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have been screened for their antimitotic and microtubule-destabilizing activity. The specific 
effects on embryo development and the swimming behavior of P. lividus embryos allowed the 

identification of chemical agents with specific tubulin destabilizing effects [131–134].

The sea urchin embryo, from fertilization to late embryonic stages, was the subject of several 

assays aiming to test antitumoral and antiepileptic compounds such as doxorubicin, retinoic 
acid, phenytoin, valproate, and tamoxifen. Straightforward, reproducible morphological 
analyses demonstrated that sea urchin embryos function as a simple, specific, and sensitive 
biological factory for developmental toxicology experiments [135–138]. Reports describing 
the toxic effects of chemicals, pharmaceuticals, insecticides, pesticides, and other environ-

mental contaminants on sea urchin embryos and adults have been recently published [112, 

139–143]. Investigators in marine research have paid particular attention to the fast growth 
of submicroscopic materials contaminating marine and coastal ecosystems and have ana-

lyzed biochemical and histochemical markers of toxicity, taking advantage of the sensitivity 
of sea urchin gametes, embryos, and adult cells [144]. Recently, researchers have developed 
new computation methods and a new toxicity index, integrating the frequency of abnormal 
embryos obtained after treatment with marine waters and sediments with the adverse effects 
observed during development. This approach has been taking advantage of the high number 
of morphological parameters that can be measured in sea urchins [145].

Finally, sea urchins play an essential role in ecology, being part of marine benthic commu-

nities and functioning as grazers and prey [146]. The physiological performance of marine 
organisms in challenging the natural environment is endangered by old and emerging haz-

ards coming from anthropic activities and climate-induced changes [147]. Worldwide, liv-

ing sea urchins, as part of trophic cascades and an important fishery resource, may become 
threatened in the near future. Assessing the adaptive capacity of these organisms, also in the 
context of multi-stressor effects, to function as early warning sentinels is thus of increasing 
interest to researchers and marine organizations, for the management of biological resources 

and ecosystems [148].
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