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Abstract

Large cycle time, resulted from slow cooling, is the core hindrance to the wide spread 
applications of shape memory alloys (SMAs) as actuators. This chapter discusses a novel 
cooling technique to decrease the cycle time of SMAs. Under this technique, the SMA 
actuator of 0.15 mm diameter was run through a grease-filled Polytetrafluoroethylene 
(PTFE) tube of 0.5 mm outside diameter. Later, same tests were repeated with oil filled 
PTFE tube. The test results conducted in ambient air were used as standard for compari-
son. The actuation current in ambient air was set at 210, 310 and 410 mA. While testing 
with heat sink, i.e. grease and oil, the SMA was heated with 210, 310, 410, 500, 615 and 
720 mA currents for 1 and 2 seconds, whereas the SMA was heated for 1 second only 
with 810 mA current. It was found that the grease cooling reduced the cooling time up 
to 30% and oil cooling by 20%, as compared to the ambient air-cooling time. However, 
the grease-cooled actuators had shown less strain, and their response was non-linear at 
many instances. Heat loss to the sinks resulted to more power consumption than that in 
ambient air cooling for equivalent amount of strain.

Keywords: SMA actuators, long cycle time, SMA cooling, Teflon tubing

1. Introduction

The need for miniaturization and lighter systems has resulted in the development of smart 

actuators, which are compact in size and lighter in weight. The shape memory alloys (SMAs), 

also called the smart alloys, were discovered by Arne Ölander in 1932 [1]. Various properties 

of SMAs, like high work output as compared to other conventional actuators, silent, clean and 

spark-free operation, design simplicity and easy miniaturization, have attracted researchers 
and engineers to use them as actuators in several applications [2].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The operation of SMA actuators is considered to be simple. SMA actuators in many applica-

tions are in the form of a thin wire and their diameters ranging from 0.025 to 0.51 mm [3]. The 

motion created in SMAs is due to a molecular rearrangement in their crystalline structure 

when phase transformation takes place, as shown in Figure 1.

The phase transformation takes place at certain temperatures called phase transformation 

temperature. The phase transformation temperature is determined by the composition and 
heat treatment methods applied to the SMAs. Low temperature phase is known as martens-

ite, whereas, heating results in transformation to austenite phase. SMAs are relatively soft in 

Martensite phase and possess smaller value of Young’s modulus, whereas they are hard in 

Austenite phase with higher value of Young’s modulus.

2. SMA design challenges

The design challenges in SMA-based systems are to succeed over the limitations incorporated 
with SMAs. Some of the SMA limitations are relatively small usable strain, low operational 
frequency, low controllability, low accuracy and low-energy efficiency. However, low opera-

tional frequency resulted from large cycle time is widely reported in literature as core hin-

drance to wide spread applications of the SMAs [5–7]. The operational frequency of SMAs is 

given by Eq. (1) (working frequency of SMAs).

   f  
w
   =   1 ____  t  

h
   +  t  

c
      (1)

Figure 1. Phase transformation in SMAs [4].
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Where

f
w
 = Working frequency of SMAs

t
h
 = Heating time required by SMAs

t
c
 = Cooling time required by SMAs

The cycle time in SMAs is defined as the total time required by the SMAs to contract and 
expand, hence completing its full cycle. Cycle time is the algebraic sum of heating time (i.e. 
contraction time) and cooling time (i.e. expansion time). The heating time of the SMAs can be 
easily reduced by increasing the magnitude of actuation current, whereas the cooling rate is 
redistricted by the rate of heat transfer rate to the environment surrounding the SMA speci-
men. The actuator response time also depends upon the size and shape of the actuators. The 

SMA actuators with smaller diameter cool faster as compared to those having larger diam-

eters. However, this will affect the loading capacity of SMA actuators. Figure 2 is developed 

by using the technical data provided by Dynalloy, Inc., the SMA manufacturer [3]. It shows 

the relationship between the loading capacity of SMA actuators and cooling time required by 
SMA actuators of various diameters in ambient air at room temperature. However, the time 
required to restore final 0.5% strain is not considered.

Figure 2. Relationship between wire diameter, cooling time and safe load for SMA wire actuators.
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From Figure 2, it can be observed that the cooling time required by the smaller diameter 
SMAs is relatively small. However, the smaller diameter SMAs can carry little load as com-

pared to those carried by SMAs having larger diameter. Therefore, the need is to develop the 
faster cooling mechanisms for SMAs.

Large cycle time is core hindrance to the SMA applications in several areas, including auto-

mobiles, robotics, biomedical, etc.

3. Practical applications of faster SMA actuators

Around 200 actuation tasks are performed in a family car [8]. The actuators required to oper-

ate several functions in a car are categorized as (a) low-power actuators for comfort and 

aesthetic aspects, (b) actuators having high power to operate various control mechanisms 
of vehicles and (c) the actuators with high frequency to control engine performance [9]. The 

SMA actuators are being used in first category of actuators, as applied by Mercedes, BMW, 
General Motors (GM), Hyundai, Ford, Porsche and Volkswagen (VW) to actuate lumbar sup-

port in the car seats for passenger comfort [10]. The SMAs are applicable in second category of 
actuators; however, these are still to be studied for this category, whereas due to low working 
frequency, resulting from large cooling time, the SMA actuators are either not suitable or less 
suitable to be applied against third category of actuators.

The SMAs due to their ability to produce linear motion, high power to weight ratio, light 
weight and compact size are widely being used in several areas of robotics. Some common 
SMA applications in robotics are robotic grippers [11], human organ orthotics like a foot ankle 

orthotics [12], rehabilitation robots like a wearable elbow exoskeleton [13] and bio-inspired 
fish-like robots like i-tuna and dragon fly robots [14, 15]. However, large cooling time is 
reported to be the core limitation of SMAs in the field of robotics [8, 12, 16, 17].

The biocompatibility of SMAs has made them feasible to be applied in several applications 
related to biomedical sciences. SMAs are being used in neurology, cardiology and interven-

tional radiology in different ways [18]. SMA-actuated surgical needles and catheters, artificial 
heart, artificial head and drug-delivery valves are some of the most prominent SMA applica-

tions in area of biomedical [19–22]. However, low working frequency resulted from large 
cooling time is reported to be the serious issue [19, 22, 23].

The SMAs due to attractive morphing properties and ability to withstand dynamic loads are 
used in several aerospace applications. Some of the noticeable aerospace applications of SMAs 
are in wing morphing, for example, the DARPA project for development of smart wings [24], 

SAMPSON project to enhance SMA applications in aircraft engine nozzles at inlets to obtain fly-

ing benefits according to flight conditions [25] and reconfigurable engine nozzle fan chevron by 
Boeing [26]. SMAs are equally applicable in various space research applications, for example, 
folding and unfolding mechanisms for solar panels on Hubble telescope [27], actuation of valves 

and apertures on board of Rosetta mission (2004) and Pathfinder–Sojourner Mission (1997) [28]. 

Their applications can still be enhanced to various actuation applications in spacecrafts, either 
manned or unmanned [29]. However, the limited working frequency of SMAs resulting from 
large cooling time is core issue in many aerospace engineering applications [30, 31].
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4. Literature review

Several studies have been conducted to reduce the cooling time required by SMAs to regain 
martensite phase; however, no any unique method has been proposed. In the following pas-

sages, a review of such studies is presented.

Loh et al. [32] used silicone grease as heat sink. The authors filled the grease in a metal tube 
of outside diameter 0.8 mm and inserted 600 mm long and 0.3 mm diameter SMA actuator 
in the tube.

In reported method, the heat dissipation from SMA to sink was achieved at 5°C per second. The 

SMA actuator was heated by electrical current supply of 2 A, with a duty ratio of 0.4. The mar-

tensitic phase transformation also depends upon the mechanical load connected to the wire; 

however, in the reported work, the SMA actuators are made to lift up 3 kg mass. The system 
had following listed limitations:

i. The metal tube is solid; therefore, it is likely to affect the system’s flexibility.

ii. Since the actuator was jacketed around with coolant, the heat loss at 1.75°C per second 
was observed during the actuation. Heat loss during the actuation will increase the heat-
ing time required for phase transformation.

In another study, Loh et al. [33], while developing the SMA-actuated prosthetic hand, used 

stainless steel (SS) tubes to enhance the heat transfer rate from SMAs to the environment. The 
authors ran 2 SMA wires, each 500 mm long and 0.3 mm diameter, through the SS tubes. The 
SMA actuators were actuated with 50–70 V via pulse width module (PWM). In the reported 
method, the actuation voltage ranging from 50 to 70 V is unsafe for many applications and 

uneconomic as well.

Taylor and Au [17] developed an SMA-actuated prosthetic hand. The authors applied the 

forced air-cooling technique for rapid heat transfer from the SMA wire actuators to the sur-

rounding environment using a small fan. The forced air cooling with a fan produced satisfac-

tory results; however, this method is not applicable in the miniature applications where space 
is a major constraint.

Cheng and Desai [34] applied water circulation through the SMA actuator arrangement for 

cooling purpose. The SMA spring actuator was enclosed inside a silicone tube of inside diam-

eter 1.98 mm. The reported method resulted in 0.33 Hz frequency. However, in the presented 
research, the working frequency of 0.33 Hz was achieved in ambient air cooling when the 
SMA actuator was heated with 410 mA actuation current. The water circulation, as applied 
in reported research, is likely to increase the system’s complexity as a pump will be required 
to circulate the water through the actuator, also special sealing arrangements are necessary 

to avoid water leakage out of actuator. Therefore, the reported system will be bulky and not 
feasible in miniature applications.

Pathak et al. [35], in order to examine the performance of various cooling media, conducted 

a comparative study. The authors conducted tests on various SMA actuator samples whose 

diameters were ranging from 0.1524 to 0.508 mm and each SMA actuator sample was 177.8 mm 
long. The authors tested the SMA actuator samples in still air, forced air convection, mineral 
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oil, thermal grease and water as cooling media. In still air, the authors found that SMA wire 

diameter had major impact on the cooling time. It was observed that the values for coefficient 
of heat transfer (h) for 0.1524 mm diameter SMA wire was 153 W m−2 K−1, whereas value of h for 

0.508 mm diameter SMA wire was 68 W m−2 K−1, which is 44% smaller than that of 0.1524 mm 
diameter SMA wire. In forced convection in air, the authors set the air flow rate at 625 ft min−1 

using a fan. It was noticed that the value of h for 0.1524 mm diameter SMA wire was nearly 650 
W m−2 K−1, whereas that of 0.508 mm diameter SMA wire was nearly 400 W m−2 K−1 which is 

40% smaller than h values for 0.1524 mm diameter SMA wire. Since the air was enforced using 
a small fan which is not feasible for miniature applications, for example, in minimal invasive 
surgery, a separate controller will be required to vary the fan speed in order to adjust the speed 
of airflow in the SMA actuator, at the same time, this will lead to more power consumption to 
operate a fan and a possible controller. Later, the authors tested the SMA actuators jacketed 
around with mineral oil. The value of h for 0.1524 mm diameter SMA wire was found to be 
1000 W m−2 K−1, whereas the h value for 0.508 mm diameter SMA wire was nearly 510 W m−2 K−1. 

This shows a reduction of 49% in the h values for 0.508 mm diameter SMA wire as compared 

to that of 0.1524 mm diameter SMA wire. As compared to forced air convection, the h value for 

0.1524 mm diameter SMA wire was improved by 350 W m−2 K−1, whereas the h value for 0.508 

mm diameter SMA wire was improved by 110 W m−2 K−1. However, when compared to still 
air cooling, the h value increased by 6.5 times for 0.1524 mm diameter SMA wire and 8.9 times 
for 0.508 mm diameter SMA wire. Although this is a significant improvement in the values 
of coefficient of heat transfer, the oil cooling is incorporated with certain limitations, which 
include sealing complexity to avoid seepage of oil, also in certain conditions, the viscosity of oil 

may provide the resistance to SMA motion. The authors later characterized the SMA actuator 

in thermal grease. It was found that the value of h for 0.508 mm diameter SMA wire was 55% 
lower as compared to h value of 0.1524 mm diameter SMA wire when thermal grease was used 
as heat sink. The value of h was significantly higher in thermal grease as compared to the h val-

ues in mineral oil and air. For example, the value of h for 0.1524 mm diameter SMA wire was 
4.3 times higher as compared to that in mineral oil and 28 times higher than that in still air for 
same diameter SMA wire. The cooling with distilled water produced better results and cooled 
off the SMA actuators in least time as compared to all other cooling media. The water quench-

ing increased the value of h by 1.3 times for 0.1524 mm diameter SMA wire and 1.6 times for 
0.508 mm diameter SMA wire as compared to h values in thermal grease. However, water cool-
ing has certain costs. However, the major limitation is the boiling temperature of water, as the 
temperature will exceed 100°C, the water will start boiling; therefore, it is only applicable when 
the transformation temperature is lower, for example, in Flexinol® 70°C. For water, some spe-

cial sealing arrangements are necessary. Also, the water circulation without a pump is difficult.

Tadesse et al. [36] conducted a series of tests on Flexinol® and Biometal® SMA actuators manu-

factured by Dynolloy, Inc and Toki Corporation, respectively. Each sample had 0.1 mm diam-

eter and 100 mm long. Considering the actuation current limitations, the authors actuated 

the Flexinol® SMA actuator with 180 mA and Biometal® wire with 200 mA actuation current.

The authors tested the SMA samples in various cooling media including forced air at 0.3 m s−1 

using a small computer fan, forced air cooling at 4.6 m s−1 using a compressor, thermal grease, 

solid heat sink and water quenching. However, the cooling time in ambient conditions was 
used as standard to compare the results of other cooling media.
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The SMA actuators cooled off in 1.1 second while let to cool in ambient air, whereas forced 
air cooling at 0.3 m s−1 improved the cooling time to 0.7 second. The high-speed air circula-

tion cooled off the SMA actuators in about 0.3 second. Since the high-speed air circulation 
was achieved using a compressor, it is not practically applicable in miniature and weight 
conscious SMA systems. Solid heat sink was used in the form of aluminium tubes which were 
brought in contact with SMA actuators up on the power cut off to cool the SMA elements. 
The solid heat sink cooled the SMA actuators in 0.41 second. Solid heat sinking as proposed 
by the authors is not applicable in miniature applications, also it will require a close eye over 
the power shut down to bring the sink in contact with SMA actuator as soon as power sup-

ply is cut off. Water quenching cooled the SMA actuators in 0.2 second, which is significant 
reduction in the cooling time of SMAs as compared to ambient air cooling. However, the 
water circulation without a compressor is difficult, whereas water spray with a syringe is not 
practical in many applications including prosthesis, robotics and minimal invasive surgical 
applications. The thermal grease cooling was applied by filling it in a copper tube along with 
SMA actuators. The SMA actuator failed to contract while cooling with thermal grease. The 

author claimed that the reason for the failure in contraction was the fast dissipation of heat 

from the SMA actuator, which retained insufficient heat to cause a phase transformation in 
the actuator. However, in the proposed research, the SMA element was strained up to 4% 
when actuated with 810 mA actuation current, 410 mA actuation current also generated suf-
ficient strain in the SMA actuator.

Russell and Gorbet [37] developed mobile heat sink with a two-wired differential type 
configuration. The authors used a 350 mm long SMA wire actuator of 0.3 mm diameter. 
The mechanism was arranged in such a way that the midpoint of the SMA actuator was 

anchored to a 6 mm diameter shaft, hence leaving 150 mm long SMA actuator on either 
sides of shaft. Furthermore, the heat sink, in a strip form, was attached to the shaft at the 
centre. As the wire contracted upon heating, it caused the shaft to rotate which simulta-

neously rotated the heat sink, attached to the shaft, towards the hot portion of the SMA 
wire, whose current supply was just disconnected. The reported SMA cooling mechanism 
is complex and is not applicable in conditions when smaller lengths of SMA actuator are 
used.

A comprehensive literature review is given in Table 1.

Sr. No. Author Cooling Media Remarks

1 Loh et al. [32] Silicone grease filled in 
copper tube

SMA Cooled off at 5°C per second, 
whereas heat loss at 1.75°C per second was 

observed which will result in more power 
consumption.

2 Loh et al. [33] Stainless steel metal 

tube
Since the system is actuated with 50–70 V 

PWM, which is too high. Also, the metal tube, 
being rigid, will affect the system’s flexibility 
in motion.

3 Taylor and Au [17] Forced air cooling by a 
small fan

Although the proposed method is efficient to 
cool the SMA at faster rate, it is not suitable 
for miniature applications, as in catheters.
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Sr. No. Author Cooling Media Remarks

4 Cheng and Desai [34] Water circulation Water circulation produced the satisfactory 
results. However, the boiling temperature of 
water is core hindrance, also the water being 
a low viscous fluid will require special sealing 
arrangement.

5 Pathak et al. [35] Still air The cooling time increases with increase in 

SMA wire diameter.

Forced air convection Forced airflow can be achieved using a 
fan, which is not practical in miniature 

applications, like minimal invasive surgery.

Mineral oil Mineral oil produced a significant 
improvement in cooling time, as it was 

reduced up to 48% as compared ambient air 
cooling. However, in certain applications, oil 
sealing may be a problem.

Thermal grease Thermal grease reduced the cooling time by 
55%. However, heat loss during actuation is a 
serious issue as reported by [6, 32].

Water Cooling with water produced best results 
amongst all other coolants. However, sealing 
to avoid leakage is core problem.

6 Tadesse et al. [36] Forced air using 
computer fan

Airflow using a fan, which is not practical in 
miniature applications, like minimal invasive 

surgery. Also, special control algorithms may 

be required to control air speed.

Forced air using 
compressors

The use of compressor is not applicable in 
miniature, biomedical weight conscious 
applications of SMAs.

Thermal grease The SMA actuator failed to contract due to 

rapid heat loss to the coolant i.e. thermal 

grease.

Solid heat sink Aluminium tubes, used as solid heat sink, 
were brought in contact with SMA actuator 
as power was cutoff. This will require a close 
look on power supply so that the heat sink 

may be brought in contact as soon as the 
power is cut off, or this will require complex 
control algorithms.

Water Cooling with water produced best results 
amongst all other coolants. However, sealing 
to avoid leakage is core problem and boiling 
temperature of water are core hindrances.

7 Russell and Gorbet [37] Mobile heat sink with 
two-wire differential 
type configuration

The reported mechanism is complex and is 

not applicable with short SMA wires.

Table 1. Review of various cooling media.
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5. Materials and methods

5.1. Experimental setup

A special purpose setup was developed to test the SMA actuators for various parameters. 

The experimental setup comprised of a laser displacement sensor, a load cell, a k-type ther-

mocouple, a current transducer, an NI Elvis prototyping board, my RIO devices and power 
supply units to actuate the SMA actuator and to power the sensors. The experimental setup 

is shown in Figure 3.

5.1.1. Sensors

The special-purpose experimental setup consisted of different sensors, including a laser dis-

placement sensor to determine the contraction (i.e. strain) in the SMA actuators, a load sensor 

to determine the force exerted by SMA in lifting up the dead weight, a k-type thermocouple to 
measure the temperature of actuator and a current transducer to determine the current flow 
across the SMA actuator.

5.1.1.1. Laser displacement sensor

These are the non-contact sensors used to determine the displacement or deformation in case 

of SMA actuators. Due to high accuracy, these sensors are preferred over the traditionally used 
displacement sensors, like proximity sensors. In the presented research, the LK-G157 laser 

Figure 3. Experimental setup.
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 displacement sensor made by Keyence was used to detect any deformation, i.e. strain in the SMA 
actuators. This laser displacement sensor (LK-G157) is capable to measure the deformation when 
the object is within the range of 150 mm; however, it can measure a maximum of 40 mm displace-

ment. It is provided with a red semiconductor laser which emits light of wavelength 655 nm.

5.1.1.2. Load cell

The tension produced in the SMA actuator while lifting dead weight was determined using 

a load sensor. Transducers Kit load cell model mdb 2.5 lb, having capacity to measure 2.5 lb, 
was used in this research.

5.1.1.3. Thermocouple

A close look at the temperature of the SMA actuator is necessary in order to avoid over heat-

ing of the SMA actuator, which can cause a permanent deformation. A fine gauge k-type ther-

mocouple along with a MAX7785 amplifier was used to measure the temperature of the SMA 
actuators. Since the SMA wire diameter was very fine (i.e. 0.15 mm), the contact loss between 
SMA and the thermocouple was a serious issue, which is addressed by Ref. [38].

5.1.1.4. Current transducer

The strain in the SMA actuator is proportional to the amount of actuation current. An ACS 

712 current transducer having analogue output was used to keep a close look on the amount 
of current being flowing through the SMA actuator.

5.1.2. Actuators

The presented work aims at developing the faster SMA actuators. A series of experiments were 

conducted on a high-temperature (90°C transformation temperature) Flexinol® SMA actuator 

having 0.15 mm diameter. The length of SMA actuator while testing in ambient air was 80 mm; 
however, the length of SMA actuator in heat sink was 90 mm. The Flexinol® SMA actuators can 

withstand a maximum strain of 8%, whereas 4% strain is considered to be safe for cyclic operations.

5.1.3. Tubing

In this research, the SMA actuator was run through the Polytetrafluoroethylene (PTFE) 
tube along with the coolant. The care was taken that SMA actuator was completely jacketed 
around with the coolant. PTFE tube, due to its favourable mechanical and chemical proper-

ties, was preferred over other tubing. Various chemical characteristics that make PTFE mate-

rial superior are its resistance to corrosive reagents, non-solubility, long-term weatherability, 
non-adhesiveness and non-flammability, whereas its mechanical properties include stability 
at high temperatures, flexibility at low temperature and low coefficient of friction [39].

5.1.4. Coolants

In order to achieve faster cooling, the PTFE tube was initially filled with high-temperature 
synthetic base grease (NLGI-3). Later, the tests were conducted with the PTFE tube filled with 
oil (Shell Helix Hx3 20W-50 Mobil Oil).
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5.2. Methods

The SMA actuator was actuated using Joule heating method, with different level of actuation 
current in ambient air, grease and oil. In Joule heating, the SMA element is heated taking 
advantage of the resistance offered by it to the passage of electrical current. When the current 
passes through the SMA element, power losses are produced which in result heat the SMA 

actuator. This method of heating can be described by Eq. (2) (heating power).

  P =  I   
2
  R  (2)

Here,

P = Electrical power to heat the SMA actuator,

I = Current across actuator, measured in Ampere (A) and

R = Resistance offered by SMA actuator to the flow of current, measured in Ohm (Ω).

For experiments in ambient air, bare SMA actuator was used. Therefore, close look on the 
actuation current was necessary to avoid over heating of the actuator. The maximum cur-

rent in ambient air tests was set as per given specification of the SMA actuator manufacturer. 
However, the SMA actuator was run through the PTFE tube while testing in grease and oil. 
PTFE material is flexible at low temperatures and is stable at high temperatures, also it offers 
less friction. However, during preparation for test, the sealing of the coolant, i.e. grease or oil 
inside the PTFE tube was a serious issue. This issue was later overcome by inserting a smaller 
diameter PTFE tube in the bottoms of the main PTFE tube, carrying the coolant and SMA 
actuator. Since grease and oil worked as heat sink, SMA actuator was tested at higher actua-

tion currents with negligible chances of overheating. Figure 4 shows the schematic diagram 

of the SMA actuator in PTFE tube along with the coolant.

Figure 4. Proposed heat sink.
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The SMA actuator was made to lift up a dead weight of 180 g, which induced 100 MPa stress 
in the SMA actuator. The data acquisition rate was set at 5 samples per second, which was 

sufficient to thoroughly examine the condition of SMA actuator during actuation and after the 
current supply was cutoff.

The thermal conductivity values of grease and oil are higher than the air (i.e. λOIL, GREASE > λ
AIR

) as 

given in Table 2; therefore, the proposed heat sink will result in faster SMA cooling as  compared 

to ambient air cooling.

Other factor affecting the cooling time is the surface area. Since the surface area of SMA is 
smaller than the surface area of PTFE tube (i.e. A

SMA 
< APTFE), the heat from the SMA will 

spread to the greater surface area of PTFE tube through the thermal conductive oil/grease, as 
shown in Figure 5.

6. Experiments and results

The SMA actuator was tested in ambient air, grease and oil, and time required by these cooling 
media was analysed. However, the time required to restore last 0.5% strain is not included, as 
it is not considered by the manufacturer. To assure the SMA properties, fresh specimen was 

Figure 5. Area and heat dissipation model of (a) SMA with sink and (b) bare SMA.

Material SMA Teflon tubing Thermal grease Thermal oil Air

Thermal 

conductivity (λ) 
in W m−1 K−1

18 [3] 0.25 [40] 0.79 [41] 0.145 [40] 0.0257 [40]

Table 2. Thermal conductivity of different material.
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used in each test. The strain induced in the SMA actuator is calculated by using Eq. (3) (strain 
induced in SMA actuator).

  % Strain =   Δl __ 
l
   ×100  (3)

Here,

∆l = Change in length of SMA actuator due to heating, taken in mm

l = Pre-deformed length of SMA actuator, taken in mm

6.1. Tests in ambient air

An 80 mm long bare SMA actuator specimen was tested in ambient air at 210, 310 and 410 mA 
actuation currents. The time for a cycle was set 10 seconds, of them 1 second for heating and 

remaining 9 seconds for relaxing of actuator. It was assured that SMA actuator should return 
to its original condition before the next cycle started. The response of SMA actuator in the 
ambient air actuation is given in Figure 6.

The negative sign on vertical axis in Figure 6 shows the contraction in SMA actuator. It was 

found that heat energy produced at 210 mA heating current was too small to transform the 
SMA from martensite to austenite, hence resulting in negligible strain. When SMA actua-

tor was actuated with 310 mA actuation current in ambient air, it could only be strained by 
0.311%. This amount of strain is too small to be considered for any practical applications. The 
reason for small strain was the insufficient heat to cause a crystal rearrangement in the crystal-
line structure of the SMA. However, when SMA actuator was heated with 410 mA actuation 
current, a strain of 3.68%, i.e. 3 mm of contraction in SMA actuator was observed. This amount 
of strain is sufficient for many applications including minimal invasive surgery and other 

Figure 6. SMA actuator response in ambient air.
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robotic applications. Upon the cutoff of power supply, the wire relaxed in 2 seconds. In such 
circumstances, the SMA actuator will have the working frequency of 0.333 Hz.

6.2. Tests in grease

For tests in grease, 90 mm long SMA actuator specimen was passed through an 80 mm long 
grease-filled PTFE tube. Being surrounded with grease, the chances of overheating were mini-
mum; therefore, SMA actuator was actuated for 2 seconds as well. The SMA actuator sample 
was actuated with 210, 310, 410, 500, 615 and 720 mA for 1 and 2 seconds, whereas 810 mA 
actuation current was supplied for 1 second only.

6.2.1. One second actuation in grease

The SMA actuator specimen in grease-filled PTFE tube was actuated for 1 second at 210, 310, 
410, 500, 615, 720 and 810 mA actuation currents. The time for a cycle was set 10 seconds, of 
them 1 second for heating and remaining 9 seconds for relaxing of actuator. It was assured 
that SMA could fully recover its initial form before the next cycle starts. Figure 7 shows the 

response of SMA against 1 second actuation in grease.

Negative sign on the vertical axis in Figure 7 shows contraction in the SMA actuator against 

the actuation.

It can be observed that no strain was induced in the SMA actuator at 210 mA actuation current. 
The heat produced during actuation at 210 mA actuation was too low to cause a phase transfor-

mation in the actuator. At 310 mA heating current, the SMA actuator was strained by 0.0167%, 
which is too small for any application of SMA as actuator. At 410 mA heating current, due to 
rapid loss of heat to the coolant, i.e. grease, during heating, little amount of strain was induced in 

Figure 7. SMA actuator response against 1 second actuation in grease.
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the SMA actuator, as compared to that produced in ambient air cooling, when heated with same 
level of actuation current. The actuation current of 410 mA could strain the grease-cooled actua-

tor by 0.167%, which is only 4.54% of the strain produced in the ambient air-cooled SMA actua-

tor at same actuation current. As discussed in the previous portions that due to higher thermal 

conductivity of grease than that of air, the heat loss rate to the grease was higher. Other reason for 
the rapid heat loss was the greater surface area of grease-cooled actuator, as it also included PTFE 
tube. The 500 and 615 mA actuation current resulted to 0.3635 and 0.7921% strain, respectively. 
Dynolloy Inc, in their technical data sheet for Flexinol SMA actuators, does not consider the time 
required to restore last 0.5% strain [3]. Therefore, in the grease-cooled SMA actuators, the cool-

ing time for smaller strains is not considered. The SMA actuator deformed up to 3.047 mm when 
heated with 720 mA actuation current, this will induce a strain of 3.4%. This amount of strain 
is enough for SMAs to be applied as actuators in several applications like robotics, systems for 
drug delivery, catheters, etc. The SMA actuator cooled in 1.2 seconds. Sufficient quantity of heat 
was induced in the SMA to cause a phase transformation, when actuated with 810 mA actuation 

current. The heating was too fast for grease to absorb during actuation, due to which significant 
amount of heat was available inside the system to heat the SMA wire and cause a phase trans-

formation. The 810 mA actuation current expanded the SMA actuator by 3.257 mm, resulting to 
3.62% strain. However, the wire cooled off in 1.4 seconds, which is 30% improvement in cooling 
time as compared to that in ambient air. It should be noted that SMA actuator was strained by 
3.68% when actuated with 410 mA actuation current in ambient air and recovered in 2 seconds.

6.2.2. Two seconds actuation in grease

The grease-cooled SMA actuators were actuated for 2 seconds with 210, 310, 410, 500, 615 and 720 
mA actuation currents. These tests will help understand the effect of actuation time on the cooling 
efficiency of a heat sink. In these tests, the time for a cycle was set 10 seconds, of them 2 seconds for 
heating and remaining 8 seconds for relaxing of SMA actuator, in order to be assured that SMA fully 
recovers its pre-deformed shape and form before the next cycle starts. Figure 8 shows the response 

of grease-cooled SMA actuator when actuated for 2 seconds at different actuation currents.

The negative sign on vertical axis represents contraction in SMA actuator, which is caused by 
heating.

It was observed that 210 mA actuation could not result in any deformation in SMA actuator, 
whereas a negligible amount of strain, about 0.04%, was observed in the SMA actuator at 310 mA 
actuation current. The heat energy produced by 210 and 310 mA actuation currents was too low 
to cause any phase transformation in the actuators.

When heated with 410 and 500 mA actuation currents, the SMA wire was strained by 0.35 
and 0.6%, respectively. Because of rapid heat loss to the grease during heating, insuffi-

cient quantity of heat remained inside the SMA actuator to cause a complete phase trans-

formation from martensite to the austenite. Whereas heating with 615 mA actuation 

current was sufficient to cause a significant amount of phase transformation in the SMA 

actuator. This could strain the actuator up to 3.2%, which is around four times higher 

than the strain produced by same level of actuation current when supplied for 1 second. 

The SMA wire actuator cooled off in 2.5 seconds, which is too high. The SMA actuator  
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contracted up to 3.1 mm when heated with 720 mA actuation current supplied for 2 seconds. 
This resulted in 3.44% strain in SMA actuator, which is nearly equivalent to the strain pro-

duced with similar amount of actuation current when supplied for 1 second. However, the 
SMA wire cooled off in 6 seconds, which is five times greater than that required in 1 second 
actuation at same level of actuation current. This increase in cooling time shows that the effi-

ciency of grease is affected with increasing heating time, especially at high actuation currents.

6.3. Tests in oil

To find out the effect of oil on SMA actuator cooling time, a 90 mm long SMA actuator speci-
men was run through an 80 mm long PTFE tube. The SMA actuator was heated with 210, 310, 
410, 500, 615 and 720 mA current supplied for 1 and 2 seconds, whereas 810 mA actuation 
current was supplied for 1 second only.

6.3.1. One second actuation in oil

The SMA actuator specimen in oil-filled PTFE tube was actuated for 1 second at 210, 310, 410, 
500, 615, 720 and 810 mA actuation currents. The time for a cycle was set 10 seconds, of them 
1 second for heating and remaining 9 seconds for relaxing of SMA actuator. It was assured 
that SMA could fully recover its initial form before the next cycle starts. Figure 9 shows the 

response of SMA against 1 second actuation in oil.

It was observed that 210 mA did not result in any strain in the SMA actuator; however, neg-

ligible strain in SMA actuator was observed at 310 and 410 mA actuation currents due to 

Figure 8. SMA actuator response against 2 seconds actuation in grease.

Shape Memory Alloys - Fundamentals and Applications120



significant amount of heat loss to the oil during actuation. At 500 and 615 mA actuations, the 
SMA actuators strained by only 0.3472 and 0.6076%, respectively, due to insufficient amount 
of heat to cause phase transformation.

The 720 mA actuation current could produce sufficient heat to cause the phase transformation 
in the oil-covered SMA actuator. The 720 mA strained the SMA actuator up to 3%, producing 
2.685 mm stroke length, which is sufficient for many SMA applications including catheters 
and latches and micro robots. The SMA actuator relaxed in 1 second hence capable to give 
0.5 Hz frequency. While actuated with 810 mA current supply, the SMA was deformed by 
3.5 mm, inducing 3.9%, which is 0.28% more than that produced with same actuation current 
in grease-cooled actuator. However, the cooling time required for SMA actuator was found 
to be 1.6 seconds.

6.3.2. Two seconds actuation in oil

The oil-cooled SMA actuators were actuated for 2 seconds with 210, 310, 410, 500, 615 and 
720 mA actuation currents. SMA actuator heating for 2 seconds at various actuation currents 
will help understand the SMA behaviour against higher actuation times. These tests will 
also help understand the effect of actuation time on the cooling efficiency of a heat sink. In 
these set of tests, the time for a cycle was set 10 seconds, of them 2 seconds for heating and 
 remaining 8 seconds for relaxing of SMA actuator. Figure 10 shows the response of oil-cooled 

SMA actuator when actuated for 2 seconds at different actuation currents.

The negative sign on vertical axis in Figure 10 denotes the shrinking in SMA actuator pro-

duced by heating.

Figure 9. SMA actuator response against 1 second actuation in oil.
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At 210 mA actuation current, no deformation in the SMA actuator was observed hence no strain 
in the SMA was induced, whereas negligible strain equal to 0.027% was observed at 310 mA 
actuation current. When actuated with 410 and 500 mA actuation currents, little strain equal 
to 0.4 and 0.56%, respectively, was observed. The observed quantity of strain is too small 
to for any real-time application of SMAs as actuators. However, 615 mA actuation current 
resulted in 3.5% strain in SMA, which is adequate for a number of real-world applications. 
The SMA specimen relaxed in 2 seconds, hence capable to give 0.33 Hz frequency. The SMA 
actuator contracted up to 3.213 mm, hence inducing 3.57% strain in the actuator, when heated 
with 720 mA actuation current. The actuator cooled off in 4.4 seconds. However, 410 mA actu-
ation current in ambient air produced same amount of strain in the SMA actuator, whereas 
the wire had cooled off in 2 seconds, which is only 45.45% of cooling time required by SMA 
actuator when heated with 720 mA actuation current for 2 seconds in oil. The reason for the 
increase in cooling time is that the rejection of considerable amount of heat to the oil, which 
increased the temperature of oil, hence reducing the heat flow rate from actuator to the oil. It 
is general consideration that the heat transfer rate is proportional to difference of temperature 
between the two mediums.

7. Conclusions

From the results, it is derived that at same level of actuation current, grease- and oil-cooled 
SMA actuators underwent smaller strain as compared to the strain produced in ambient air 
cooling. The maximum heating current in ambient air was 410 mA, which strained the SMA 

Figure 10. SMA actuator response against 2 seconds actuation in oil.
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actuator by 3.68%; however, the wire relaxed in 2 seconds, whereas an equivalent amount 
of strain in grease-cooled actuators was produced at 720 and 810 mA heating currents, and 
SMA actuators relaxed in 1.2 and 1.4 seconds, respectively, which is 40 and 30% improvement 
in cooling time of SMA as compared to that in ambient air. When actuated for 2 seconds in 
grease at 720 mA current supply, the actuator strained by 3.4% but recovered in 6 seconds, 
which is five times higher than the cooling time observed against 1 second actuation at 720 mA 
current in grease. Similarly, oil-cooled actuators produced considerable strain against 720 and 
810 mA actuation current when heated for 1 second. The cooling times in this case were 1 and 

1.6 seconds, respectively. Like grease-cooled actuators, the oil-cooled actuators required long 
cooling time against 2 seconds actuations, as the temperature of coolants, i.e. grease or oil was 
too high to efficiently absorb the heat. However, in case of ambient air cooling, close watch 
over the temperature of SMA is compulsory to prevent overheating which is likely to cause 

a permanent deformation in the actuator. However, in grease and oil cooling, the heat was 
rapidly being rejected to the coolant (i.e. grease or oil); therefore, likelihood of overheating 
of the SMA actuator is less. From the results and discussions sections, it can be observed that 
the oil-cooled actuator produced linear response, whereas the response of grease-cooled SMA 

actuator fluctuated at various points. The oil-cooled actuators produced more stroke length 
as compared to grease-cooled actuators and cooled off in less time. Therefore, for more strain, 
less cooling time, linear behaviour and safe actuation, the oil cooling is suggested over grease 
and ambient air cooling.

The presented research also reveals that increasing the actuation time also results in increased 

cooling time with no significant effect on the stroke length (i.e. strain). Therefore, it is further 
concluded that rather than increasing the heating duration with smaller magnitude currents, the 

magnitude of the heating current should be increased in order to avoid the heating of the sink.
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