
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 2

Human Error Analysis in Software Engineering

Fuqun Huang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.68392

Abstract

As the primary cause of software defects, human error is the key to understanding,
detecting and preventing software defects. This chapter first reviews the state of art of
an emerging area: software fault defense based on human error mechanisms. Then, an
approach for human error analysis (HEA) is proposed. HEA consists of two important
components: human error modes (HEM) and an undated version of causal mechanism
graphs (CMGs). Human error modes are the general erroneous patterns that humans
tend to behave in a variety of activities. Causal mechanism graph provides a way to
extract the error-prone contexts in software development, and link the contexts to gen-
eral human error modes. HEA can be used at various phases of software development,
for both defect detection and prevention purposes. An application case is provided to
demonstrate how to use HEA.

Keywords: human error analysis, software defect prevention, fault detection, causal

mechanism graph, software quality assurance

1. Introduction

Software has become a major determinant of how reliable, safe and secure computer systems

can be in various safety-critical domains, such as aerospace and energy areas. Despite the fact

that software reliability engineering has remained an active research subject over 40 years, soft-

ware is still often orders of magnitude less reliable than hardware. There are over 200 software

reliability models, but each of which can apply to only a few cases. Based on scientific intuition,
if there were a model that had captured the essence of an entity of interest, it should be able to

describe the entity in a variety of contexts. It is necessary to reflect what have been overlook in
the current research and practices in software (reliability) engineering.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Software, as a pure cognitive product [1, 2], does not fail in the same way as how hardware

fails. Software does not have material or manufacturing problems, for example, corrosion or

aging problems. How a software system performed in the last second could tell nothing about

whether the system will fail or not in the next second; and people can hardly anticipate the

consequences of a software failure until it happens. Drawing upon the notion of the cogni-

tive nature of software faults, there is a need to build software dependability theories on the

foundation of cognitive science.

As the primary cause of software defects, human error is the key to understanding and pre-

venting software defects. Software defects are by nature the manifestations of cognitive errors

of individual software practitioners or/and of miscommunication between software practitio-

ners. Though the cognitive nature of software has been realized early in 1970s [3], significant
progress has only been made in recent years on how we can use human error theory to defend

against software defects [4].

This chapter reviews the new interdisciplinary area: Software Fault Defense based on

Human Error mechanisms (SFDHE) and proposes an approach for human error analysis

(HEA). HEA is at the core of various methods used to defend against software faults in the

SFDHE area.

The chapter is organized as follows: Section 2 reviews the emerging area SFDHE; Section 3

proposes the method for human error analysis (HEA); Section 4 presents an application exam-

ple; Section 5 makes conclusion.

2. The new interdiscipline: Software Fault Defense based on Human

Error mechanisms (SFDHE)

2.1. History

Human cognition plays a central role in software development even if in the modern large

projects [4–7]. A previous analysis on a large set of industrial data shows that eighty seven

percent of the severe residual defects are caused by individual cognitive failures independent

of process consistency [8]. Approaches for defending against cognitive errors are necessary to

improve software dependability.

Software Fault Defense based on human error mechanisms [5], firstly proposed in 2011 by
Huang [4], is an area aiming to systematically predict, prevent, tolerate and detect software

faults through a deep understanding of the causal mechanisms underlying software faults—

the cognitive errors of software practitioners. This is an interdisciplinary area built on integra-

tive theories in software engineering, systems engineering, software reliability engineering,

software psychology and cognitive science.

Theory and Application on Cognitive Factors and Risk Management - New Trends and Procedures20

2.2. State of art

2.2.1. Human error mechanisms underlying software faults

The first phase of SFDHE is to identify the factors that influence software fault introduction,
as well as how various factors interact with each other to form a software defect. The factors

related to programming performance are traditionally studied in software psychology, with a

thorough review in [9]. However, there is few study focusing on identifying factors that influ-

ence human errors in programming. One of Huang’s recent experimental studies was devoted

to comparing the effects of various human factors on fault introduction rate [7]. Results show

that a few dimensions of programmers’ cognitive styles and personality traits are related to

fault introduction rate [7] as significantly as the conventional program metrics [10].

In order to study human errors in software engineering, there is a need to integrate general

human error theories with the cognitive nature of software development. Huang [2] developed

an integrated cognitive model of software design. Based on the cognitive model, a human error

taxonomy was proposed for software fault prevention [2]. Another human error taxonomy was

recently developed by Anu and Walia et al. [11] for with an emphasis on software requirement

review. These human error taxonomies vary in details in order to achieve different purposes,
however, they both place Reason’s human error theory [12] as a fundamental theory.

A recent experiment [13] examined how an erroneous pattern called “postcompletion error”
[14] manifests itself in software development. Postcompletion error is a specific type of human
errors that one tends to omit a subtask that is carried out at the end of a task but is not a nec-

essary condition for the achievement of the main subtask [14]. Postcompletion errors have

been observed in a variety of tasks by psychologists, but there is a lack of empirical studies

in software engineering. The author’s experiment shows that 41.82% of programmers com-

mitted the postcompletion error in the same way. As the first attempt to link general human
error modes (HEM) to programming contexts, the study has set a significant paradigm for
investigating the human error mechanisms underlying software defects.

2.2.2. Software fault prevention based on human error mechanisms

A key activity of the traditional defect prevention process is to identify root causes. Root causes

are generally classified into four categories: method, people, tool, and requirement; detailed
causes are analyzed by brainstorming with cause-effect diagrams [15]. Such taxonomies are

too abstract to be helpful for those organizations with little experience. Huang’s human error
taxonomy [2] has been used to advance the process of traditional software defect prevention

[16, 17].

Huang [18] also developed an approach called defect prevention based on human error theo-

ries (DPeHE) to proactively prevent software defects by promoting software developers’ cog-

nitive ability of human error prevention. Compared to the conventional defect prevention that

Human Error Analysis in Software Engineering
http://dx.doi.org/10.5772/intechopen.68392

21

focuses on organizational software process improvement, DPeHE focuses more on software

developers’ metacognitive ability to prevent cognitive errors. DPeHE promotes software

developers’ error prevention ability through two stages. In the first stage, DPeHE provides
developers with explicit knowledge of human error mechanisms and prevention strategies. In

the second stage, software developers use the provided strategies and devices to practice error

regulation during their real programming practices. Through this training program, software

developers gain better awareness of error-prone situations and better ability to prevent errors.
This method has received very positive feedbacks from a variety of industrial users [18].

2.2.3. Software fault tolerance based on human error mechanisms

Independent development (i.e., development by isolated teams) is used to promote the

fault tolerance capability in N-version programming. However, empirical evidence shows

that coincident faults are introduced even if the redundant versions are truly built inde-

pendently [19, 20]. Programmers are prone to make the same errors under certain circum-

stances, thus introducing the same faults at certain places. Huang [4] has been devoted

to first understanding why, how and under what circumstances programmers tend to
introduce the same faults, and then to seeking a scientific way to achieve fault diversity
and enhance software systems’ fault tolerant capability [4]. Huang’s theory [7] relates the

likelihood of identical faults to the “performance level” of the activity required from the
programmers. Remarkably, the most frequent coincident fault does not occur at difficult
task points that involve knowledge-based performance, but rather at an easy task point that

involves rule-based performance [7].

2.2.4. Software fault detection based on human error mechanisms

Since the idea of using human error theories to promote software fault detections at various

stages of software development lifecycle was presented in 2011 [4], significant progress has
been made recently [11, 21]. Anu and Walia et al. [11] developed a human error taxonomy

for requirement review, and positive effects on subjects’ fault detection effectiveness were
observed. Li, Lee and Huang et al. [21, 22] introduced human error theories to prioritize test

strategies at coding and evolution phases.

3. Human error analysis

Human error analysis (HEA) is at the core process of various methods for defending against

software faults in SFDHE. HEA can be employed at different phases during software devel-
opment, for both defect detection and prevention purposes, shown in Figure 1. For instance,

HEA can be used to promote requirement review, design review and code inspection. At

requirement and design phases, HEA can also help one identify contexts prone to trigger

software developers’ cognitive errors at the next phase, so one can take strategies to prevent

the errors.

Theory and Application on Cognitive Factors and Risk Management - New Trends and Procedures22

HEA consists of two components: human error modes (HEM) and causal mechanism graph

(CMG). Human error modes are the erroneous patterns that psychologists that have observed
to recur across diverse activities [12, 14]. CMG provides a way to extract a specific set of con-

texts of the artifact (e.g., requirement, design and code) under analysis to the general condi-

tions that associates with a human error mode.

3.1. Human error modes

Though human errors appear in different “guises” in different contexts, they take a limited
number of underlying modes [12]. A human error mode is a particular pattern of human
erroneous behavior that recurs across different activities, due to the cognitive weakness that
shared by all humans, for example, applying “strong-but-now-wrong” rules [12].

Understanding such recurring error modes is essential to identifying software defects and the

contexts prone to trigger a human error. A sample of the error modes are describes in Table 1.

These error modes were observed to manifest themselves in software development contexts

in the author’s previous experimental studies [5, 7, 13] or industrial historical data [8]. More

software defects examples associated with these human error modes can be found in [18].

3.2. Causal mechanism graphs

The author recommends a graphic tool called causal mechanism graph (CMG) for causal

mechanism modeling. CMG is a notation system firstly used to represent and model the

Figure 1. The framework of HEA in software engineering.

Human Error Analysis in Software Engineering
http://dx.doi.org/10.5772/intechopen.68392

23

 complex causal mechanisms that determine software dependability, which encompasses dif-

ferent attributes, such as reliability, safety, security, maintainability and availability [23, 24].

A causal mechanism graph is capable of capturing logic, time and scenario features, which

are essential to the description of interactions between various factors to produce an effect.
The notations in CMG allow researchers to model causal mechanisms more accurately: logic

Error mode name Explanation and scenarios

Lack of knowledge [2] Software defects are introduced when one omits related knowledge, or even

does not realize related knowledge is required. This error mode is prone to

appear especially when the problem is an interdisciplinary problem.

Postcompletion error [13, 14] The pattern of “post completion error” is that if the ultimate goal is
decomposed into several subgoals, a subgoal is likely to be omitted under
such conditions: the subgoal is not a necessary condition for the achievement

of its corresponding superordinate goal; the subgoal is to be carried out at

the end of the task.

Problem representation error Misunderstand task representation material and simulate wrong situation

model of the problem, due to the ambiguity of the material.

Apply “strong but now wrong” rules People tend to behave the same way in a context that is similar to past

circumstances, neglecting the countersigns of the exceptional or novel

circumstances. In software development, this means that when solving

problems, developers tend to prefer rules that have been successful in the

past. The more frequent and successful the rule has been used before, the

more likely it is recalled.

Schema encoding deficiencies Features of a particular situation are either not encoded at all or

misrepresented in the conditional component of the rule.

Selectivity Psychologically salient, rather than logically important task information

is attended to. In software development, “selectivity” means that when a
developer solving problems, if attention is given to the wrong features or not
given to the right features, mistakes will occur, resulting in wrong problem

presentation, or selecting wrong rules or schemata to construct solutions.

Confirmation bias People tend to seek for evidence that could verify their hypotheses rather

than refuting them, whether in searching for evidence, interpreting it, or

recalling it from memory. Others restrict the term to selective collection of

evidence.

Problems with complexity As problem complexity arises, error symptoms tend to occur such as delayed

feedback, insufficient consideration of processes in time, difficulties with
exponential developments, thinking in causal series not causal nets, thematic

vagabonding, and encysting (topics are lingered over and small details

attended to lovingly).

Biased review People tend to believe that all possible courses of action have been

considered, when in fact very few have been considered.

Inattention Fail to attend to a routine action at a critical time causes forgotten actions,
forgotten goals, or inappropriate actions. “Automatic processing” in software
developing happens when no problem solving activities are involved,

such as typing. Slips might happen without proper monitoring and error

detection.

Table 1. Sample of human error modes (adopted from Ref. [18]).

Theory and Application on Cognitive Factors and Risk Management - New Trends and Procedures24

symbols allow for various logical combinations between causes or effects; the scenario sym-

bol enables the identification of situations in which a relation is likely to exist; and time flow
allows a number of cause-effect units to develop into a cause-effective chain. Moreover, nota-

tions are designed to capture the recurrent patterns of comprehensive causal mechanisms
(e.g., activate and conflict).

CMG is especially suitable to represent one’s cognitive knowledge, as it allows one to model

the dynamic causal mechanisms in a robust way. This feature, combined with excellent

reliability and validity [23], positions CMG as a powerful method to extract and model the

Symbol Name Description

AND Entity a
1
 AND entity a

2
 form entity b.

OR Entity a
1
 OR entity a

2
 form entity b.

Subset A set a
1
 is a subset of a set a

2
, that is, all elements of a

1
 are also

elements of a
2
. “•” denotes the place where the connection ends, i.e.,

a
2
 around the “•” is the set, while a

1
 is the subset

Element An element a
1
 is a singleton of the distinct objects that make up that

set, S. “•” denotes the place where the connection ends.

Property A property a
1
 is special quality or characteristic of an entity, S. “•”

denotes the place where the connection ends.

Cause Influence describes the causal relations between two entities. a
1

causes a
2
.

Imply Directed implication. When one variable implies another variable, it

means dependency exists between the two variables (say a
1
 implies

a
2
). Such dependency allows one to make inference about one variable

according to another variable.

Conflict Effect b is present when a
1
 is in conflict with a

2
. The effect b is present

only when these two factors (a
1
 and a

2
) are coupled, and where these

two factors have different types of influences (e.g., positive versus
negative).

Trigger Effect b is caused by “event a
2
 Triggering event a

1
.”

Human error

mode

A general psychological error pattern.

Context The conditions contained in a software artifact that tend to trigger a

human error mode.

Top event

(software

defect)

The ultimate result (i.e., software defect) produced by the interactions

between various contexts and human error modes.

Table 2. Sample notation for causal mechanism graph (Version E for human error analysis).

Human Error Analysis in Software Engineering
http://dx.doi.org/10.5772/intechopen.68392

25

human error mechanisms underlying software faults. A sample of the CMG notation adapted

for human error analysis is shown in Table 2.

3.3. An application example

An example of using CMG to perform human error analysis is shown in Figure 2. The pro-

posed approach is applied on a software requirement called “Jiong” problem provided in
Ref. [13].

A requirement segment is extracted, shown in Figure 2. To complete the “Jiong” problem, a
programmer first needed to calculate the structure of a “Jiong” using a recursion or iteration
algorithms (A.1 in Figure 2), and then print a blank line after the word (A.2 in Figure 2).

Using HEA, we see that this requirement segment contains three conditions: (1) A.1 is the main

requirement; (2) A.2 is not a necessary condition to A.1; (3) A.2 is the last step of A. These three

conditions consist a scenario that tends to trigger “postcompletion error.” Postcompletion
error is an error pattern whereby one tends to omit a subtask that should be carried out at the
end of a task but is not a necessary condition for the achievement of the main goal [14].

This requirement was presented to student programmers in a programming contest in the

previous study [13]. Results show that 23 out of 55 (41.8%) programmers committed the error
of “forgetting to print a blank line after each word,” in the same way as observed by psycholo-

gies in other tasks.

It is notable that “printing a blank line” is a very simple requirement and have been explicitly
specified; this requirement is correct and clear. According to the current requirement quality
criteria such as correctness, completeness, unambiguity and consistency, this requirement

Figure 2. An example of human error analysis.

Theory and Application on Cognitive Factors and Risk Management - New Trends and Procedures26

contains no features prone to trigger a software development error. In fact, this requirement

triggered significantly more programmers to commit the error than any of other locations,
and amazingly in the same way [13].

Once the error-prone representation is identified, one can use strategies to prevent it from trig-

gering development errors. For instance, the requirement writer may highlight (e.g., using

bright colors and/or bold font) the places of postcompletion tasks in the requirement documents

(“printing a blank line after each word” in the “Jiong” case), since visual cues are an effective
way to reduce postcompletion errors [25]. Though using styles to facilitate readers’ cognitive

process is not new in software requirement engineering, the contribution here is to tell the writer

the exact location that should be highlighted, in order to reduce a developer’s error-proneness.

4. Conclusion

This chapter emphasizes the necessity of understanding the cognitive nature of software and

software faults, and reviews the emerging area of defending against software defects based

on human error theories (SFDHE). An approach of human error analysis (HEA) is proposed

to detect and/or prevent software defects at various stages of the software development life

cycle. The application on a requirement review shows that HEA is able to identify an error-

prone scenario that can never been captured by any existing criteria for requirement quality.

HEA offers a promising perspective to advance the current practices of software fault detec-

tion and prevention.

Author details

Fuqun Huang

Address all correspondence to: huangfuqun@gmail.com

Institute of Interdisciplinary Scientists, Seattle, Washington State, USA

References

[1] Détienne F. Software Design–Cognitive Aspects. New York, NY: Springer-Verlag New

York, Inc.;2002

[2] Huang F, Liu B, Huang B. A Taxonomy System to Identify Human Error Causes for

Software Defects. In: The 18th International Conference on Reliability and Quality In

Design, Boston, USA; 2012. pp. 44-49

[3] Weinberg GM. The Psychology of Computer Programming. VNR Nostrand Reinhold

Company; New York: 1971

Human Error Analysis in Software Engineering
http://dx.doi.org/10.5772/intechopen.68392

27

[4] Huang F, Liu B. Systematically Improving Software Reliability: Considering Human

Errors of Software Practitioners. In: 23rd Psychology of Programming Interest Group

Annual Conference (PPIG 2011), York, UK; 2011

[5] Huang F. Software Fault Defense based on Human Errors. Ph.D., Beijing: School of

Reliability and Systems Engineering, Beihang University; 2013

[6] Visser W. Dynamic Aspects of Design Cognition: Elements for a Cognitive Model of

Design. France: INRIA; Research Report 2004

[7] Huang F, Liu B, Song Y, Keyal S. The links between human error diversity and software

diversity: Implications for fault diversity seeking. Science of Computer Programming.

2014;89, Part C:350-373

[8] Huang F, Liu B, Wang S, Li Q. The impact of software process consistency on residual

defects. Journal of Software: Evolution and Process. 2015;27:625-646

[9] Huang F, Liu B, Wang Y. Review of Software Psychology (in Chinese). Computer

Science. 2013;40:1-7

[10] Huang F, Liu B. Study on the correlations between program metrics and defect rate by a

controlled experiment. Journal of Software Engineering. 2013;7:114-120

[11] Anu V, Walia G, Hu W, Carver JC, Bradshaw G. Using a Cognitive Psychology
Perspective on Errors to Improve Requirements Quality: An Empirical Investigation.

In:Software Relia bility Engineering (ISSRE), 2016 IEEE 27th International Symposium on;

2016, pp. 65-76

[12] Reason J. Human Error. Cambridge, UK: Cambridge University Press; 1990

[13] Huang F. Post-completion Error in Software Development. In The 9th International

Workshop on Cooperative and Human Aspects of Software Engineering, ICSE

2016Austin, TX, USA; 2016, pp. 108-113

[14] Byrne MD, Bovair S. A working memory model of a common procedural error. Cognitive

Science. 1997;21:31-61

[15] Card DN. Myths and Strategies of Defect Causal Analysis. In: Proceedings of the Twenty-

Fourth Annual Pacific Northwest Software Quality Conference; 2006, pp. 469-474

[16] Mohammadnazar H. Improving Fault Prevention with Proactive Root Cause Analysis

(PRORCA method). 2016

[17] Huang B, Ma Z, Li J. Overcoming obstacles to software defect prevention. International
Journal of Industrial and Systems Engineering. 2016;24:529-542

[18] Huang F, Liu B. Software defect prevention based on human error theories. Chinese

Journal of Aeronautics. 2017. In Press

[19] Knight JC, Leveson NG. An experimental evaluation of the assumption of indepen-

dence in multi-version programming. IEEE Transactions on Software Engineering. 1986;

12:96-109

Theory and Application on Cognitive Factors and Risk Management - New Trends and Procedures28

[20] Avzenis A, Lyu MR, Schutz W. In search of effective diversity: A six-language study
of fault-tolerant flight control software. In: Proceedings of the 18th International
Symposium on Fault-Tolerant Computing, Tokyo, Japan; 1988, pp. 15-22

[21] Li Y, Li D, Huang F, Lee SY, Ai J. An Exploratory Analysis on Software Developers’ Bug-
introducing Tendency Over Time. In: The Annual Conference on Software Analysis,

Testing and Evolution, Kunming, Yunnan; 2016

[22] Lee SY, Li Y. DRS: A Developer Risk Metric for Better Predicting Software Fault-
Proneness. In: Trustworthy Systems and Their Applications (TSA), 2015 Second Inter national

Conference on; 2015, pp. 120-127

[23] Huang F, Smidts C. Causal mechanism graph ─ A new notation for capturing cause-

effect knowledge in software dependability. Reliability Engineering & System Safety.
2017;158:196-212

[24] Huang F, Li B, Pietrykowski M, Smidts C. Using Causal Mechanism Graphs to Elicit

Software Safety Measures. In: 39th Enlarged Halden Programme Group Meeting (EHPG

meeting at Sandefjord 2016); 2016

[25] Chung PH, Byrne MD. Cue effectiveness in mitigating postcompletion errors in a routine
procedural task. International Journal of Human-Computer Studies. 2008;66:217-232

Human Error Analysis in Software Engineering
http://dx.doi.org/10.5772/intechopen.68392

29

