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Abstract

A wide variety of technological applications, especially in electronics, requires high‐ density 
nanostructured solids, consolidated by sintering from nanoparticles. A new sintering tech‐
nique known as spark plasma sintering (SPS) appears as the only method to reach high 
densities while preserving the final grain size within the nanometric range, with the added 
advantage of carrying out the process at significantly lower temperatures and shorter times 
as compared with the classical processes. Recent studies have revealed that in many cases, 
SPS can also accomplish the solid‐state reaction to achieve the desired compound, leading 
to reactive SPS (RSPS). In this chapter, a review of RSPS is presented, focusing particularly 
on magnetic oxide materials as functional solids.

Keywords: nanostructured solids, ceramic materials, reactive spark plasma sintering, 
solid‐state processing, magnetic properties

1. Introduction

For the past two decades, the synthesis and applications of magnetic nanoparticles (MNPs) 

have gained immense interest in a wide range of technologies, especially in the biomedical 

field [1–4]. These applications are based on the novel magnetic properties associated with 

the nanoscale [5]. In the electronics field, nanostructured materials point also to innovative 
applications [6, 7], particularly in magnetic recording, actuators, and microwave devices. 

For these applications, however, a powder constituted by MNPs is not suitable; a high den‐

sity, consolidated solid is required. Consolidation by classic sintering methods requires high 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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 temperatures and long times—more than 1000°C for several hours—to reach densities above 

90%. Such conditions lead to an excessive grain growth, which deteriorate the properties asso‐

ciated with the nanoscale, thus making such consolidation methods impractical.

Spark plasma sintering (SPS) [8] has recently been revealed as an extremely efficient sinter‐

ing technique for consolidating nanopowders into high density, nanostructured materials. In 

practice, the powders are heated in a conductive SPS die at very high rates by the action of 

electric pulses and maintained under uniaxial pressure (Figure 1), leading to their sintering 

with impressive shorter times and lower temperatures than in conventional methods. In addi‐

tion, to be a more efficient method, it allows a tight control of grain growth, thus permitting 
the production of nanostructured materials. The principle of SPS and convenient design of the 

facilities make it attractive for conducting materials. Recent results show, however, that it is 
equally powerful for nonconductive ones [9].

The current is applied and passed through the graphite die. If the sample is nonconductive, 

the heat generated inside the walls of the die assists in powder consolidation. If starting pow‐

ders are a conductive material, the current goes through the powder, and the first sparks are 
in the surface atoms as well as in surface defects. This punctual warming of atoms is known as 

hot spots. In these zones, the temperature increases thousands of degrees in a very short time, 
and nucleation and grain growth begin. If the sample is an insulating phase, the electric field 
associated with the electric pulses has also a strong effect on atomic diffusion, and sintering 
is enhanced [9].

SPS has been recently examined in a much broader perspective and has gained a strong reputa‐

tion as a versatile method of solid‐state synthesis, not only for sintering, but also for solid‐state 

reactions, as reported in relevant literature [11, 12]. SPS then becomes reactive SPS (RSPS).

Figure 1. Schematics of the vacuum chamber, electrodes, and pressing die of the SPS system (adapted from Ref. [10]).
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In this review, we analyze the microstructure formation of the products of chemical reac‐

tions occurring in RSPS, in an attempt to directly produce nanostructured solids starting from 
the corresponding reactants, that is, an intermediate solid phase, or a mixture of precursors, 

containing the required elements to form the desired phase. We also discuss the possibility of 

fabricating nanocomposites, in which the interfaces between the constituting phases can be 

improved by particular tailoring.

Focusing on magnetic granular oxide nanostructures, we present successful syntheses with 

a special emphasis on their microstructure stability and attractive properties of the materi‐
als. We discuss the challenges of producing a dense nanostructured material when reaction 

and densification do not coincide during the SPS. Case examples in the fields of magneto‐

caloric materials (manganites), soft magnetic materials (garnets), and permanent magnets 

( hexaferrites) are specifically addressed.

We also discuss the limitations of such a technique, in relation to its reducing operating con‐

ditions and propose some alternatives to overcome main drawbacks. Indeed, RSPS is mainly 

performed using graphite‐made die and punches under dynamic vacuum, creating a reduc‐

ing atmosphere. In the case of oxide materials, this can lead to a partial reduction, sometimes 

even to a metal contamination, affecting the final physical properties of the consolidated sol‐
ids (electric conductivity, for instance). The replacement of carbon dies by tungsten carbide in 

such materials offers an interesting alternative.

2. Reduction reactions during SPS processes

The composition of the environment inside the SPS chamber affects the material’s diffusivity 
during sintering. For this reason, the processes that normally occur during a sintering cycle, 

such as phase constitution, densification, and grain growth, are strongly affected by the sin‐

tering atmosphere [13].

Typical materials developed by the SPS technique are refractory metals and inter m‐

etallics, oxide and nonoxide ceramics. The particles constituting the powders before 

consolidation tend to decrease their surface energy by desorption of chemical species, 

once introduced inside the SPS chamber. The released gas, water, or organic compounds 

in the atmosphere modify the thermodynamic driving force to surface reduction and 

sintering.

Commonly, the atmospheres employed for sintering are:

• Vacuum (10−4 to 10−5 bar),

• Inert gas (up to 1.3 bar), or

• Reducing gas hydrogen‐based mixtures.

The atmosphere composition inside the pressing tools which contain the sample may dif‐

fer considerably from the atmosphere outside [9], making it difficult to control the sinter‐

ing atmosphere. Sample reduction during RSPS occurs when the thermodynamic conditions 
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are favorable to the imbalance of either one of the following reactions from the right to the 

left side:

  (1)

  (2)

  (3)

ΔH0
1
, ΔH0

2
, and ΔH0

3
 are the heat released per O

2
 mole in each oxidizing reaction (from left to 

right side). By definition, we can calculate the corresponding changes of free enthalpy:

  (4)

  (5)

  (6)

A standard measure for the tendency of a metal (or a chemical element) to oxidize is given 
by Eqs. (4)–(6) when P

O2
 = 1 ; thus, we obtain Eq. (7), which is the heat released when 1 mole 

of O
2
 gas at 1 atm pressure combines with 1 mole of metal to form the oxide in function of 

temperature T:

  (7)

The graphic representation of ΔG0 = f (T) is known as the Ellingham‐Richardson diagram 

(Figure 2). It allows the direct evaluation of the relative affinity between the elements and the 
oxidizing agent. Elements with a lower line in ΔG0 in the diagram have a greater affinity to 
oxygen. This diagram is useful to understand the thermodynamics of the reactions between 

the sintering material and the atmosphere, and it can give information about the dissociation 

temperature, the dissociation pressure, and the effect of reducing agents [14].

Special attention must be given to the pressing tools’ material. Standard pressing tools used in 
the RSPS process are graphite based, often internally covered with carbon sheets or foils, in order 

to ease the removal of the sample after sintering [15]. Thus, graphite components are in close con‐

tact with the sample and can become reactive with the oxygen eventually present in the sample 

itself at temperatures higher than 600°C. Other sources of oxygen are moisture or other gases in 

the sintering atmosphere. Such a chemical reaction causes the formation of CO and a continuous 

decrease of the oxygen partial pressure within the furnace, creating a  reducing  condition in the 
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Figure 2. Ellingham‐Richardson diagram [16].
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sintering atmosphere. When an intense gas phase transport is established between the sample 

and the mold, reduction of oxides or even precipitation of carbon or carbide in the sample may 

occur [9].

The materials obtained by the RSPS technique can be distinguished into two main categories 

in relation to their affinity to reductive atmosphere: (a) if oxide reduction is a desirable effect 
and (b) if reduction is a secondary effect that should be avoided during the ceramic forma‐

tion. Metals and nonoxide ceramics constitute the first class of materials, while oxide ceramics 
represent the second one.

For metals and nonoxide ceramics, reductive atmospheres, such as inert gas or reducing 

hydrogen gas mixture, are suggested during sintering, because they are effective on clean‐

ing the oxide naturally formed on the metallic surface of the starting powder during air 

exposition.

The benefit of oxide reduction in this kind of materials is related to the possibility to enhance 
the sample densification; in fact, oxide compounds possess a smaller density than the corre‐

sponding metal, and they hinder atomic diffusion during the densification step.

Such a reductive atmosphere has also been suggested for ultra‐high‐temperature ceramics 

(UHTC) to promote their densification. Sometimes, specific additives are mixed to the starting 
powder to promote reduction and thus enhance densification. For instance, C or B

4
C has been 

used as additives in TaC densification [17], while MoSi
2
, TaSi

2
, and SiC have been considered 

as additives for oxygen removal during HfB
2
 sintering [18–20].

Systems requiring a reductive atmosphere during their reactive consolidation are oxide/

metal nanocomposites. In practice, the reductive atmosphere can be specifically used for 
the in‐situ formation of metal component. As an example, Al

2
O

3
/Ni granular solids were 

produced by reacting and sintering a mixture of Al
2
O

3
 and NiO powders inside a carbon 

die [15].

For functional oxide ceramics, including magnetics, reducing sintering atmosphere may have 

dramatic consequences on the final properties. It may modify the starting oxide composition. 
Typically, it generates oxygen vacancies, which in the case of transparent ceramics, such as 

yttrium‐aluminum‐garnet (YAG), induces light absorption and in‐line transmission decrease 
[21]. In the case of ferromagnetic p‐doped manganite ceramics, the formed oxygen vacancies 

decrease the average oxidation state of the paramagnetic manganese cations, inducing a net 

reduction of the Curie temperature of the final solid in comparison to its conventionally made 
bulk counterpart [22]. In Ni‐Zn ferrite, a well‐known resistive soft magnet, consolidation by 

SPS involves a Fe3+ into Fe2+reduction inside the ferrite grains compensated by a loss of Ni 

cations, which precipitate as Ni metal between the grains, increasing the total electrical con‐

ductivity [23].

As a consequence of oxide ceramic changes in reductive atmospheres, solutions to the 

tools’ reactivity at high temperature have been considered. In other words, when the con‐

trol of the atmosphere is not enough to avoid secondary reduction reactions, new tool 

materials have been employed. Graphite reinforced with carbon fiber dies [24] is suitable 
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for high‐ pressure sintering, because of their high mechanical resistance to compression; 

the possibility to increase the pressure applied to pistons during consolidation allows to 

operate the process at even lower temperature, thus limiting the possibility of reaction 

between carbon and oxide inside the material. Tungsten carbide, steel, and refractory met‐

als, such as molybdenum alloys, copper‐beryllium, and alumina [25], have been also used 

as conductive sintering tools. Double‐walled tools with inner ceramic die and outer graph‐

ite mantle have been also employed [26]. Some works report the use of layers and foils of 

alumina or other different metals, such as molybdenum, tungsten, and tantalum, which 
are introduced inside the graphite die to cover the internal mold walls before introducing 

the sample [9]. By these less‐costly operating conditions, the sintering material is never in 

contact with graphite.

3. Effects of current and pressure

3.1. Electrical current effect

In addition to heating, the effect of current pulses is to enhance mass transport during sin‐

tering, more specifically by one of the three mechanisms [27]: (a) increasing the point defect 

concentration; (b) a reduction in the activation energy for mobility of defects; or (c) electron 

wind modification of the diffusion flux (electromigration).

Temperature and current are not independent parameters; high heating rates are achieved 

by increasing pulsed direct current. This is the major difference between the conventional 

hot‐pressing and the SPS methods; in the RSPS method, both the die (typically graphite) 

and the sample are heated by Joule mechanism from a current passing through them (if 

the sample is conducting) [27]. Nonconductive materials are heated by means of heat 

conduction from the die walls. Pulsed direct current can enhance the reaction kinetics 

when the reactants are brought to interact in the SPS. This effect is, however, system 

dependent [28]. A change in the electrical conductivity of the materials in the die as reac‐

tion progresses can give rise to undesired results. Schmidt et al. [29] studied the decom‐

position behavior of MgH
2
 in RSPS; in order to increase electrical conductivity, graphite 

was added to the MgH
2
 powder. Metallic magnesium, the product of decomposition, 

increases the electrical conductivity of the material in the SPS die. This example shows 

that as the reaction product accumulates, the conductivity of the material in the sintering 

die changes; if it increases, the reaction is self‐enhanced due to the presence of in‐situ–

formed conductive particles inducing the formation of hot spots in the remaining, not yet 

fully reacted, mixture.

In the case of silica‐doped yttria‐stabilized zirconia sintering, the electrical resistivity of grain 
boundaries is often increased by the presence of impurity phases of siliceous compounds. SPS 

allowed a significant reduction in these compounds while leaving the grains unaffected [31]. 

This effect was attributed to the generation of electrical discharges between particles as the 
SPS electrical pulses are applied. The discharges expel the liquid silica phase to triple points 

in grain boundaries, thus reducing their effects on resistivity.
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3.2. Pressure effect

Mechanically, the pressure has a direct effect on particle rearrangement and the destruction 
of agglomerates, particularly in the case of nanometric powders. However, the significance 
of the pressure on sintering depends on the particle size. When the particle size is small, 
the relative contribution of the pressure is small but becomes significant as the particle size 
increases [27]. In a study on the sintering of nanometric pure zirconia, Skandan et al. [30] 

found that the pressure had no effect on the relative density of fine‐grained powder (6 nm) up 
to a  pressure of about 35 MPa; in contrast, the density increased sharply when higher pressure 

was used. For larger particle size powder (12 nm), the same behavior was observed except 
that the transition occurred at about 10 MPa. Another result of the application of pressure is a 

decrease in the sintering temperature. For the case of SPS densification of a nanometric cubic 
zirconia, Anselmi‐Tamburini et al. [27] showed that the combination of fast heating rate and 

high pressure produces a marked reduction in the sintering temperature. Figure 3 shows the 

effect of pressure on the sintering temperature required to obtain a 95% relative density (with 
5‐min hold time). The figure also shows the grain size obtained under these conditions. The 
temperature required to achieve 95% of density decreases linearly with the logarithm of the 

applied pressure. The grain size varied from about 200 to 15 nm.

4. Precursors

4.1. Size of precursors

The size of precursors plays an important role in the final consolidates. In this manner, den‐

sification hinges on the characteristics of initial powders inside the die. As mentioned by 

Figure 3. Relationship between hold temperature and the applied pressure required to obtain samples with a relative 

density of 95% in the case of nanometric fully stabilized zirconia (8% Y
2
O

3
). Hold time: 5 min. The grain size of the 

materials is also shown [30].
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Nygren [32], the grain growth is deeply related with the size of starting powder. When nano‐

metric size precursors are employed, most of the driving force to reduce specific area is des‐

tined to the densification process.

In the case of micrometric precursors, pressure can enhance densification by four mechanisms 
[33]: particle rearrangement, localized deformation, bulk deformation, and neck growth. For 
large particle size of precursors (45–90 μm), density is enhanced through particle rearrange‐

ment and localized deformation. In contrast, neck growth increases for smaller size of precur‐

sors (∼25 μm), while bulk deformation has no influence [33].

Grains can keep the memory of the synthesis process by which they were made, and their char‐

acteristics are retained even in the sintered particles [34]. During the processing of Al
2
TiO

5
 by 

RSPS, varying the initial powder size and the nature of precursors could enhance consolidation, 
particularly for sol‐gel and co‐precipitation synthesis [34]. Co‐gelified alumina‐titania powders 
and mechanical mixtures of alumina and titania (both obtained by sol‐gel method) and alu‐

mina‐titania powders (recovered by co‐precipitation method) were treated thermally before 

the RSPS process. The grain sizes for the powders synthesized by sol‐gel and  co‐ precipitation 
method were 10 and 50 nm, respectively. Experimental conditions were the same for all the 

three samples during RSPS process. The final report showed a smaller increase in the grain size 
(0.5 μm) for the consolidated powders synthesized by sol‐gel as compared with the co‐pre‐

cipitated powders (8 μm). However, the final density for the co‐gelified alumina‐titania and 
alumina titania initial powders was very close to the theoretical density (3.7 g/cm3). Finally, the 

full phase of Al
2
TiO

5
 was obtained in co‐gelified alumina‐synthesized sample.

Different size and aggregation states of polyol‐made CoFe
2
O

4
 starting powders were consoli‐

dated in similar conditions [35]. In the RSPS process, monodispersed initial powders around 

5 nm, and clusters of ∼50 nm (made also of ∼5 nm particles) were rapidly heated to 600°C for 

6 min before rapid cooling. Unexpectedly, the final grain size resulted larger for the mono‐

dispersed precursor than for the clustered case. This difference was interpreted on the basis 
that grain growth is an essentially surface process, and in the monodispersed case, particles 

offered a larger free surface than in the clustered case.

4.2. Nature of precursors

Preliminary works exploring the possibility of preparing nanostructured manganite ceramics by 

the RSPS process have evidenced the role of the precursor’s nature. Starting from a mixture of 
raw bulk oxides required a higher reacting and sintering temperature, while starting from a mix‐

ture of their hydroxide counterparts allowed a decrease in this operating parameter. Typically, 

La
0,85

Na
0,15‐x

K
x
MnO

3
 ceramics were prepared by RSPS starting from the La(OH)

3
, Na(OH), 

K(OH), and MnO
2
 commercial powder mixture, working at 800°C under a uniaxial pressure 

of 50 MPs for a couple of minutes (Figure 4a) [12]. In contrast, ceramic LaMnO
3
 was obtained 

by RSPS starting from La
2
O

3
 and Mn

2
O

3
 commercial powder mixture, working at 1000°C under 

the same pressure for almost the same sintering time (Figure 4b) [42]. The final density of both 
ceramics exceeded 90% of the theoretical value, and their average grain size was in the submi‐
crometer range, the finest grains being obtained at the lowest sintering temperature of course.
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Starting from a mixture of raw oxides assisted by ball milling has been extensively used for 

the mechanical activation of the reactive powders before SPS treatment [36–38]. In order to 

achieve high‐density ceramics with low SPS temperatures, a small particle size and high 
reactivity must be taken into consideration [39]. As an example, Ni

0.5
Zn

0.5
Fe

2
O

4
 ferrite was 

prepared by Song et al. [40]. Stoichiometric quantities of NiO, ZnO, and Fe
2
O

3
were milled 

in a high‐energy planetary ball mill. Different parameters of the grinding time were varied, 
for example 10, 20, and 40 h, at a speed of 400 rpm. As expected, they found the higher the 

grinding time, the smaller the average size for the starting powders (<100 nm). For the sin‐

tering process, they selected the powders with 40 h milling time and particle size below 100 
nm. Different temperatures were chosen (850, 875, 900, and 925°C) for 5 min, a pressure of 48 
MPa and 5‐min vacuum were applied. The best densification result was obtained at 925°C. A 
density of 5.23 g/cm3, corresponding to 99% of the theoretical value, was reached. No second‐

ary phases were detected in structural characterization. Zehani et al. [41] studied NiZnCu 

ferrite at several grinding times and speeds. The stoichiometric proportions of precursor 

oxides (NiO, Fe
2
O

3
, CuO, ZnO) were ground in a planetary mill. RSPS was then performed 

at different temperatures and holding times, using a graphite die and working under argon 
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Figure 4. Shrinkage curve (temperature and piston displacement as a function of time) recorded during the RSPS 

process of La
0.85

Na
0.15

MnO
3
 (a) and LaMnO

3
 (b) ceramics and representative SEM micrographs of each ceramic (c and d, 

respectively) (adapted from Ref. [42]).
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atmosphere. The main conclusion was that the final particle size increased with increasing 
milling speed. Also, in milling times shorter than 2 h at 800 rpm, the lattice parameter varia‐

tion was insignificant.

Amorphous or poorly crystallized intermediate solid phases obtained by soft chemistry, 
combining precipitation in a liquid solution and moderate annealing, and containing all the 

desired elements were also used to form highly dense and fine‐grained oxide ceramics. This 
is for instance the case of La

0.65
Ca

0.20
Na

0.15
MnO

3
 manganite [43] and Y

3
Fe

5
O

12
 garnet [49] ceram‐

ics. The precipitated solids were first annealed at 600 and 400°C, respectively, to remove the 
main noninorganic species in the form of H

2
O and CO

2
, and then SPS treated at a temperature 

of 700 and 750°C, respectively, to obtain highly dense and fine‐grained ceramics.

5. RSPS‐made magnetic ceramics: Synthesis and properties

5.1. Soft magnets: Garnets

Magnetic garnets possess the crystal structure of mineral Mn
3
Al

2
Si

3
O

12
, with rare‐earth 

(RE) and Fe3+ cations instead, leading to the general formula RE
3
Fe

5
O

12
, RE is in the series 

from La3+to Lu3+. One of the most studied phases is the yttrium iron garnet (YIG), which 
is a remarkable ferrimagnetic material with many applications in microwave [44], magne‐

tooptical [45], and spintronic devices [46], most of them based on the fact that YIG has the 
smallest linewidth for ferromagnetic resonance (FMR) [44]. Its ferrimagnetism results from 

Figure 5. Hysteresis loops of ball‐milled mixtures of iron and yttrium oxide for 5 h and annealed for 3 h at different 
temperatures (adapted from Ref. [48]).

Sintering and Reactive Sintering by Spark Plasma Sintering (SPS)
http://dx.doi.org/10.5772/intechopen.68871

133



superexchange interactions [55] between octahedral and tetrahedral Fe3+ cations, which are 

antiparallel. As a bulk, YIG is commonly prepared by the classic solid‐state reaction tech‐

nique which involves temperatures as high as 1350°C, for a few hours [47].

Nanostructured YIG (or other garnet) is typically prepared by combining soft chemistry, or 
ball milling, and annealing to complete the reaction before SPS sintering. This garnet crystal 

structure possesses a relatively large unit cell (160 atoms), making it difficult to achieve its 
synthesis at low temperature. A typical procedure can be high‐energy ball milling of Fe

2
O

3
 

+ Y
2
O

3
oxide reagents, followed by thermal annealing before SPS treatment [48]. The mag‐

netization of the recovered annealed powders increases with the increase in the annealing 
temperature, and it approaches its bulk value, namely 28 emu/g, only by samples annealed at 

T ≥ 900°C (Figure 5).

RSPS offers an excellent alternative to produce consolidated nanostructured YIG at low 
temperatures and very short sintering times. A convenient YIG precursor can be prepared 
by hydrolysis in a polyol method, followed by processing by RSPS to obtain a nanostruc‐

tured garnet phase [49], with the general magnetic properties of bulk YIG. The interme‐

diate solid phase is amorphous (Figure 6) with the required Y/Fe stoichiometric ratio. Its 
preannealing at a temperature of 400°C allows its decomposition and the removal of main 

organic contents, but it is unsuitable to form the desired garnet phase. A reaction/sintering 

RSPS treatment at 750°C for 15 min produced a nanostructured solid with high density and 

nanosize grains. XRD‐resolved patterns, Figure 6, showed that an amorphous phase leads 

first to the orthoferrite YFeO
3
 phase (600–650°C) and then the transformation to the garnet 

Y
3
Fe

5
O

12
phasefrom 750°C.

Figure 6. Temperature‐resolved X‐ray diffraction patterns of the polyol‐synthesized YIG precursor. At about 600°C, 
yttrium orthoferrite (YFeO

3
) is formed, which then transforms into YIG at higher temperatures [49].
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Interestingly, the resulting dense and submicrometer‐grain‐sized ceramic exhibited the same 
magnetic properties as the conventionally made bulk counterpart: a saturation magnetization 
of 28 emu/g and a coercive field close to zero at room temperature. Clearly, the reduction of 
the grain size from the micrometer size range to the submicrometer one does not introduce 
major magnetic changes, the surface‐to‐volume atomic fraction remaining negligible in both 

cases to induce significant magnetic changes.

5.2. Magnetocalorics: Manganites

P‐doped manganite Ln1−xXx
MnO

3
 (Ln: trivalent rare‐earth ion; X: monovalent alkaline, or diva‐

lent alkaline‐earth cation) phases with the perovskite structure have been extensively studied 

over the last 15 years in view of their remarkable physical properties, which can be used for 

a wide variety of applications, particularly for giant magnetoresistance devices and magne‐

tocalorics [50–53]. The correlation between magnetic and transport properties are interpreted 

on the basis of double exchange (DE) mechanism [54], the superexchange (SE) interactions 

[55], the electron‐phonon coupling due to the Jahn‐Teller effect of Mn3+ ions, and the mag‐

netic‐phase separation [51]. The undoped stoichiometric LaMnO
3
 compound, containing only 

Mn3+ ions is an insulating antiferromagnet [56], while doped ones contain Mn3+ and Mn4+ ions 

and may be ferromagnetic conductors. The magnetic properties of the former are driven by 

SE interactions, while those of the latter are mainly due to DE interactions. Consequently, the 
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Figure 7. Temperature dependence of magnetization at 50 mT of La
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0.30

MnO
3
 ceramic produced by (a) conventional 

solid‐state route at 1300°C and (b) by RSPSP at 800°C (adapted from Ref. [59]).
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atomic Mn4+/Mn3+ ratio is a key parameter in the achievement of the magnetoelectrical proper‐

ties of these oxides.

To date, RSPS was successfully used to produce various manganite solid solutions, start‐

ing from raw oxides or hydroxides annealed at 800–1000°C under an uniaxial pressure of 

50 MPa and under vacuum: LaMnO
3
 [42], La

0,85
Na

0,15
MnO

3
 [57], La

0,85
Na

0,15‐x
K

x
MnO

3
 [12], 

La
0.67

Ca
0.33

MnO
3
 [58], and La

0.7à
Ca

0.30‐x
Ba

x
MnO

3
 [59] among others. Interestingly, all the pro‐

duced ceramics exhibited high densities over 90% of the theoretical values and submicrom‐

eter grain size, and a systematically broadened paramagnetic‐to‐ferromagnetic transition as 
a function of temperature, with a decreased Curie temperature (T

C
) value (Figure 7). These 

changes are due to an evolution of the chemical composition concerning the synthesis condi‐

tions. The conventionally made ceramics are assumed to be chemically homogeneous with a 

Mn4+/Mn3+atomic ratio fixed by the doping rate, while the RSPS‐made ones may suffer from 
heterogeneities related to their very rapid reacting/sintering kinetics. These heterogeneities 

can be associated to a Mn4+ concentration variation between the ceramic core and its surface 

in contact with graphite during RSPS experiments, with a total Mn4+/Mn3+ atomic ratio smaller 

than its theoretical value. This discrepancy was confirmed by K‐Mn edge X‐ray absorption 
spectroscopy (XANES) and iodometry chemical analysis and related to the reductive SPS pro‐

cessing conditions [58].

To evaluate the magnetocaloric properties of manganites, the variation of the magnetic 

entropy upon a given magnetic field change, ΔM, is usually inferred from the first mag‐

netization curves and plotted as a function of the temperature around T
C
 value. ΔM (T) of 

RSPS‐ processed manganites is systematically much more broadened than that of their con‐

ventionally made ceramics (Figure 8) for the reasons given above. The commercial applica‐

tions require a magnetocaloric effect extending on a broad temperature range. RSPS ceramics 
may just offer such an opportunity.
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3
 ceramic produced by conventional solid‐state route at 1300°C (a) and by RSPS at 800°C (adapted 

from Ref. [59]).
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5.3. Hard magnets: Hexaferrites

Hexaferrites have become extremely important materials since they have a large variety of 

applications due to their high magnetocrystalline anisotropy in relation with their ΔM hex‐

agonal structure. Their magnetic properties are mainly driven by SE interactions as most of 

insulating oxides. Technologically speaking, hexaferrites are mainly used in the form of bulk 

solids as permanent magnets in magnetic recording and magnetic data storage devices, and 

more recently, as systems operating at microwave/GHz frequencies [60].

As nanopowders, hexaferrites can be produced by different methods such as sol‐gel [61], 

hydrothermal [62], aerosol pyrolysis [63], or mechanochemical synthesis [64]. In most of the 

cases, a subsequent annealing is required to provide enough energy to complete phase forma‐

tion and an SPS sintering is needed to achieve their consolidation.

To the best of our knowledge, the RSPS process has been scarcely used to produce consolidated 

nanostructured hexaferrites. Bolarín‐Miró et al. [65] carried out a comparative study between 

M‐type strontium hexaferrite prepared from strontium and iron single oxides mechanically 

activated by high‐energy ball milling for 5 h followed by RSPS, and the same milled powder 

mixture sintered by conventional route. They showed that, in comparison with conventional 

heat treatment, RSPS process allows the formation of strontium hexaferrite single phase at 

lower temperatures with a higher magnetization. In contrast, the resulting ceramics exhibited 
smaller coercive field (Figure 9).

Stingaciu et al. [66] reported the preparation of strontium hexaferrite by SPS starting also 

from ball‐milling‐activated commercially available SrFe
12

O
19

 powder. They observed that the 

hexaferrite phase is maintained during the milling process (8 to 42 h), while it is not during 

the SPS treatment. Due to the reductive operating conditions, a nonnegligible amount of mag‐

netite is formed leading to the production of a SrFe
12

O
19

‐Fe
3
O

4
 nanocomposite. Moreover, they 

evidenced a pronounced decrease in the room‐temperature coercive field (H
c
) and an increase 

Figure 9. J(H) Hysteresis loops of precursor’s mixtures milled for 5 h and (a) pressed at 800 MPa and annealed at 800°C 
(circle) and (b) SPS‐treated at 700°C under 80 MPa (square) (adapted from Ref. [65]).
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in the magnetization (Ms) at maximum applied field of 1 T, for powders milled for a longer 
time and consolidated (Figure 10). They concluded that the magnetic properties of the studied 

nanocomposites are largely conditioned by the extrinsic properties of the secondary phase, 

Fe
3
O

4
, a soft ferrimagnet, formed after the SPS, rather than the hard SrFe

12
O

19
phaseparticle‐

size‐reduction effect. Additionally, they reported the highest maximal magnetic energy val‐
ues (BH)

max
, 4.0–4.6 kJ/m3, for the samples with the lowest Fe

3
O

4
 content, underlining the 

complexity of the involved demagnetization mechanism.

Vázquez‐Victorio [67] combined soft chemistry synthesis (polyol process) and consolidation 

by SPS to produce nanostructured BaFe
12

O
19

 barium hexaferrite. Typically, they produced an 

intermediate solid phase by reaction of the metallic salts in a polyol within an appropriate 

Ba/Fe atomic ratio; they were annealed at 800°C to complete the desired crystalline phase 

before SPS sintering at 800°C for 5–10 min and 100 MPa, under vacuum. Varying the nature 

of the metallic salts and the polyol solvent, they succeeded to produce highly dense (density 

> 95%) and ultrafine‐grained (∼100 nm) pure BaFe
12

O
19

and BaFe
12

O
19

 with a small content of 

iron oxide. A direct dependency of the magnetic properties of the produced solids on their 

iron oxide content was observed (Figure 11). The highest coercive field and magnetization 

Figure 10. Evolution of the coercive field Hc (a), the remanent magnetization Mr (a), the magnetization at maximum 
applied field 1 T, Ms, and the maximum magnetic energy product (BH)

max
 of SPS‐consolidated SrFe

12
O

19
 powder after 

different milling times. These data obtained from the hysteresis loops recorded at room temperature, applying the 
external magnetic field perpendicular to the uniaxial SPS pressing direction [66].
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at maximum applied field of 1 T (and hence the energy product BH) was measured at room 

temperature, on the nanocomposite. The hysteresis loops also appeared closer to a rectangu‐

lar form, which is the best shape for applications, as this leads to a well‐defined coercive field 
and remanent magnetization.

6. Conclusions

Currently, spark plasma sintering appears as the only method capable to consolidate 

nanopowders into high‐density nanostructured solids; in this chapter, we have briefly 

reviewed its application to carry out also the solid‐state reaction needed to achieve a par‐

ticular phase, starting from precursors synthesized by diverse methods. Many challenges 
remain, especially in the cases of reaction by precursor decomposition, when reaction 

and sintering temperatures are significantly different. RSPS is still a very young tech‐

nique, with many potential capabilities, which will certainly be developed in the near 

future.
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