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Abstract

Pharmaceutical analysis is going through an expeditious progress as the perception of 
‘multivariate data analysis’ (MVA) becomes gradually more assimilated. Pharmaceutical 
analysis comprises a range of processes that covers both chemical and physical assess-
ment of drugs and their formulations employing different analytical techniques. With the 
revolution in instrumental analysis and the huge amount of information produced, there 
must be an up-to-date data processing tool. The role of chemometrics then comes up. 
Multivariate analysis (MVA) has the capability of effectively drawing a complete picture of 
the investigated process. Moreover, MVA reproduces the arithmetic influence of variables 
and their interactions through a smaller number of trials, keeping both efforts and capi-
tals. Spectrophotometry is among the most extensively used techniques in pharmaceuti-
cal analysis either direct (single component) or derivative (multicomponent). In addition 
to these recognized benefits, using chemometrics in conjunction with spectrophotome-
try affects three vital characteristics: accuracy, precision and robustness. The impact of 
hyphenation of spectrophotometric analytical techniques to chemometrics (experimental 
design and support vector machines) on analytical laboratory will be revealed. A theoreti-
cal background on the different factorial designs and their relevance is provided. Readers 
will be able to use this chapter as a guide to select the appropriate design for a problem.

Keywords: chemometrics, experimental design, machine learning strategies, support vector 
machines, pharmaceutical analysis, spectrophotometry

1. Introduction

Nowadays, an enormous amount of information is being generated by the state-of-the art 
analytical instrumentations, an issue that necessitates the presence of a potent data process-

ing approach. Chemometry, a division of science that has seen a major progress in the past 
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few decades, depends on eliciting data and the development of a mathematical model that 
describes the relationship between the response signal and the process variables [1–3]. In 

simple words, chemometrics is the term that is used to describe the case when chemistry, 
biology and other branches of science meet with mathematics and computer science [4]. As 

a multidisciplinary science, chemometrics can be used to resolve many problems beyond the 

boundaries of chemistry, including medicine, pharmacy, environment and other domains of 

natural and applied sciences [5, 6].

Chemometric techniques, including both multivariate data analysis (MVA) and factorial 
designs, play a vital role in analysing systems that are both large and multidimensional, an 

issue that adds to the power of this methodology. Moreover, the growing in complexity from 
the conventional univariate data analysis (one-variable and a single response at a time) to 

multivariate data analysis (more than one factor and a single or multiple responses) is greatly 

reflected on the imperative analytical outcomes, for example, sensitivity and selectivity [7, 8]. 

Additionally, being a versatile approach, application of chemometry can offer several more 
advantages. At the simple level (first order, vector data), samples that cannot be signalled 
using the existent calibration setting can now be effectively modelled. At more sophisticated 
levels (second- or higher orders), and in addition to the accurate determination of the cali-

brated analyte, not only new sample constituents can be identified but also their impact on 
the entire response can be adequately modelled.

Pharmaceutical analysis is experiencing an expeditious growth as the concept of ‘multivariate 
data analysis’ becomes progressively integrated. As being known, pharmaceutical analysis 
encompasses both chemical and physical evaluation of drugs and their dosage forms using 

different analytical strategies. Yet, the common routine in most of analytical laboratories is to 
meditate only one-variable and one response at time. Measuring the impact of this variable 

on the analytical signal is the only source of any generated data [1]. Nevertheless, quality of 
collected information would be significantly improved if the impact of more than one-vari-
able, their linear, second- and third-order interactions on a single or multiple responses was 
defined through an arithmetic model [9].

Incorporation of ‘design of experiments’ (DOE) in any (or all) of the phases of drug develop-

ment would be of a great effect, not only on the quality of data produced, but also on the 
analytical process itself in terms of better understanding and usage of generated data, as well 
as resources preservation.

This chapter focuses on the impact of using hyphenated chemometric-spectroscopic tech-

niques in pharmaceutical analysis. Experimental designs as well as machine learning strate-

gies, as essential parts of chemometrics, will be the main topic of the chapter. The reader does 
not need to be familiar with the complicated mathematical concepts. Rather, and for practi-
cality and reader’s advantageousness, a brief on the simple hypotheses needed to get DOE 

straightforward will be revealed.

Distinctive application of chemometrics in the field of drug analysis will be shown as we go 
forward. Material presented throughout the chapter will be of interest to students, chemome-

tricians, drug manufacturers, quality control chemists and pharmacists.
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2. Experimental design

Design of experiments (DOE) is a fundamental part of multivariate analysis techniques. 
However, DOE is comprehended to deal with a limited number of factors (determined accord-

ing to the design used) in comparison to the other multivariate techniques.

Moreover, multivariate methods either bilinear such as partial least squares (PLS) and prin-

cipal component analysis (PCA), or multi-way models such as Tucker-3 and parallel factor 
analysis (PFA), are commonly deemed as supplementary methodologies to DOE. Factors that 

were not considered in the initial set-up of DOE, as well as their effect, can now be recognized 
by the subsequent multivariate techniques [6, 10–12].

The typical scenario for setting DOE starts with deciding upon the experimental objective as 
well as the number of factors to be investigated. The most common objectives can be sum-

marized as follows [13–16]:

• Screening goal: where all factors that might contribute to the response are considered and 
labelled as the main effects. Only factors proved to be significant will be considered for the 
second stage, which is known as optimization or fine tuning. In this phase, levels for each 
factor are adjusted to a narrower range to get the optimum response.

• Response surface goal: where main factors as well as factor-factor interactions (linear, qua-

dratic, etc.) can be determined.

• Optimization goal: the experiment is designed in this case to get the best proportion for a 

factorial blend needed to get the optimum response (minimum or maximum).

Table 1 recaps the rules for selecting a design based on the number of factors and the envi-

sioned goal of the experiment.

Up to now, the conventional approach for investigating the influence of several factors on 
a response depends on fixing the levels of all factors except the one to be investigated. This 
approach is known as one-variable at a time (OVAT). Although still being applied for analyti-
cal method development, OVAT usually confronts several difficulties.

One of the main limitations accompanying this rehearsal is the need for a big number of trials. 

Nevertheless, the resulting delineation of ‘ideal conditions’ and hereafter the system execu-

tion cannot be handled with a high extent of certainty. One reason for that is the absence of an 
evaluation for the variable-variable interactions in the paradigms premeditated using OVAT.

Number of factors Screening goal Response surface goal

Two to four factors Full or fractional factorial designs (FFD) Central composite (CCD) or Box-Behnken 

(BBD) designs

Five or more factors Fractional factorial (FFD) or Plackett-Burman
(PBD) designs

Preliminary assessment using the 

appropriate screening design is required to 
control the number of factors.

Table 1. Design selection rubric.

Factorial Design and Machine Learning Strategies: Impacts on Pharmaceutical Analysis
http://dx.doi.org/10.5772/intechopen.69891

215



Multivariate data analysis (MVA) and its advantages mentioned earlier has the ability to rep-

licate the arithmetical influence of the discrete factors and similarly their interactions through 
a reduced number of experimentations, saving both efforts and resources [16, 17].

The set-up of experimental design then can be viewed as 2–3 phases depending on the num-

ber of factors to be investigated and the objective of investigation: screening, optimization and 

verification.

2.1. Screening

Usually, a consecutive investigation process starts with testing a relatively large number of 
prospective variables. Screening designs then are factorial designs that can be used to get the 

few utmost substantial variables affecting the response, Table 1. Several designs can be used 

for this purpose, which are mentioned the following section.

2.1.1. Two-level full factorial design (2k-FFD)

This design can be used when the number of variables (k) is between 2 and 15. Each variable 
is set at two levels: low (−1) and high (+1). Therefore, for three factors, for example, eight runs 
will be conducted excluding the central points and replicates. Table 2 presents the design 

table when three factors X
1
, X

2
, and X

3
 are investigated using the proposed two-level full fac-

torial design (FFD). Figure 1 shows the pattern of experiments in a design for three factors, 
arrows illustrate the direction of increase of the factors.

2.1.2. Two-level fractional factorial design (2k-p)

Even when the number of factors is small, many runs are needed if an FFD is to be used. For 
example, for five factors, 25 = 32 experiments are needed in the base run only. In case replicates 

are needed and central points are added, the number of runs becomes large and the objective 
of using the DOE to save time and efforts becomes meaningless. The only way out for such a 

Run order X
1

X
2

X
3

1 −1 −1 −1

2 1 −1 −1

3 −1 1 −1

4 1 1 −1

5 −1 −1 1

6 1 −1 1

7 −1 1 1

8 1 1 1

Note: Runs are shown in standard order.

Table 2. A two-level, full factorial design table for three factors.
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case is to cautiously select a fraction (p) of the original runs proposed by the two-level FFD. 
For the previous example (3 factors), instead of performing 16 experiments (8 × 2 replicates) 

and by using a ½ fraction, only 8 runs will be performed in the 2 replicates.

Figure 2 shows a comparison between a full (2k) and a fractional (2k-p) factorial designs used to 

investigate three factors. While eight runs are needed in the first set-up, only four runs will be 
performed in the second arrangement, where main effects are confounded with the two-way 
interactions.

2.1.3. Plackett-Burman design (PBD)

This design has run numbers that are multiple of 4. Using this design allows performing a 
number of trials N = 4n in order to investigate a number of factors f = 4 (n – 1). PBD is an effi-

cient approach when only main or large effects are of interest. In other words, this design can 
detect the most imperative factors affecting the experiment from a comparatively large num-

ber of factors (2–47) and without putting any concerns on interactions and non-linear effects. 
Minitab®, a commonly used software for this purpose, can generate a PBD for up to 47 factors.

PBD, in specific, is one of the commonly used approaches in robustness tests used in method 
validation compared to fractional factorial design, for example. The main reason for selecting 

PBD as a robustness test is that this design focuses only on the main effects, while factor-factor 
interactions are highly confounded with the large main effects, as previously mentioned  [18–21].

Figure 1. Pattern of experiments in a 23 FFD.

Figure 2. A 23 full factorial (left pane) and a 23-1 fractional factorial designs (right pane) for three factors.
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It is noteworthy to mention that, for any of the designs, identification of significant factors can 
be achieved using several tools. Pareto chart of standardized effects, normal and half-normal 
probability plots are among these tools.

2.2. Optimization

After selection of the most important factors from the previous screening process, levels of 

these factors need to be adjusted ‘tuned’ to identify the most suitable variable settings for 
optimizing a response. It is noteworthy to mention that significant factors can be also identi-
fied based on a former knowledge with the process under consideration. Another objective for 
this process is to assess the variable-variable linear interactions as well as the quadratic effects. 
This estimation gives an indication on how the response surface looks like. This approach is 
hence known as ‘response surface methodology (RSM) designs’ [13].

Following the application of a response surface design, graphical representation of the devel-
oped polynomial mathematical model is assembled. Contour plots (2D) or response surface 

plots (3D) are used to graphically envisage the model.

2.2.1. Box-Behnken (BB) design

As a response surface design, BB design can capably determine the first- and second-order 
constants. BB design is simple, and independent with no contribution from a preceding fac-

torial or fractional factorial design. Three levels for each factor are proposed; however, runs 
where all variables at their upper domains or all at lower domains are not included [22]. BB 

design is an economic choice since it involves less design points and hence a fewer number of 
runs compared to other RSM designs.

2.2.2. Central composite (CC) design

Unlike the BB design, CC designs usually contain in-built points from the factorial or fractional 

factorial designs (2f trials) with added centre points that are enhanced with a group of axial 
points (2f trials), Figure 3. Thus to scrutinize a number of factors = f, a number of experiments 

N = 2f + 2f + 1 will be conducted. The design in such a configuration allows the estimation of 
data curvature. Furthermore, due to inclusion of data points from a prior screening design, CC 

design can be used in a consecutive experimental set-up. Classification of CC designs depends 
on the value of alpha (α) or the distance between the axial points and the centre. Three types of 
CC design then exist: circumscribed (CCC), inscribed (CCI) and face-centred (CCF) [1, 13, 23–26].

2.3. Statistical validation

Following the last step, generated models can be statistically assessed using conventional 
approaches such as ‘analysis of variance’ (ANOVA). In this approach, variances are used to 

decide whether the means are different. For ANOVA to be properly conducted, the response 
variable has to be continuous and at least one of the investigated variables is categorical. For 

a factor to be significant, the p-value is usually less than α of 0.05 [1, 23–26].
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Another model-fitting approach is the residual analysis. Residual plots are generally used 
to scrutinize the goodness of fit in regression and ANOVA. Examples of residual plots given 
by Minitab® include normal probability plots, residual versus fits, histograms and residuals 
versus order plots.

3. Support vector machines (SVMs)

SVM is a prevalent classification tool which was proposed by Vapnik [27]. As a kernel-based 

technique, support vector machines (SVMs) have seen a major development in the past 
few years. During such a short period, SVMs have found several applications in pharmacy, 

medicine and drug development industry. For example, SVMs have been used in finding 
the relation between drug structure and its activity ‘structure-activity relationships (SAR)’. 
Moreover, SVMs with a capability of differentiating various drug substrates and classifying 
them as drugs or non-drugs are widely applied in drug design [28]. Fields of applications of 

SVMs extend to chemometrics, biosensors, computational biology and industrial modelling 

processes. Though being famous for the treatment of non-linear data, their application in 

handling linear models is still conceivable [27–32].

Figure 3. Central composite (CC) design for two factors.
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4. Pharmaceutical analysis and chemometrics

As mentioned earlier in this chapter, drug analysis covers all features related to both in- and 

after process (quality control) assay of drug substances. Details of these aspects include pro-

cesses starting with drug synthesis, testing of physico-chemical properties, SAR and mecha-

nism of drug action [28, 33, 34]. Quality control assays include stability testing of both raw 
and formulated drug materials, content homogeneity, solubility and dissolution properties. 

Nonetheless, drug assays are not circumscribed to the pure materials and the dosage forms, 

but the practice extends to include all complicated matrices (biological, foods, drinks, etc.). 

Moreover, analyses do not consider the active constituents only, but also look for the addi-

tives, degradation products and the impurities.

Different analytical techniques have been proposed for the determination of drugs (pure 
form, pharmaceutical formulations, biological fluids, etc.). For established drugs, standard 
analytical techniques can be obtained from compilations such as pharmacopoeias. The pres-

ence of almost daily new produces, however, requires constructing an appropriate analyti-
cal design. This design should inaugurate sufficient data on the analytical process and the 
product of concern. Data obtained should also be valid throughout the entire process of drug 

development and the procedure itself needs to be robust and applicable, when needed, in 
different laboratories.

These specifications do not mean that there is a need for a sophisticated technique such as chro-

matography. Yet, spectrophotometry might be an equivalent choice in the case being linked 
to an arithmetic backbone [16, 35–39]. Both single and multicomponent analyses (derivative 

spectrophotometry (DS)) can be readily linked to chemometry. Furthermore, analysis of a 

single response (e.g. absorbance) or multiple responses (at different wavelengths) can be bet-
ter controlled using mathematical modelling [35–42].

Many challenges face the pharmaceutical analyst especially when trying to develop a new 
analytical method, inaugurate a drug stability study and establish automation into the 

laboratory. Handling these challenges using chemometrics will be revealed in the coming 
subsections.

Spectroscopic techniques have been used for long in pharmaceutical analysis. Ultraviolet and 
visible (UV-vis), infrared (IR), spectrofluorometry and near infrared (NIR) spectroscopy are 

among the most popular techniques in this concern. The application of techniques such as 
spectrophotometry in pharmaceutical analysis, though being simple, rapid, cost-effective and 
suitable for routine analysis, confronts many problems. A major problem that hinders the 
applicability of this technique is the lack of selectivity. Even in the analysis of a mixture of 
two or more components, the inability to select the most appropriate wavelength would have 
a negative impact on sensitivity, selectivity and reproducibility as well. Chromatography, 
though being a well-developed modern technique that is widely used in pharmaceutical anal-
ysis, suffers also from similar glitches. Inappropriate chemical deviations such as peaks from 
the matrix, alterations of mobile phase concentrations, baseline drift and shifts in retention 

times would greatly influence the cogency of the obtained results.
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In both cases (and probably for other analytical techniques), the application of chemometrics 

to interpret the obtained data would be an ideal solution if the approach is able to account 
for all variations in the obtained data as well as get quantitative data from the tested samples. 
In addition, the used approach should be able to reduce the effects of these variations on the 
anticipated response.

In the coming subsections, we will consider the impacts of linking chemometry on pharma-

ceutical analytical techniques. More details will be given in the recent advances that have been 
made in this field and how spectrophotometry in specific has been affected.

4.1. Spectrophotometry

Spectrophotometric techniques are, as mentioned before, among the most widely used 
approaches in pharmaceutical analysis. Direct application of spectrophotometric analysis is 

only possible if the selected wavelength is not affected by another concomitant analyte. As an 
approach, application of spectrophotometry entails a study of a variety of factors affecting a 
single response or multiple responses [37–39].

With the advent of chemometrics, data processing programs and user-friendly software, the 
outdated OVAT approach is being gradually replaced with MVA in the analytical laborato-

ries. In general, in addition to the known advantages of using chemometrics in conjunction 
with spectrophotometry, three crucial performance features are usually assessed with this 
hyphenation; accuracy, precision and robustness.

DOE and SVM are among the widely used chemometric approaches in spectrophotometric 
analysis of drugs and formulations. The main idea behind implementing these chemometric 

techniques is to establish the concept of thinking before doing, arrange and perform a con-

trolled experiment, interpret the obtained results, and hence maximize the efficiency of used 
technique and obtained data. Generally, preservation of resources and conducting the few-

est number of experiments are taken into consideration. This comprehensive knowledge and 
control of the running process are represented by a multi-aspect assembly of input variables 

together with method parameters, in other words, the ‘design space’. The outcome of applica-

tion of ‘design space’ is reflected on a pledge of quality as defined by International Conference 

on Harmonisation (ICH) tripartite rules [43].

As we mentioned earlier, DOE can be used in many stages of the pharmaceutical industry. For 
example, while screening designs can be used at the early stages of method development, optimi-
zation and testing of robustness are used just before the discharge of the finalized product [44].

Several other examples exist in the literature showing the application of DOE and SVM in the 
pharmaceutical industry. For instance, a two-level full factorial design (23-FFD) was used to 
decide upon the most substantial factors in the formulation of ascorbic acid tablets that are 

resistant to oxidative degradation using hydrophilic polymers. Measured responses were the 
tensile strength, disintegration time and the release features of these tablets [45]. In another 

application, Plackett-Burman design was employed to investigate the impact of seven factors 
on the release of theophylline from hydrophilic vehicles. According to the proposed model, 
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12 experiments were performed and a polynomial model was generated. Out of the seven 
variables, only two were proved to be significant [46].

In many cases of drug analysis, chemical pre-treatment of the analyte(s) prior to measurement 

of the anticipated response is sometimes needed. Usually, this preceding treatment would 
serve to correct for lack of sensitivity and selectivity encountered using direct spectropho-

tometry. Practices that are now ordinarily used in this concern are condensation, ion-pairing, 
charge transfer complexation, metal ion chelation, diazotization and redox reactions. With 
this pre-treatment, the process becomes technically more complicated and requires an investi-
gation of a larger number of factors. A compelling solution in this case is provided by chemo-

metrics. The literature now shows a huge amount of records on the hyphenation of factorial 
designs to spectrophotometric drug analysis, compared to the situation earlier.

For example, the Hantzsch condensation reaction was used for the derivatization of sodium 
alendronate, an inhibitor of bone resorption that is commonly used for management of osteo-

porosis, and which does not have any chromophore.  Analysis of sodium alendronate was 
done both in its pure form and in oral solutions. Plackett-Burman screening design was used 
to investigate the effect of seven factors on the absorbance of the resulting condensation prod-

uct. Only four factors were proved to be important and this finding was verified by ANOVA 
testing. Tuning of factors’ levels was done using a circumscribed central composite design 
(CCCD). Moreover, data obtained from the CCCD including both variables and responses 

were treated with Statsoft® software employing artificial neuron network (ANN). A network 
of the multi-layer perceptron type (MLP) that has three hidden layer neurons gave the best 
results. Similarly, data from the CCCD were processed using different SVM kernels. Best 
results were obtained using a radial-basis function (RBF) kernel [37].

Chemical derivatization of midodrine hydrochloride both as per se and in formulations (tab-

lets and oral drops) was performed using the Hantzsch reaction accompanied by a two-level 
24-FFD. Variables proved to be significant (p < 0.05) were warily attuned utilizing a response 
surface methodology (RSM) with a face-centred central composite design. The suggested 
model represented a perfect example for probing the efficiency of factorial designs in opti-
mizing the reaction conditions and maximizing the output [38]. Statistical validation of the 

proposed technique was performed by using ANOVA in two successive steps. Moreover, 
D-optimality design was chosen to minimalize the variance in the regression coefficients of 
the fitted model. Table 3 shows the screened factors and the response domains employing the 
proposed screening design.

A suitable approach in finding the most significant variables for screening designs and the 
optimal locations following an optimization design is usually the graphical representation 
of the data or the generated model. This feature is usually implemented in chemometrics’ 

software such as Statsoft® and Minitab®. The outcome of screening designs is customarily rep-

resented by the Pareto chart of standardized effects, where factors passing the reference line 
are considered significant. Similar conclusions can be drawn using normal and half-normal 
probability plots. Figure 4 shows a Pareto chart showing the significant factors obtained after 
screening of all factors affecting the formation of a charge transfer complex between p-syn-

ephrine and p-chloranil employing a full factorial design.
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Two types of graphs are commonly used to ‘pinpoint’ the optimal conditions; the response sur-

face (3D) and contour (2D) plots. As shown in Figure 5 [39], contour lines are produced when 
points that have the same absorbance are connected. On the other hand, 3D surface plots (figure 
is not shown) provide a stronger idea on interactions compared to contour plots. Both represen-

tations reveal a good matching with the obtained results, employing the polynomial equation.

Analysing one response is a simple task where analysis of each paradigm would merely 
identify zones of anticipated results. Conversely, concurrent optimization of two or more 
responses as a function of n variables is not that plausible. Different strategies are usually fol-
lowed for this purpose; overlaid contour plots and global desirability function are among the 
commonly used approaches [39].

Overlaid contour plots are executed only if few responses are of concern (usually two 
responses). Simply, higher and lower bounds for each response are outlined. Contours for 
response boundaries versus variables under analysis are then displayed. A region that ensures 

both responses is recognized as the ‘feasible’ area [47, 48]. The plot usually shows the fea-

sible regions where compromised optimum values for both responses meet. However, when 
more than one factor is involved and considering more than one response, a large number 

of graphs are requested, an issue that makes the procedure of pictorial observation tiresome. 

Screened factor Symbol Level Maximum absorbance of the product (Y)

Low (−) High (+)

Temperature (°C) X
1

25.0 100.00 0.602

Reaction time (min.) X
2

5.00 30.00 0.495

Reagent volume (mL) X
3

0.10 1.00 0.489

pH of acetate buffer X
4

2.40 5.60 0.493

Response Y Target

Table 3. Screened factors and response domains for a two-level (24) full factorial design (FFD) premeditated for Hantzsch 
reaction (reproduced from author’s own work [38] with permission from the Royal Society of Chemistry).

Figure 4. Pareto chart of standardized effects (reproduced from author’s own work [39] with permission from the Royal 
Society of Chemistry).
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Figure 5. Two-dimensional contour plots for FCCD showing Y1 and Y2 as a function of different variable interactions 
(reproduced from author’s own work [39] with permission from the Royal Society of Chemistry).
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Additionally, the overlaying process is not that practicable as the best regions for each response 

are a bit far from each other.

Derringer function is another approach that can be used in this case. Individual desirability 

for each response is used to calculate the global desirability employing the following function:

  D =  ( d  
1
  r1     d  

2
  r2 …. d  

m
  rm  )    1 ⁄ Σri   =     (   Π  

i=1
  

n

    d  
1
  ri  )     

  1 ___ Σri  
   (1)

where D is the overall desirability, d is the single desirability, r is the significance of each 
response compared to the other and m is the number of responses to be optimized [49, 50]. In 

general, as the value of D gets closer to 1.0000, the desirability of this variable arrangement on 

the proposed response gets higher. Figure 6 shows the desirability function plot following the 
optimization employing an FCCD approach. The horizontal dashed lines represent current 

response values. The vertical solid lines show the optimal value for each variable.

A serious drawback that hinders drawing useful data, either assessable or qualitative, from 
spectrophotometry is the overlapping of absorption bands. This overlapping might be arising 

Figure 6. Desirability function plot for the FCC design (reproduced from author’s own work [39] with permission from 
the Royal Society of Chemistry).
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from the presence of drug or non-drug impurity, the presence of more than one component 

in the target formulation or due to the presence of degradation products. The presence of 

these components in one formulation at unequal concentration levels augments the prob-

lem. A compulsive solution to this problem is using derivative spectrophotometry (DS). This 

approach depends on differentiation of the regular absorption spectrum using arithmetical 
transformation into a first-order derivative or a higher order derivative. Several advantages 
are achieved using DS including but not limited to an improvement in resolution, reduction 

of noise level, elimination of interferences, augmentation of sensitivity and selectivity, and 

accordingly an improvement in separation efficiency [51–54].

The situation is not complicated if no chemical interaction among the components, and their 

spectra are only partially overlapped. In such a case, an acceptable resolution can be achieved 

employing first derivative spectra. Depending on the spectral characteristics of components 
to be analysed and the nature of interventions in multicomponent samples, chemometric 

algorithms have been proved to be a powerful tool in resolving binary (or more) mixture. 
Approaches such as principal component regression (PCR) and partial least squares (PLSs) 
have been widely applied both for zero- or higher- order spectra. A combination of MVA and 

derivative spectral data is highly beneficial where features such as easiness of application and 
reliability of obtained results are greatly improved [55–58].

5. Conclusion

Pharmaceutical analysis involves generation of a large amount of data. A pharmaceutical ana-

lyst then has an apparently intimidating task and needs to choose from a plethora of methods 

for handling the obtained data.

Chemometry has started to realize its potential. Assimilation of chemometric modelling (exper-

imental design, artificial neuron networking, support vector machines, principal component 
analysis, etc.) to different analytical methods (spectrophotometry, chromatography, etc.) with 
the purpose of optimizing the analytical objectives is the novel trend followed by researchers 
nowadays. For every analytical process, the principal role of the analyst is to optimally obtain 
informative data. Unfortunately, best usage of data cannot be accomplished using the traditional 

univariate analysis. Multivariate analysis, in contrary, would be the golden solution, where a 
reasonable amount of information would be obtained through a fewer number of experiments, 
reduced effort and smaller amount of chemicals. As such, application of ‘design of experiments 
(DOE)’ becomes a need, and integration of DOE in any analytical procedure would be a must.
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