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Abstract

A spectrum of neurological complications can result from acute and chronic liver diseases 
and is termed hepatic encephalopathy. The precise pathogenic mechanisms by which 
hepatic encephalopathy occurs is unclear. However, it is commonly accepted that the 
development of hepatic encephalopathy shares a long-standing relationship with neuro-
inflammation. This chapter will outline the evidence for a role of neuroinflammation and 
proinflammatory cytokines in the pathogenesis of hepatic encephalopathy. Furthermore, 
we will identify the possible circulating factors, released from the liver after damage, that 
may contribute to the neurological complications of hepatic encephalopathy, including 
neuroinflammation. Lastly, we discuss the current and experimental treatment options 
aimed at reducing neuroinflammation for the management of hepatic encephalopathy.
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1. Introduction

Hepatic encephalopathy (HE) describes a spectrum of neurological complications that arise 

during acute liver failure or chronic liver diseases and can be classified depending upon the 
underlying liver pathology. Specifically, Type A HE is associated with acute liver failure. 
Acute liver failure, or fulminant hepatic failure, is a rapid deterioration of liver function with-

out any pre-existing liver disease. It can arise due to drug-induced liver injury (e.g., acetamin-

ophen overdose), viral hepatitis or ischemic hepatitis. Type B HE arises from a portal-systemic 

bypass without underlying liver disease. This occurs when blood bypasses the liver, thereby 

bypassing the detoxification function of the liver, resulting in an increased buildup of toxic 
substances in the blood stream and subsequent neurological impairment. Lastly, type C HE is 
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a result of liver cirrhosis. In late stage chronic liver diseases, when severe fibrosis is evident, 
the liver decompensates leading to the development of HE. Recently, it was suggested that 

a 4th type of HE exists that results from acute-on-chronic liver failure. This occurs when an 
acute liver insult (e.g., an infection) occurs in a patient with an existing chronic liver condi-
tion. The HE that may arise has features in common with both Type A and Type C HE and 
therefore perhaps should be characterized as its own entity.

Regardless of the type of HE, clinical symptoms of HE range from altered cognitive func-

tion, mood changes, disorientation, and neuromuscular problems such as asterixis and ataxia, 
which ultimately culminate in hepatic coma. Associated with these symptoms are cerebral 

edema, leading to increased intracranial pressure (evident only in HE due to acute liver fail-

ure), astrocyte swelling, neuronal dysfunction and neuroinflammation.

The neurological changes during HE are thought to arise due to the buildup of toxic or 
inflammatory substance in the blood stream as a result of impaired liver function. With the 
increased permeability of the blood-brain barrier observed in patients and in animal models 

of HE, these substances are able to cross the blood-brain barrier and alter cognitive function. 

While the full scope of liver-derived substances may not yet be fully appreciated, some of 
these include ammonia buildup, increased bile acids and circulating proinflammatory cyto-

kines. The consequences of these agents on the brain, and neuroinflammation in particular, 
will be discussed in detail below.

2. Microglia activation during HE

Neuroinflammation is a key feature in common with all types of HE and is predominantly 
modulated by microglia, the resident macrophage-like cell in the brain. Microglia are nor-

mally found in their quiescent or ramified form, characterized morphologically by small cell 
body and long, branching processes. The cell body typically remains stationary, whereas the 

processes are constantly moving and surveying their microenvironment for proinflamma-

tory signals released by surrounding damaged neurons, infectious agents etc. Upon activa-

tion, microglia undergo morphological changes, including a thickening and retraction of the 
branches and increased cell body volume, and produce increased amounts of proinflamma-

tory cytokines and recruitment molecules (e.g., chemokines). A schematic diagram of these 
morphological changes can be seen in Figure 1. Furthermore, reactive microglia undergo 
rapid proliferation to increase their number. The increased microglia number at a site of 

trauma is thought to be a combination of proliferation of resident microglia and recruitment 

of microglia from neighboring areas.

Microglial activation has been demonstrated to be a key feature in the pathogenesis of HE 
regardless of the type. Indirect clinical evidence for microglial activation has been demon-

strated by an upregulation of the microglial marker Ionized calcium binding adaptor mol-
ecule 1 (Iba-1) in postmortem cortical brain tissue from patients with liver cirrhosis and HE, 
when compared to cirrhotic patients without HE [1]. In addition, data from a comprehen-

sive gene expression profile analysis demonstrated an upregulation of markers for both the 
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proinflammatory M1 and anti-inflammatory M2 microglial phenotypes, suggesting that both 
subpopulations of microglia may be present in patients with HE due to cirrhosis [2]. Taken 
together, these clinical data indirectly support a role of microglia activation in HE.

In contrast, evidence for a direct role for microglia activation in the neurological consequences 
of both acute liver failure and liver cirrhosis is more striking in animal models of these dis-

eases. Furthermore, in many of the models used, treatment modalities shown to inhibit 
microglia activation also alleviated or prevented the cognitive impairment and neurological 

decline observed during HE. Specific details are described below.

2.1. Toxic liver injury

A range of hepatotoxic agents have been used to uncover basic mechanisms responsible for the 
CNS complications of liver failure. This topic was reviewed by a panel of experts nominated by 
The International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) who, 
after careful deliberation, recommended two toxic models based upon the extent of their char-

acterization. The two models of acute liver failure were the azoxymethane (AOM) mouse model 
and the thioacetamide (TAA) rat model [3]***. Very elegant and detailed analyses of the morpho-

logical changes in microglia and real-time analysis of microglial dysmotility after AOM have 
been demonstrated [4]. Both microglia activation (as demonstrated by an ameboidal phenotype) 

and motility (as demonstrated by analysis of the turnover rate) were shown to be altered in the 

cerebral cortex at late stages of HE when severe neurological symptoms were evident, coincid-

ing with the appearance of brain edema [4]. Furthermore, increased number of microglia [5–7] 

and increased reactive phenotype [6] has been demonstrated in the cerebral cortex of AOM-
injected mice. This HE-associated microgliosis could be attenuated with anti-inflammatory 
treatment modalities [5–7], which also attenuated or delayed various neurocognitive deficits 

Figure 1. Schematic diagram depicting changes in microglia morphology during neuroinflammation. Lower panels 
show immunofluorescent staining of microglia using an Iba1-specific antibody in a mouse model of HE.
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observed in this model of Type A HE, indicating that microglia activation may be contributing 

to the behavioral abnormalities observed in HE rather than as a consequence.

While microglia activation has not been assessed specifically in the ISHEN-recommended 
TAA rat model of acute liver failure, Faleiros et al. recently assessed this phenomenon using 
the relatively uncharacterized TAA mouse model of acute liver failure [8]. While mice injected 
with TAA displayed a significant reduction in locomotor activity, which was accompanied 
by increased expression of certain proinflammatory cytokines and chemokines, no microg-

lia activation was observed [8]. However, it is conceivable that this observation may be an 

anomaly of this model rather than evidence of a lack of microglia involvement.

2.2. Ischemic liver failure

Experimental acute liver failure can be induced by the performing an end-to-side portacaval 
anastomosis followed by hepatic artery ligation and is thought to mimic ischemic liver failure. 

Rats undergoing this surgery exhibit key clinical features of HE, including cerebral edema 
and hyperammonemia, which ultimately result in grade 4 HE (hepatic coma). An increase in 

the number of OX-42/CD11b positive microglia has been demonstrated in the frontal cortex, 
thalamus, hippocampus and cerebellum starting 6 h after surgery (early stage HE) and wors-

ening at the time of coma/edema [9, 10]. These pathological effects, to include brain edema 
and HE progression, could be alleviated by either mild hypothermia [9] or treatment with 

minocycline [10].

2.3. Portal-systemic (bypass) encephalopathy

In a related, more subtle model of HE induced by end-to-side portacaval shunt surgery with-

out subsequent hepatic artery ligation, rats develop mild cognitive impairment over the fol-

lowing 3–4 weeks. Associated with this mild form of HE (or minimal HE) is a change in 
the microglia morphology to a more ameboid, activated phenotype [11, 12]. Curiously, these 
changes were restricted to cerebellum. Chronic infusion of a p38 mitogen-activated protein 
kinase inhibitor [11] or the phosphodiesterase inhibitor Sildenafil [12] reversed the morpho-

logical changes observed in microglia and prevented the cognitive impairment.

2.4. Biliary cirrhosis

Obstruction of the common bile duct induces a reproducible model of biliary cirrhosis in 
rats. Bile duct-ligated (BDL) animals have liver failure, developing jaundice, portal hyperten-

sion, portal-systemic shunting, bacterial translocation and immune system dysfunction. BDL 
rats are hyperammonemic but show only low-grade or minimal encephalopathy (decreased 

locomotor activities) [3]. Using this model, microglia are activated predominantly in the 

cerebellum with only traces of activation in the striatum and thalamus [13]. Treatment with 

ibuprofen reduced microglia activation and reversed the concomitant cognitive impairments 

observed [13]. Similarly, microglia activation has been shown after BDL in mice, as demon-

strated by morphological changes in Iba-1 positive microglia [14]. However, in contrast to 
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the rat model, the activation of microglia was localized to the cerebral cortex rather than the 
cerebellum. The cause of these region-and species-selective changes remains unknown. The 
activation of microglia in BDL mice is thought to subsequently recruit monocytes to the brain 
that contribute to the cognitive impairment observed [15].

3. Mechanism of microglia activation during HE

As mentioned above, the development of HE appears to be due to the buildup of toxic or 
inflammatory substances in the blood stream as a result of impaired liver function. While the 
identity of all of these substances is likely unknown, a summary of the identified factors and 
their involvement in HE is shown in Figure 2 and is described in greater detail as follows:

Figure 2. Schematic diagram depicting the current knowledge of the pathogenic mechanisms of HE. Following liver 
failure or chronic liver disease, there are elevations of serum ammonia, circulating bile acids and systemic inflammation. 
All of these are able to promote microglia activation as has been shown by numerous studies. In addition, elevated 
cerebral ammonia leads to an elevation of glutamine in astrocytes causing a metabolic challenge and swelling of 

astrocytes. There are potential mechanisms at play in which activated microglia promote astrocyte swelling. Both 

astrocyte swelling and microglia activation promote the development of HE.
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3.1. Ammonia

Ammonia is a nitrogenous compound that is the best-characterized neurotoxin that contrib-

utes to the development of HE. Ammonia is generated through both gut bacteria and entero-

cytes and is subsequently metabolized by the liver into urea after its passage through the portal 

tract [16, 17]. Urea, unlike ammonia, can be excreted from the body via the kidney. However, 
when the liver is damaged or diseased, this detoxification of ammonia into urea by the liver is 
impaired leading to significant elevations of ammonia in the bloodstream. Ammonia has the 
capability to cross the blood-brain barrier during HE and once in the brain, ammonia is taken 
up by astrocytes [18]. Astrocytes metabolize ammonia into glutamate and subsequently into 

glutamine via glutamine synthetase. The increased levels of glutamine inside of astrocytes 

cause an osmotic gradient which results in the swelling of astrocytes and cytotoxic edema 
[19]. This results in a morphological change in astrocytes, which have been characterized as 

Alzheimer type II astrocytes, which are a neuropathological marker of this disease state [20].

Ammonia can contribute to other aspects of pathology other than the swelling of astrocytes 

as this metabolite has been shown to induce oxidative stress and neuroinflammation, which 
contribute to the pathology of HE. This is evident in cell culture studies where treating rat 

primary microglia with 5 mM of ammonia was found to induce the expression of reactive 
nitrogen and oxygen species [21]. In addition, treating rat primary astrocytes with condi-
tioned media from these ammonia-treated microglia induced cell swelling [22]. The idea that 

ammonia was the primary factor necessary to induce encephalopathy is not be the case in 

every circumstance. Injection of LPS into sham-operated, ammonia-fed and BDL rats deter-

mined that significant neurological deficits and cytotoxic brain edema were observed only in 
the BDL rats administered LPS [22]. This gives support that inflammation induced by organ 
injury works in tandem with LPS-induced inflammation to contribute to HE. Therefore, while 
ammonia does play a significant role in HE, microglia-induced inflammation is a synergistic 
partner that also contributes to the pathology of this disorder.

3.2. Bile acids

It is well accepted that increased serum bile acids can be an indication of liver damage [23] 

and have been observed in the cerebrospinal fluid of patients with fulminant hepatic fail-
ure [24], and with liver cirrhosis [25], however, their contribution to the pathogenesis of HE 

has only recently been suggested [26, 27]. Increased serum bile acids have been implicated 
in the increased blood-brain barrier permeability observed in a rat model of chronic liver 

disease [28] hereby allowing access of bile acids and other signaling molecules to the brain. 

Furthermore, increased bile acid content in brain tissue has been demonstrated in rodent 
models of both acute and chronic liver diseases [26, 27]. In the AOM mouse model of Type 
A HE, increased total bile acid content was observed in the frontal cortex, and strategies to 
reduced circulating bile acids (e.g., cholestyramine feeding or the use of a genetically modi-

fied mouse with impaired bile acid synthesis) proved neuroprotective [26].

Activation of microglia is a delicate balance between the proinflammatory chemokine ligand 
2 (CCL2) and the anti-inflammatory chemokine fractalkine, which in physiological conditions 
favors the dampening of microglia activation [6]. However, during type A HE, this balance is 
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dysregulated leading to an increased production of CCL2 [5] and a downregulation of frac-

talkine [6] and subsequent microglia activation [5, 6]. This imbalance may, at least in part, be 

attributable to aberrant bile acid signaling in the frontal cortex during acute liver failure [29].

3.3. Proinflammatory cytokines

It is commonly accepted that systemic inflammation contributes to the progression of HE. 
Indeed, in patients and in animal models of HE, systemic inflammation causes worsening 
of the encephalopathy, and it has been proposed that proinflammatory signals act syner-

gistically with ammonia toxicity to bring about the neurological complications of acute and 
chronic liver failure [30–32].

Because the proinflammatory cytokines released from the liver during liver damage are often 
identical to those released from activated microglia, it is difficult to determine the precise 
origin and role of each source of cytokine during HE. However, a number of liver-derived 
proinflammatory cytokines have been definitively demonstrated.

Tumor necrosis factor-alpha (TNFα) is a potent proinflammatory cytokine. Circulating levels 
of TNFα are increased as a function of the severity of HE in both patients [33] and experi-
mental animals [10] with liver failure. Moreover, the presence of TNFα gene polymorphisms 
is known to influence the clinical outcome in patients with acute liver failure [34]. In experi-
mental models of acute liver failure, mice lacking the TNF receptor 1 gene had a delayed 
onset of encephalopathy and an attenuation of brain edema [35]. TNFα has been shown to 
activate microglia in a number of experimental models of neuroinflammation [36, 37]. With 
respect to HE, systemic levels of TNFα are increased in the AOM model of acute liver failure 
[7]. Inhibition of TNFα signaling by systemic treatment with etanercept reduced systemic 
inflammation, attenuated the neurological decline, and prevented microglial activation in the 
cerebral cortex [7]. These data support the hypothesis that peripherally derived TNFα, at least 
in part, contributes to the microglial activation and subsequent neurological decline in liver 

failure. In support of this concept, neurological complications occurring in the BDL model of 
biliary cirrhosis were shown to be the consequence of monocyte recruitment in response to 

TNFα signaling and occurred via microglial activation. Specifically, peripheral TNFα signal-
ing stimulates microglia to produce CCL2, which subsequently mediates monocyte recruit-
ment into the brain [14]. These findings were suggested to constitute a novel immune-to-brain 
communication pathway with the potential to result in altered neuronal excitability and neu-

rological complications during cholestatic liver disease.

The role of transforming growth factor β (TGFβ) in the inflammatory response is largely con-

text dependent. Specifically, TGFβ has both anti-inflammatory and proinflammatory effects 
on various immune cells in the body, including microglial activation. Increased levels of TGFβ 
have been demonstrated in the liver and serum in the AOM model of acute liver failure [38]. 

The authors demonstrated that peripheral TGFβ has implications on microglial activation 
[39]. Specifically, systemic treatment of mice with a neutralizing anti-TGFβ antibody, that 
did not significantly alter the underlying liver damage, but inhibited the actions of circulat-
ing TGFβ delayed the neurological decline observed in AOM-induced acute liver failure [38], 

and attenuated the morphological changes in Iba-1 positive microglia [39]. However, whether 

Neuroinflammatory Signals during Acute and Chronic Liver Diseases
http://dx.doi.org/10.5772/intechopen.68938

297



liver-derived TGFβ is acting directly on microglia to regulate the neuroinflammatory response 
in these models of HE, or whether the changes in microglial activation are an indirect effect of 
the protective effect of anti-TGFβ neutralizing antibodies remains to be established.

3.4. Neuron and astrocyte crosstalk with microglia

Microglia activation does not occur in an isolated system, and various studies have demon-

strated that both neurons and astrocytes have the capability to crosstalk with microglia and 
promote their activation during neuroinflammatory states. This does occur in conditions other 
than HE. For example, in a mouse model of Alzheimer’s disease, astrocytes have upregulated 
CCAAT/enhancer-binding protein and proinflammatory cytokines, which are associated with 
microglia activation and migration [40]. During hyperammonemia in rats, it was found that 
ammonia induces both astrocyte and microglia activation along with increased production 

of interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) [41]. In a recent report, LPS-stimulated 
microglia have increased production of proinflammatory cytokines including IL-1β, IL-6 and 
TNFα which were reduced when microglia were co-cultured with astrocytes indicating that 
astrocytes may play an immunomodulatory role [42].

In contrast, neurons have been demonstrated to induce the activation of microglia during 
HE. In the cortex of mice with acute liver failure, there is an elevation of CCL2 in neurons, 
which signals through chemokine receptor 2 (CCR2) and chemokine receptor 4 (CCR4) [5]. 

Antagonism of CCR2 or CCR4 was found to improve HE outcomes and reduce microg-

lia activation compared to controls [5]. In physiological states, neurons are able to inhibit 
microglia expression by producing fractalkine, which signals through CX3CR1 on microglia 
[6]. Fractalkine in neurons was found to be suppressed in the cortex during HE in mice with 
acute liver failure and infusion of soluble fractalkine into the brain led to reduced microglia 
activation [6].

4. Treatment strategies to reduce neuroinflammation during liver disease

At this time, most therapies used for the treatment and management of HE are not targeted 

directly at neuroinflammation, per se. As ammonia was the first identified neurotoxin to play 
a role in HE, current treatment strategies are aimed at reducing circulating ammonia levels 

during this disease state. Some of these treatments appear to have efficacy in certain condi-
tions, while others do not. Current treatments and future potential therapeutic strategies will 
be discussed below.

4.1. Current treatments for HE

A majority of current therapies are aimed at reducing the levels of circulating ammonia by tar-

geting the bacteria of the gut. It should be noted that these treatments may indirectly reduce 
inflammation due to the synergism of ammonia and neuroinflammation during HE described 
above. The non-absorbable disaccharides lactulose and lactitol are commonly used for HE 
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treatment. These are metabolized by the gut microbiota, which acidifies the colon, reduces the 
number of ammonia producing bacteria, and converts ammonia to ammonium, which can-

not be absorbed [43]. While studies have reported improved outcomes of HE patients during 
lactulose treatment [44], a meta-analysis assessing 30 studies determined that lactulose treat-

ment did not significantly reduce mortality in HE patients though it did reduce the risk of no 
improvement [45]. Lactitol has been shown to be just as efficacious as lactulose and has less 
severe side effects but is not available in the United States [46].

Non-digestible antibiotics are another therapy targeted at reducing ammonia production of 

intestinal bacteria and can be used in conjunction with lactulose. Rifaximin has the least num-

ber of side effects and is the most well-characterized [47]. Rifaximin is effective against both 
Gram-positive and Gram-negative bacteria of the gastrointestinal tract. Rifaximin works by 
disrupting transcription by binding RNA polymerase and has been demonstrated to reduce 

ammonia concentrations and improve mental status to a greater degree than lactulose or 

other antibiotics in HE patients [48].

l-Ornithine-l-aspartate (LOLA) is aimed at reducing ammonia concentrations by increasing 
the generation of urea through the urea cycle. Oral administration of LOLA is not recom-

mended for the management of HE as the studies assessing its efficacy have been conflicting 
with some stating no benefit compared to placebo [49]. Newer studies have identified that 
intravenous administration of LOLA is more efficacious at lowering ammonia levels and is 
recommended for patients that do not respond to lactulose treatment [50].

Probiotics are dietary supplements containing viable bacteria that are designed to deprive 
pathogenic bacteria of nutrients, while supplying beneficial bacteria with growth-promoting 
substrates. While there have not been definitive studies during acute liver failure, probiotics 
have shown efficacy during type C HE. A meta-analysis of probiotics usage in patients with 
minimal HE described that they are associated with significantly improved outcomes [51]. 

In another study, it was found that the probiotic VSL#3 improved outcomes in patients with 
minimal HE and had comparable efficacy to lactulose [52].

Other treatments employed are designed to minimize the complications of HE. Two of these 
are mannitol and hypertonic saline which aim to reduce cerebral edema and intracranial pres-

sures that are a result of cytotoxic edema and inflammation [50].

4.2. Pre-clinical therapies targeting inflammation

While the current therapies being employed are largely focused on ammonia, there are pro-

spective therapeutic approaches that are targeted at reducing neuroinflammation with many 
of the studies reporting improved HE outcomes.

Therapeutic hypothermia has been employed in rodent models and in patients. In rats with 
end-to-side portacaval anastomosis, moderate hypothermia (33°C) was found to reduce 
cerebral edema and TNFα, IL-1β and IL-6 concentrations in the cortex [9]. A similar finding 
was observed in HE patients where reducing their core temperature to 32–33°C was able to 
decrease levels of circulating TNFα, IL-1β and IL-6 as well as reduce cerebral edema and 
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intracranial pressure [53]. However, a recent report investigating moderate hypothermia 

(33–34°C) in HE patients from acute liver failure determined that this treatment strategy did 
little to reduce increased intracranial pressures or mortality [54]. Therefore, more studies are 

necessary to determine the clinical potential of therapeutic hypothermia in patients with HE.

Chemokines and cytokines may also be a potential target for the management of HE. Systemic 
antagonism of CCR2 or CCR4 was found to reduce neuroinflammation and neurological 
decline in AOM-treated mice [5]. In addition, supplementation of CX3CR1-mediated signal-
ing via soluble fractalkine infusion in the brain reduced microglia activation and neuroin-

flammation in AOM-treated mice [6]. TNFα-mediated signaling seems to play a significant 
role in neuroinflammation and outcomes during HE as infliximab, etanercept and p38 inhibi-
tors all reduced serum and brain levels of proinflammatory cytokines and improved cognitive 
and motor functions in rodent models of HE [7, 11, 55].

N-acetylcysteine is a therapeutic agent that is known to be efficacious in the treatment of hepa-

totoxic acetaminophen overdose by increasing bioavailability of the antioxidant glutathione. In 
regard to HE, it has been shown that in acute liver failure not due to acetaminophen overdose that 

N-acetylcysteine is able to reduce IL-17 and improve outcomes but this occurs only in patients 
with grade 0-II HE [56, 57]. These beneficial effects of N-acetylcysteine were not observed in 
children with minimal HE due to non-acetaminophen-induced acute liver failure as there was 

no change in 1-year survival [58]. In fact, it was observed that children younger than 2 years old 
actually had a significantly reduced 1-year transplant free survival compared to controls [58].

Non-steroidal anti-inflammatory drugs (NSAIDs) also show promise at mitigating neuro-

inflammation and improving outcomes during HE. Ibuprofen has been shown to reduce 
microglia activation, cerebellar IL-1β concentrations and improved learning and motor func-

tions in BDL rats [13]. In portacaval shunt rats with HE, ibuprofen treatment reduced induc-

ible nitric oxide synthase expression and improved motor and cognitive function compared to 
controls [59]. Indomethacin has shown conflicting results with this treatment reducing intra-

cranial pressures in patients with acute liver failure while increasing TNFα and mortality in 
TAA-induced liver failure in rats [60]. More studies are necessary with NSAIDs in patient 
populations before these agents should be used for the treatment of HE [61].

The elevation of bile acids in the brain and CSF of HE patients due to acute liver failure has 
been previously described [24]. Recently, we published a report that bile acids are elevated in 

the cortex of AOM-treated mice, and the use of cholestyramine (to promote fecal excretion of 
bile acids) or Cyp7A1-null mice (that have reduced bile acid synthesis) were protected from 
neurological decline [26]. This is not unique to this model as BDL rats 3 weeks after surgery 
have significant elevations of lithocholic acid in the brain [62]. Bile acids in other systems have 

been demonstrated to have the ability to modulate inflammation, giving support that they 
could contribute to neuroinflammation during HE.

4.3. Clinical trials

At this time, there are 83 open clinical trials assessing aspects of HE. That being said, the num-

bers directly assessing HE are only 15 and of these 15, 6 involve lactulose or rifaximin that 
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are already being readily used in the clinic. Of these remaining studies, only 6 involve novel 
treatments not currently in use.

Due to the lack of efficacy for probiotics during HE due to acute liver failure, fecal microbiota 
transplants are being proposed to better control the makeup of the gut microbiome. Fecal 
microbiota transplants are taken from a health donor and are then administered in a diseased 
individual with the goal of altering their gut bacteria to a healthier population. The first trial 
is aimed at cirrhotic patients with recurrent HE that do not respond to lactulose or rifaximin 
(NCT02255617). The second trial is also in cirrhotic patients and is aimed at determining the 
feasibility and safety of fecal microbiota transplants in HE patients (NCT02862249).

GABA receptor antagonists could also be a potential therapy for HE as this neurotransmitter 
is modulated by both positive and negative regulators [63]. As GABA activation suppresses 
neural circuits, this neurotransmission pathway could suppress the CNS and promote hepatic 
coma. Flumazenil is a GABA receptor antagonist that is being proposed for use in non-alco-

holic cirrhotic patients that have HE (NCT02048969). This trial will employ proton magnetic 
resonance spectroscopy to determine the metabolic and biochemical changes in these patients 

that are on flumazenil or placebo.

Metformin is one of the primary medications used for the treatment of type 2 diabetes. During 
HE, it has been shown that metformin inhibits glutaminase activity and was protective 

against HE in cirrhotic patients with diabetes [64]. In order to determine whether metformin 
is beneficial in cirrhotic patients with diabetes and minimal HE, a clinical trial is being per-

formed that will assess neurobehavioral outcomes using psychometric tests in these patients 

(NCT02470546).

Albumin infusion is a method employed to scavenge substances, and proteins in the blood 

to improve patient outcomes. In cirrhotic patients with HE, albumin infusion has been previ-
ously used and was found to not reduce the occurrence of HE during hospitalization, but did 

improve survival after hospitalization [65]. The new trial is comparing infusion of human 

albumin into cirrhotic patients with HE and is assessing survival at 90 days and 180 days fol-

lowing initial dose (NCT02401490).

The last clinical trial is the joint administration of nitazoxanide and lactulose in cirrhotic 
patients with HE (NCT02464124). Nitazoxanide is an oral medication that is used to treat 
Giardia lamblia and Cryptosporidium parvum during infectious diarrhea. The outcomes of this 

trial are to determine the number of patients with total reversal of HE.

5. Conclusions

In conclusion, the evidence for a role of neuroinflammation in HE is unequivocal. However, 
the precise molecular mechanism by which neuroinflammation, and more specifically microg-

lia, is activated is not completely understood. Targetting the neuroinflammatory aspect of HE 
may prove to be a useful strategy for the development of experimental therapeutics to man-

age the neurological complications of HE.
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