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Abstract

Many decision and optimization problems arising in bioinformatics field are time demand‐
ing, and several algorithms are designed to solve these problems or to improve their cur‐
rent best solution approach. Modeling and implementing a new heuristic algorithm may 
be time‐consuming but has strong motivations: on the one hand, even a small improvement 
of the new solution may be worth the long time spent on the construction of a new method; 
on the other hand, there are problems for which good‐enough solutions are acceptable 
which could be achieved at a much lower computational cost. In the first case, specially 
designed heuristics or metaheuristics are needed, while the latter hyper‐heuristics can be 
proposed. The paper will describe both approaches in different domain problems.

Keywords: hyper‐heuristics, bioinformatics

1. Introduction

Many heuristics and metaheuristics (problem‐independent algorithmic framework) have been 

successfully applied for decision and optimization problems. However, there are difficulties in 
using the already‐existing algorithms for new problems or even for new instances of a similar 

problem. Typically, one needs a time‐consuming phase for parameters tuning. The param‐

eters, are often not well‐described and do not allow for solving the problem at a satisfactory 

level (producing satisfactory solutions). Thus, in many cases, one needs to construct new algo‐

rithms to solve particular instances. Recently, there have been attempts to automate the pro‐

cess of designing methods to learn the tuning of the parameters. The basic idea is to develop 

a method which is general and operates on small moves and learns which moves should be 

applied at each stage of the solving process.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The term hyper‐heuristics was first used by Cowling et al. in 2001 [1] for the sales summit 

problem and refers to a method which does not use the problem‐specific information other 
than a set of simple knowledge poor heuristics which are easy to implement. Between the set 

of simple low‐level heuristics and high‐level heuristics, there exists a domain barrier, which 

does not allow to pass the information about the problem domain. A high‐level hyper‐heuris‐

tic uses performance indicators when a low‐level heuristics is called (indicators are not specific 
to the problem) in order to decide which heuristics should be chosen at a particular time point 

in the search space. However, the ideas behind hyper‐heuristic are not new to the scientific 
community, and their roots trace back to 1963 and spanned several areas: computer science, 
artificial intelligence, and operational research. In 1963, Fisher and Thompson [2] showed 

that combining scheduling rules, known as dispatching or priority rules, is better when they 
are combined rather than used separately. In 1990s, the ideas were further explored. Storer et 
al. [3] designed a few fast problem‐specific heuristics and defined neighborhoods within the 
search space. The approach could be applied with any scheduling objective and was tested 

for the job shop scheduling problems with the minimum makespan objective. In Fang et al. 
[4], a genetic algorithm (GA) was developed which tried to avoid difficulties in representing 
a solution as a chromosome, which is needed by the GA. The proposed method searches 

abstract regions of the solution space and then uses another method which converts the points 

generated by the GA into candidate solutions. Drechsler and Becker [5] presented a GA which 

first, based on benchmark examples, learns a good sequence of basic optimization modules 
(simple methods) and then applies it to instances of a given problem (computer‐aided design 

of integrated circuits).

Some examples of automated parameter tuning can also be considered as a basis for hyper‐
heuristics. In Ref. [6], one evolutionary algorithm was used to tune the second one, which 

solved a particular problem. Also, some approaches of self‐adaptation in the parameter tun‐

ing of the evolutionary algorithms were summarized in the survey [7].

In the area of machine learning, the idea of choosing the best algorithm for a given problem 

was first posed by Rice [8]. Following this idea, several projects created specialized systems 
to help to select/recommend the best method, as for example, Consultant‐2 [9] and Teacher 

(Techniques for the Automated Creation of Heuristics) [10]. Consultant‐2 was developed to sup‐

port the machine learning toolbox. It integrates the knowledge of choosing the proper machine 

learning algorithms based on the nature of domain data and the domain experts’ knowledge of 

preprocessing and manipulating the data, in order to use the system without directly involv‐

ing the specialists. On the other hand, Teacher was designed as a system for learning and gen‐

eralizing heuristics used in problem‐solving. Despite the lack of or little domain knowledge, 
the system was able to improve the existing heuristic methods. The Teacher was successfully 

applied in the area of process mapping, load balancing, routing, and testing.

The above examples show that the term hyper‐heuristics, although did not appear before the 

year 2000, had circulated in the literature for quite a long time. Since then, the term was used, 
and the idea further developed in many different problem domains [11, 12].

The methods often used in the context of hyper‐heuristics have strong connections with biol‐

ogy. However, the flow of ideas between biology and operational research works in both 
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 directions. Observations of nature provide the basis for designing algorithms: many evo‐

lutionary and genetic algorithms were used as (hyper‐)heuristics to solve combinatorial 

optimization problems. On the other hand, operational research methods can help solving 

problems arising in the field of biology and resulted in creating a new area of Bioinformatics. 
Some examples of problems solved with the use of bioinformatics tools are DNA sequencing, 
DNA mapping, RNA structure prediction and protein folding. Moreover, mutual infiltration 
of the ideas of the two scientific domains can work in both directions just for a single prob‐

lem. The DNA sequencing by hybridization (SBH) problem (further described in Section 4) 
in the ideal case was first defined as searching for a Hamiltonian path in a special graph [13], 

which is an NP‐hard problem. SBH was later modeled as the search for a Eulerian path that 
could be solved in polynomial time [14], which is the opposite of searching for a Hamiltonian 

path problem. Analysis of this phenomenon resulted in defining a new type of DNA graphs 
and showed why searching for a Hamiltonian and Eulerian path in these two types of graphs 
is equivalent [15]. For that particular problem, the operational research methods were used 
to solve the problem, while the analysis of SBH problem introduced a new type of graphs 
and gave an insight into the connections between easy and NP‐hard problems.

The goal of this chapter is to show the connections between the areas of biology, computer 

science and operational research in the context of (hyper‐)heuristics search. Although some 

surveys on the meta and hyper‐heuristic search have been published [11, 12], here we focus 

mainly on the selected bio‐inspired problems solved with hyper‐heuristic methods. In the 

next section, the classification of hyper‐heuristic algorithms is presented. Section 3 describes 
different methods used in the hyper‐heuristic framework. The following section focuses on 
few biological problems successfully solved with hyper‐heuristics. In Section 5, we show that 
not all the problems could be solved with hyper‐heuristics and specially tailored‐to‐measure 

heuristics are needed. We also propose a small hint how hyper‐heuristic search could be 

incorporated in solving the DNA assembly problem. Section 6 summarizes and highlights a 
potentially interesting future research direction.

2. Hyper‐heuristics and their classification

A hyper‐heuristic framework consists of a set of low‐level heuristics and a high‐level hyper‐

heuristic algorithm. The latter evaluates the performance of low‐level heuristics and selects 
one of them to change the current solution. The performance can be measured as an increase 

in the objective function value, defined for the problem, but can also check the time of com‐

putations or the time a heuristic was last used. The hyper‐heuristic can process one (single 

point search) or multiple solutions at a time (multi‐point search). In the former, an initial 

candidate solution goes through a set of successive steps until it gets to the final solution. In 
the latter, utilized for the perturbative methods, a few solutions are processed in parallel, like 
for example in the AMALGAM approach, which operates on the population of solutions [16]. 

Apart from the selection of the low‐level heuristics, the acceptance mechanism seems to be 

crucial in the hyper‐heuristics research. The decision whether to accept or reject the new solu‐

tion can be always the same for the same (deterministic) or different (non‐deterministic) input, 
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for example, dependent on the time passed. The process is repeated iteratively, a low‐level 

heuristic is selected from the available ones in the set, the decision is made about the accep‐

tance of the heuristic and in the case of acceptance, it is applied to the solution until a stopping 

criterion is met. The high‐level heuristic has no information about the solved problem and is 

operating only on the heuristic search space, opposite to metaheuristics which operate on the 

solution space. The general scheme of the hyper‐heuristic framework is presented in Figure 1.

In Burke et al. [17], the definition of a hyper‐heuristic was further extended to a search method or 

selection mechanism for selecting or generating heuristics to solve computational search problems. The 

classification of hyper‐heuristics presented in surveys [11, 12, 17] takes into account the nature 

of the heuristic search space and the feedback used for learning mechanism (see Figure 2).

According to the nature of the search space, we might have methodologies that select existing 

heuristics to use and methodologies that generate new heuristics on the basis of existing smaller 

components. The second level in this dimension corresponds to the constructive and perturba‐

tive methods. Perturbative methods are using complete candidate solutions and change them 
by modifying solution components, while constructive methods start from partial candidate 

solutions and extend them iteratively. This type of approach has been applied to several hard 

combinatorial problems such as educational timetabling [18–20], production scheduling [21], 

packing [22] or vehicle routing [23]. In the case of generation methods, hyper‐heuristics search 

the space of heuristics constructed from components rather than well‐defined heuristics. The 
examples where generation hyper‐heuristics were used include several domains: timetabling 

and scheduling [24], the traveling salesman problem [25, 26] or cutting and packing [27–29]. 

Both classes of hyper‐heuristics, selection, and generation, output a solution at the end of a 

run, but a heuristic generator outputs also new heuristics that produced the solution, and 

these heuristics could be potentially used for the next problem.

The second dimension corresponds to a learning mechanism which is used by a hyper‐heu‐

ristic algorithm. If the learning takes place while the algorithm is solving an instance of the 

problem than we say that there is an online feedback. The idea is to learn a good sequence of 
heuristics for the problems at hand [1, 22, 30].

Figure 1. General scheme of how hyper‐heuristics work.
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In offline learning, the idea is to gather knowledge in the form of rules or programs while solv‐

ing some benchmark instances and hope that these rules are general enough to solve unseen 

instances [31–33].

There are some methods which do not fit strictly to the frames presented above but rather 
span across two or more categories. They use either selecting and generating methods [34] or 

perturbative and constructive heuristics [35].

3. Learning techniques in hyper‐heuristics

Learning techniques are key/essential indicators of the quality of hyper‐heuristics. Good 
learning mechanisms impinge on obtaining better solutions and the possibility to reuse the 
hyper‐heuristic and this decrease software production costs. Low‐level heuristics are usually 

simple heuristics designed for a problem, but if used in a wrong order may not allow to get 

better solutions than when a single such heuristic is applied. Depending on the nature of 
the search space, different learning mechanisms were used. Below a few of the approaches 
are mentioned, some of them derived from the observations on biological evolution made 

by naturalist Charles Darwin. In his concept, the individuals in the population of one spe‐

cies are subject to the natural selection rules to fit the environment better. Among the fitting 
mechanisms, we can distinguish (i) crossover, reproducing of individuals in order to create a 

new one(s), (ii) mutation, random change of an individual in order to introduce diversity to 

the population, and (iii) selection of the best features in the population or in one individual. 

Biological evolution was an inspiration for developing bio‐inspired algorithms like evolu‐

tionary algorithms, genetic algorithms or genetic programming. All of them were utilized as 

hyper‐heuristics in different contexts of the nature of the search space. A few examples are 
mentioned in the following paragraphs.

In the selection mechanism with the combination of constructive heuristics, commonly used 

local search–based hyper‐heuristics explore the solution space with the selected heuristics as 

Figure 2. Classification of hyper‐heuristics (following Ref. [11]).
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widely as possible. A variable neighborhood search was used in the context of examination 

timetabling [18]. Tabu search‐based hyper‐heuristic was applied for the workforce scheduling 

problem [36] and course and exam timetabling [19]. Evolutionary or genetic algorithms were 
used for solving the vehicle routing problem [35] and bin packing of 2D elements [37].

In case of perturbative low‐level heuristics, more commonly used are score‐based hyper‐heu‐

ristics. A choice function was introduced in Ref. [1] which evaluates each heuristic according 

to a score composed of three components: how well a heuristic performs, how well it per‐

forms when combined with another one, and the time elapsed since it was last used. A low‐

level heuristic can be selected in four different ways (i) randomly, (ii) taking the one giving the 

best value of the choice function (greedy), (iii) basing the choice on a ranking of best heuristics, 

or (iv) selecting a heuristic with the probability equal to the proportion of choice function 
value (roulette wheel). Choice function hyper‐heuristics solved the sales summit problem [1], 

timetabling and scheduling [38] and sequencing by hybridization [39]. Reinforcement learn‐

ing, another score‐based approach, awards or punishes heuristics depending on the improve‐

ment or deterioration of the solution. It has been applied for the logistic domain problem [40]. 

In the combination with tabu search, a tabu list of forbidden heuristics was implemented for 

nurse rostering and course timetabling [41].

The solution obtained by applying a low‐level heuristic might not always be improved. There 

are different strategies in accepting the solution in case of deterioration. ‘All accept’ always 
accepts the solution. Some other strategies accept a new solution with the probability that 
decreases with time: simulated annealing or Monte Carlo.

In generating new heuristics, one usually involves genetic programming (GP). GP, similarly 
to evolutionary algorithms, borrows ideas from the theory of natural evolution to automat‐

ically produce programs [42]. It starts from a population of generated computer programs 

which are evaluated by the fitness function. Next, evolutionary components (selection, 
mutation, crossover) are applied to the individuals in the population and the strongest, 

i.e. the fittest ones, survive in the next generation. The difference between standard GP 

and the hyper‐heuristic GP is in the generality of the programs used. In the standard 
approach, the programs could be standard arithmetic operations, standard mathematical 

functions or logical functions, while in the hyper‐heuristic approach, the programs are 

rather abstract heuristics, independent of the problem domain. As the output from the GP, 
one gets new programs, which in standard approach could be direct solutions (i.e. modi‐

fied mathematical formulas or arithmetic operations), but in the hyper‐heuristic approach, 
they need to be translated into solutions. Automatically generated heuristics can be dispos‐

able, used only once, or reusable–can be applied for different instances or problems. In the 
latter case, generating heuristics are usually trained offline on some benchmark instances.

GP hyper‐heuristics were utilized to modify dispatching rules for the job shop scheduling 
problem ([43], as an example). Grammar‐based GP with graph coloring and slot allocation 
heuristics were applied to exam timetabling [24]. Many applications used GP to evolve heu‐

ristics also for the bin packing problem [27, 44] and traveling salesmen problem [25, 45].

There is an interesting connection between the idea of reusable heuristics and transfer learn‐

ing [46]. In both cases, one may observe the transfer of knowledge between different but 
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related problem domains. However, in the first case, hyper‐heuristic is used to tune heuristics 
from one instance to another or to generate new heuristics, and in transfer learning training 

data of one problem may be used to potentially improve the results of a target learner on a 

data set from a different domain. Transfer learning is used mostly in cases when there is a lack 
of training data or they are too expensive to collect.

4. Hyper‐heuristics for bio‐inspired combinatorial problems

In this section, a few examples are described in more details for which hyper‐heuristic meth‐

ods were used to solve bio‐inspired problems. This field has not been explored deeply, and 
only a few attempts have been made so far. The difficulty here lies in the quality of the solu‐

tion. For bio‐experts, it is often important that the solution is the optimum or very close to the 
optimum, not just ‘good enough’. Moreover, sometimes mathematical models cannot express 
biological problems well. The optimization function in the model may lead to a few solutions 

which are mathematically optimal but only one is biologically correct. Three main contribu‐

tions from the literature are summarized below, one dealing with the longest common subse‐

quence problem and two with the sequencing by hybridization problem.

4.1. Longest common subsequence

The longest Common Subsequence (LCS) problem amounts to find the longest string that is a 
subsequence of every string in a given set of strings. The subsequence here is not composed of 
consecutive letters in the string, but it can be achieved by deleting some of the characters from 
the string. The problem can be solved polynomially in the case of two strings, but in general, 

the problem is NP‐hard. The example of what the LCS problem is explained in Figure 3.

The LCS problem is used in bioinformatics to compare sequences of molecules: DNA, RNA 
or proteins, in order to find homologies between sequences of organisms of different species. 
The homology helps to predict the function of unknown genes if their sequences are similar 
to those of known genes one may expect that the function is similar. The other applications of 

LCS can be found in text editing [47] or data compression [48], among others.

Tabataba and Mousavi [49] proposed a hyper‐heuristic for the LCS problem. A beam search 
algorithm in its standard form is a tree‐based procedure. It starts from the initially empty 

solution and extends it by one letter in every iteration. All possible characters Σ are evalu‐

ated by a function f(.) as possible extensions, but only β best ones are further explored in the 

Figure 3. The example of the LCS problem. For a given set of strings S = {ccatagacc, atttgatac, gatggaatc, agtgagct}, the 
longest common subsequence of each string is ‘atgac’. The LCS is underlined in every string.
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next iteration, β being the size of the beam. A hyper‐heuristic approach is introduced here to 

choose the best function f(.) among the two available: power and prob. Power takes into account 

the length of possible suffixes, with the high impact of the minimum suffix, after deciding 
on the possible extension character. Prob, on the other hand, calculates the probability of a 

random string being a subsequence of the suffix. The hyper‐heuristic runs the beam search 
algorithm twice in every iteration with power and prob as f(.) function and chooses the one 

which gives the possibility of a longer subsequence extension.

The method was tested on random biologically inspired and real sequences of DNA and pro‐

teins of rats and viruses (Σ equal to 4 in the case of DNA sequences and 20 in the case of 
proteins). Hyper‐heuristic appeared to superior to the beam search method used with just 

one heuristic, either power or prob. The proposed hyper‐heuristic in comparison with the state‐

of‐art algorithms MLCS‐APP and DEA, depending on the tested dataset, provides 1–2% and 
19–25% improvements in the solution quality, respectively.

4.2. DNA sequencing by hybridization

Sequencing by hybridization (SBH) is a method used for reading DNA sequences, nowadays 
not used any more due to high costs, but its concepts can be of value for other real‐world 

applications. It is composed of two phases, biological and computational experiments. The 

former utilizes a microarray chip to determine all the subsequences of an unknown DNA 
sequence, i.e. subsequences of a given length k (k‐mers). The set of k‐mers contained in the 

DNA sequence is called spectrum. The latter, combines the elements from the spectrum, by 
checking their overlapping, into a longer sequence, that do not exceed the original DNA 
sequence length, n. The example of an SBH experiment is shown in Figure 4.

In the ideal case, the problem is easy, while in the real experiments, two types of errors may 

occur which make the real problem NP hard. A negative error occurs when a k‐mer, being a 

subsequence of the examined sequence, is missing in the spectrum, while a positive error is 
an extra element in the spectrum not being a subsequence of the DNA sequence. Note that 
repeated subsequences in the DNA sequence cause negative errors because they appear only 
once in the spectrum.

A hyper‐heuristic approach was first used to solve the SBH problem in Ref. [39]. The solution 

is represented as an ordered list of elements from the spectrum that contributes to the DNA 
sequence, and trash, an unordered set of ‘leftovers’ from the spectrum. The sequence is recon‐

structed with a greedy algorithm that traverses the list and tries to append every k‐mer with 

the smallest shift to the preceding one.

The low‐level heuristics operate on the list and trash by moving elements from one set to 

another. In the basic approach, we can distinguish operations on single elements: insertion 

from trash to list, deletion from list to trash or shift–moves of the elements within the list; 

or operations on a cluster–a group of closely connected elements. A cluster can be shifted or 

deleted. An extended approach changed the encoding of the solution, by allowing elements 

from the spectrum to appear on the list twice, thus solving the problem of repetitions. Also, 

several new heuristics were proposed, with swap as an example.

Heuristics and Hyper-Heuristics - Principles and Applications10



A few hyper‐heuristics were proposed, namely a tabu search algorithm, choice function 

approaches (roulette, ranked, best and decomp), and a simulated annealing algorithm. In the 
first method, all moves were accepted, while the last method used the Monte Carlo approach 
which could reject a deteriorated solution with the probability that increased with the passed 

time. The results of the computational experiment showed that designing a good set of low‐

level heuristics is very important, a good set could give good results for any tested hyper‐

heuristics, even for a random roulette choice function, while an incorrectly composed set of 
primitive heuristics did not allow almost any algorithm to learn which heuristic to choose. 

The experiments on real DNA sequence instances pointed out two algorithms to be better 
than others: simulated annealing and the roulette choice function. In the comparison with 
other algorithms designed for that problem, the usage of elements from the spectrum in the 

solution was comparable with those obtained by hyper‐heuristics, while the similarity of the 

solution and the examined DNA sequence was superior for tailored‐to‐measure algorithms.

4.3. DNA sequencing by hybridization, second approach

In Ref. [50], again the DNA sequencing by hybridization problem was considered, but this 
time accompanied by other combinatorial problems: the knapsack problem, traveling sales‐

man problem (TSP) and its two variants, namely, bottleneck TSP and prize collecting TSP. 
For these problems, a few hyper‐heuristics were implemented, similar to those presented in 

Figure 4. SBH is composed of biological and computational experiments. In the first one (a), a microarray, containing all 
k‐mers (k = 3), is used to obtain a spectrum. In the latter, elements from the spectrum are modelled as the nodes in the 
graph in which a Hamiltonian path is looked for (b). Solid arrows represent the overlap of the two nodes equal to 2, and 
the dashed arrows overlap equal to 1 (most of them are omitted to simplify the picture) meaning that there is a negative 
error between the two k‐mers. A path starting from ACA results in obtaining the examined DNA sequence, see the layout 
in (c). However, notice that starting from node CAG one may obtain a different, shorter solution composed of the same 
number of elements from the spectrum.
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Section 4.2 and [39]. It is not new that the same hyper‐heuristic is used to solve problems in 

different domains. The novelty of the proposed approach was in modeling unified encoding 
of all the above problems, and implementing just one set of low‐level heuristics. The heuris‐

tics were independent from the problems; thus, a domain barrier was moved down toward 

problems (compare Figures 1 and 5).

The solution for all the problems is represented as sequence S of integers from range 1 to n. 

For SBH, S denotes the elements of the spectrum, for TSPs, these are the cities to visit, and 
for the knapsack problem, S denotes the elements to be put to the bin of a given size. A few 

other data structures or variables were also used: distance matrix, prizes, and penalties, some 

of them redundant for a given problem, thus not used. The problems could be solved with 

the hyper‐heuristic methods only due to using these specific representations and defining the 
evaluation function.

The proposed low‐level heuristics were simple moves, however, taking into account the spec‐

ificity of the tested problems. Besides the low‐level heuristics previously proposed, insert, 
delete, swap, and shift, and four more were implemented: (i) replace an element from S with 

an element not being in S, (ii) move a few subsequent elements in the solution, (iii) revert the 
subsequence of elements in S, and (iv) remove the element from S which gives the highest cost 

to the preceding element in the solution, and replace it with the best one.

Some hyper‐heuristics could distinguish, useless low‐level heuristics or ones leading to unfeasible 
solutions, and discard them from further computations. The overall results were ‘good enough’, 
but with the increase of algorithm’s generality, the quality of the obtained solution decreased a 
little in comparison to hyper‐heuristics from Ref. [39] and other tailored metaheuristics.

Figure 5. In the unified encoding of the hyper‐heuristic scheme there is just one set of low‐level heuristics for several 
problems, while in the standard scheme (Figure 1), for each problem, one must implement a separate set of heuristics.

Heuristics and Hyper-Heuristics - Principles and Applications12



5. Assembling a genome as a continuation of SBH ideas

The previous section presented a few bioinformatics problems solved with hyper‐heuristics. 

Not many attempts have been made so far, due to the specificity of biological problems.

Sequencing by hybridization is a method that did not stand the test of time, but ideas devel‐
oped in this approach can be translated into the next level of reading DNA sequences, namely 
assembling. The explosion of new technology allows to directly read short DNA fragments, 
up to a few hundreds of molecules, and thus making the old‐fashioned and costly approaches, 

Sanger sequencing [51] and SBH, not useful anymore. The inputs to the assembly problem are 
these longer sequences merged in order to get a longer one of the size of a bacterial genome. 
In the ‘toy problem’ ‐SBH, the fragments are of a length of a dozen or so, and the solution 

sequence is a few hundred long, while for the assembly problem, DNA fragments are in the 
range 100–1000 molecules and are assembled into a million‐molecule sequence. Both prob‐

lems can be modeled as searching for a path in the graph, where nodes represent short DNA 
fragments, and arcs connect overlapping nodes with the cost equal to the shift between the 
two neighboring fragments. However, in DNA assembly, one must allow mismatches in frag‐

ment overlapping, differences in fragment lengths, and the fact that fragments may come 
from two strands of DNA helix; thus, they are reverse and complementary (the example of 
the reverse complementary sequence is presented in Figure 6). Also, the number of input 

fragments differs, a few hundred for SBH and millions for assembly. Moreover, during the 
process of reading DNA fragments, some parts of the genome could be poorly covered by 
the fragments or even in some cases not covered at all. There might be a few reasons for that, 

one of them, for example, depends on the content of G and C letters in the fragment of the 
genome. Thus, the assembly problem becomes much more difficult than SBH, and we cannot 
say any more about the ‘ideal case’ and ‘easily solvable’ problem.

The assembly problem is usually divided into three steps:

Step 1. Finding overlaps of input sequences; constructing a graph.

Step 2.  Searching for a path in the graph.

Step 3.  Building a consensus sequence.

In the first step, it is usually impossible to calculate the overlaps between each pair of frag‐

ments, due to a huge number of fragments and time limitations. In Step 2, instead of one 
path, the methods output few or more paths, because of sequencing errors, the lack of cov‐

erage, and the repetitions in the genome. The last step is the multiple sequence alignment 
problem, which again is not easily solvable. There are two main approaches to solve the 

DNA assembly problem. The first one, Overlap‐Layout‐Consensus (OLC), represents DNA 
fragments as nodes in the overlap graph (Step 1) and calculates in a smart way the overlaps 
of the fragments. The latter builds a decomposition‐based graph, not quite precisely called de 
Bruijn graph, by putting k‐mers on the nodes and decomposing each DNA fragment into a 
series of k‐mers shifted by one. Hence, a DNA fragment, in this case, is represented as a path 
in the graph connecting a series of respective nodes. In the second case, there is no need to 
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calculate overlaps between fragments, because they simply span the same nodes. On the 

other hand, a lot of information may be lost after decomposing a fragment into k‐mers. The 

other two steps are similar for both approaches but take into account the specificity of each 
approach. There are many methods developed for both of the approaches: OLC [52, 53] and 

decomposition‐based graphs [54, 55] as examples. None of them can be seen as a general pro‐

cess of a local search, where one could use a meta or hyper‐heuristic method. Each step of the 
method is processed independently by a heuristic and/or a greedy approach. However, there 

is one place where an ‘intelligent method’, likely a hyper‐heuristic, could be of value while 
searching for a path in the graph. The most difficult in the search process are junctions in the 
graph, which occur in the case of sequencing errors or repetitions. An example of a junction 
is presented in Figure 7. A hyper‐heuristic which could distinguish in the search process 

that the path is coming to a junction and cut the current process would highly improve the 

solution. The method shall take into account the increase or decrease of the coverage and bas‐

ing on this change and decide whether to stop or continue the search process. This must be 

preceded by offline training of many benchmark data sets, where a method could learn the 
specific cases in the graph and make predictions in the future search. The two basic steps that 

Figure 7. Junctions in the graph complicate the assembly process. In order to simplify the figure, only the arcs with 
the smallest shift between the two nodes are given. Without additional information, it is difficult to state if the correct 
sequence should be composed of fragments ACD, ACE, BCD, or BCE. Thus, the methods usually cut the current path 
and output shorter fragments like AC or CE.

Figure 6. An example of the reverse and complementary sequence. A DNA sequence is always read from 5′ end to 3′ 
end. Due to the complementarity rule, A on one strand is connected with T on the other, and G is connected with C. The 
following fragment of the DNA helix can be read as ‘accgacttgcga’ or ‘tcgcaagtcggt’.
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a hyper‐heuristic would choose could be a simple ‘stop searching’ and ‘continue extending 
the path’, but of course, many other heuristics like extending search path in both directions 

could also be added.

One may notice that the field of bioinformatics combinatorial optimization problems is not 
well explored in terms of hyper‐heuristic search. The assembly problem is just one exam‐

ple of many problems, where a hyper‐heuristic could be introduced. The question is if we 
are ready to allow a possible deterioration of the final solution by generalizing the search 
process. The other question is what is the most time‐consuming activity: understanding a 
bio problem, designing a model, or implementing a method? In the case of some problems, 

it is crucial to clearly understand the problem because omitting some of the details makes 
the solution unacceptable for bio‐experts. Hyper‐heuristics and especially low‐level heuris‐

tics should be developed to comply with all the restrictions and produce a feasible solution, 

which, unfortunately, in many cases may take as much time as implementing a ‘tailored‐to‐
measure’ algorithm.

6. Summary and future

The flow of ideas between biology, operational research, and computer science works in both 
directions. The ideas from the biological evolution serve as the basis of genetic algorithms 

and genetic programming. The operational research models and methods help to solve many 

problems arising in computational biology. Recently, an interesting cooperation between 

these two scientific areas has been observed in the behavior of the slime mold Physarum, for 

which a mathematical model for the dynamics always converges in finding the shortest path 
for any input graph [56, 57]. There were also some attempts to involve DNA and use it as the 
computing power [58].

We can observe a constant synergy between specialists from different areas. This synergy can 
also be found in the context of hyper‐heuristic methodology. It has been shown that hyper‐

heuristics have been successfully involved in solving several combinatorial optimization 

problems. Also, a few attempts have been made to solve bio‐inspired problems: the longest 
common subsequence problem and sequencing by hybridization problem.

In Section 5, a proposition how to employ hyper‐heuristic search also in solving the DNA 
assembly problem has been made. By allowing offline learning on some benchmark dataset, 
the method could distinguish the junctions of the path in the graph and react faster whether 

to extend or cut the current path.

A good learning mechanism incorporated into hyper‐heuristics is a key to increase the 

usage of hyper‐heuristics and to solve the problems in a competitive way to tailored‐to‐

measure (meta)heuristics. In this context, the development of the tools for assessing hyper‐

heuristics such as HyFlex [59] or Hyperion [60] may increase the usage of these types of 

methods.
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