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Abstract

Reducing the environmental impact of ground vehicles is one of the most important 
issues in modern society. Construction and agricultural vehicles contribute to pollution 
due to their huge power trains, which consume a large amount of petrol and produce 
many exhaust emissions. In this study, several recently proposed hybrid electric archi-
tectures of heavy-duty working vehicles are presented and described. Producers have 
recently shown considerable attention to similar research, which, however, are still at 
the initial stages of development. In addition, despite having some similarities with the 
automotive field, the working machine sector has technical features that require specific 
studies and the development of specific solutions. In this work, the advantages and dis-
advantages of hybrid electric solutions are pointed out, focusing on the greater electro-
mechanical complexity of the machines and their components. A specific hybridization 
factor for working vehicles is introduced, taking into account both the driving and the 
loading requirements in order to classify and compare the different hybrid solutions.

Keywords: hybrid, electric driveline, working vehicle, hybridization factor

1. Introduction

Over the past decades, the efficiency of vehicles has become a highly discussed topic due to 
pollution regulation requirements. Modern internal combustion engines (ICEs) have already 
reached remarkable performances compared with the engines of the early 1990s. However, 

they are still unable to consistently reverse the growth trend in pollutant emissions because 

the number of vehicles is also constantly increasing [1, 2]. The European Union first intro-

duced mandatory CO
2
 standards for new passenger cars in 2009 [3] and set a 2020-onward 

target average emission of 95 g CO
2
/km for new car fleets. The automotive industry devotes 
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considerable research efforts toward reducing emissions and fossil fuel dependency without 
sacrificing vehicle performance. Recently, manufacturers developed technologies to reduce 
the NOx and particulate emissions of diesel engines, such as selective catalytic reduction and 

diesel oxidation catalyst [4, 5]. Moreover, common rail fuel injection has led to higher-effi-

ciency diesel engines [6, 7]. Partial substitution of fossil diesel fuel with biodiesel is an appeal-

ing option to reduce CO
2
 emissions [8, 9]. In the Brazilian transportation sector, the addition 

of biodiesel to fossil diesel fuel has been increasing since 2012 [10].

Heavy-duty construction and agricultural vehicles also have an environmental impact. In 

Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum 

Use [11], the current trends in increasing diesel efficiency in the farm sector are explored. 
Figure 1 shows the diesel demand in the United States, highlighting that in the agricultural 
and construction machinery field, the demand has remained relatively constant since 1985, 
representing a significant portion of the total fuel consumption. Similarly to the automotive 
sector, considerable efforts have been dedicated in recent years toward reducing the energy 
consumption of construction and agricultural machines without compromising their func-

tionality and performance, taking into account the restrictions imposed by the recent emission 

regulations [12, 13]. Engine calibrations have been optimized to reduce exhaust pollutants 
in accordance with the U.S. Environmental Protection Agency emissions tiers. This was 

Figure 1. Historical diesel consumption in the United States. “Farm” includes agricultural diesel use; “off-highway” 
includes forestry, construction, and industrial use [11].
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accomplished through several means, including in-cylinder combustion optimization and 
exhaust gas recirculation, without exhaust after-treatment systems for Tiers 1–3. With the 

addition of exhaust after-treatment systems for the Tier 4 interim stage, some engines require 
diesel exhaust fluid to catalyze pollutants in the system (e.g., urea). Some manufacturers 
claim as much as 5% greater fuel efficiency for their Tier 4 interim engines compared with 
Tier 3 models [14]; however, these entail increasing complexity, dimensions, and maintenance 
costs. Although most construction and agricultural vehicles include a driving mode tractor as 

a primary power unit, most modern models provide power for implementing a power takeoff 
(PTO) shaft and/or fluid power hydraulics. Moreover, working machine engines can stay idle 
for a notable amount of time [15]. Advanced engine controls are being introduced to reduce 

fuel consumption by lowering engine idle speeds and even shutting off the engine during 
extended idle periods. Examples of these strategies are found in existing patent applications, 
which indicate intentions of further development of these strategies [16]. Hybrid electric pro-

pulsion systems allow the combustion engine to operate at maximum efficiency and ensure 
both a considerable reduction of pollutant emissions and an appreciable decrease in energy 

consumption. Over the last few years, many configurations of hybrid propulsion systems 
have been proposed, some of which are also very complex. The fuel efficiency in this operat-
ing mode is greater than in a conventional machine for the following reasons:

• the fuel and energy consumption is limited only to the vehicle work time;

• the electronic control selects the engine speed to minimize fuel consumption depending on 
the state of charge of the batteries and the vehicle power demand;

• the power transmission from the electric motor to the gearbox ensures greater energy sav-

ings compared with hydraulic power transmission;

• the electric motor acts as a power unit to charge the batteries, while the vehicle is slowing 
down/stopping.

The automotive field has the largest number of studies, published patents, and proposals for 
hybrid and electric vehicles. Recently, intensive research has been carried out to find solutions 
that will enable the gradual replacement of the conventional engine with a highly integrated 

hybrid system. In the construction and agricultural working machines field, the number of 
concepts is limited and sporadic, and only recently has the market shown great attention to 
these studies. Thus, hybrid architectures allow the development of work machines character-

ized by high versatility and new features. Such machines can be used both indoors and out-
doors because they can operate in both full electric and hybrid modes. The advantages to end 

users are reduction of running cost due to greater fuel efficiency and use of electric energy, 
and better work conditions due to low noise emissions.

From a system engineering point of view, the different solutions are described by introducing 
a specific hybridization factor suitable for work vehicles that include two main functionalities: 
driving and loading. The high-voltage electrification of work vehicles is also currently under 
development [17, 18]. According to Ponomarev et al. [19], in order to be competitive, manufac-

turers should offer energy-efficient and reliable hybrid vehicles to their customers. Compared 
with automobiles, the introduction of electric drives in work vehicles would allow expanded 
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functionalities because these machines have a large variety of functional drives [20]. The first 
part of this report gives an overview of the components of the electrification solution and 
hybrid/electric architectures, discussing the advantages related to the different solutions. The 
machines are then schematically described and compared, showing the hybrid architectures 

of the proposed solutions. Finally, the introduction of a specific hybridization factor is pro-

posed as a first classification of the main hybrid work vehicles [21, 22].

2. HEV power train configurations

The SAE defines a hybrid vehicle as a system with two or more energy storage devices, which 
must provide propulsion power either together or independently [23]. Moreover, an HEV 
is defined as a road vehicle that can draw propulsion energy from the following sources of 
stored energy: a conventional fuel system and a rechargeable energy storage system (RESS) 
that can be recharged by an electric machine (which can work as a generator), an external 
electric energy source, or both. The expression “conventional fuel” in the SAE definition con-

strains the term HEV to vehicles with a spark-ignition or a compression-ignition engine as 
the primary energy source. However, the United Nations definition of HEV [24] mentions 

consumable instead of conventional fuel. On this basis, the primary energy source in an HEV 
is not necessarily the engine hydrocarbon fuel, or biofuels but can also be the hydrogen fuel 

cell. The term electric-drive vehicle (EDV) is used in Ref. [25] to define any vehicle in which 
wheels are driven by an electric motor powered either by a RESS alone or by a RESS in combi-
nation with an engine or a fuel cell. Some types of EDV belong to the subset of plug-in electric 
vehicles (PEVs) [25, 26].

Compared with conventional internal combustion engine vehicles, HEVs include more elec-

trical components, such as electric machines, power electronics, electronic continuously vari-

able transmissions, and advanced energy storage devices [27]. The number of possible hybrid 

topologies is very large, considering the combinations of electric machines, gearboxes, and 

clutches, among others. The two main solutions, series and parallel hybrid, can be combined 

to obtain more complex and optimized architectures. There is no standard solution for the 
optimal size ratio of the internal combustion engine and the electric system, and the best 
choice includes complex trade-offs between the power as well as between cost and perfor-

mance [28]. The power train configuration of an HEV can be divided into three types: series, 
parallel, and a combination of the two [29].

2.1. Series hybrid electric vehicles

Series hybrid electric vehicles (SHEVs) involve an internal combustion engine (ICE), genera-

tor, battery packs, capacitors and electric motors as shown in Figure 2 [30–32]. SHEVs have no 
mechanical connections between the ICE and the wheels. The ICE is turned off when the bat-
tery packs feed the system in urban driving. A significant amount of energy is supplied from 
the regenerative braking. Therefore, the engine operates at its maximum efficiency point, 
leading to improved fuel efficiency and lesser carbon emission compared with other vehicle 
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configurations [33]. The series hybrid configuration is mostly used in heavy vehicles, military 
vehicles, and buses [34]. An advantage of this topology is that the ICE can be turned off when 
the vehicle is driving in a zero-emission zone. Moreover, the ICE and the electric machine 
are not mechanically coupled; thus, they can be mounted in different positions on the vehicle 
layout drive system [35].

2.2. Parallel hybrid electric vehicles (PHEV)

In a PHEV, mechanical and electrical powers are both connected to the driveline, as shown in 
Figure 3. In the case of parallel architectures, good performance during acceleration is possible 

because of the combined power from both engines [35]. Different control strategies are used 

in a preferred approach. If the power required by the transmission is higher than the output 
power of the ICE, the electric motor is turned on so that both engines can supply power to the 
transmission. If the power required by the transmission is less than the output power of the 
ICE, the remaining power is used to charge the battery packs [36]. Moreover,  mechanical and 

Figure 2. Schematic of series hybrid electric vehicles (SHEV).

Figure 3. Schematic of parallel hybrid electric vehicles (PHEV).

Trends and Hybridization Factor for Heavy-Duty Working Vehicles
http://dx.doi.org/10.5772/intechopen.68296

7



electric power could be decoupled, and the system has a high operating  flexibility enabling 
three modes of operation: purely combustion; purely electric and hybrid. Usually, a PHEVs 
are managed in purely electric mode at low speeds, until the battery charge state reaches a 
predetermined low threshold, typically 30%.

2.3. Combination of parallel and series HEVs

In the series-parallel hybrid configuration can be highlighted two main power paths. In 
mechanical power path, the energy generated by the combustion engine is directly trans-

mitted to the wheels, while the electric path the energy generated by the thermal engine is 
converted first into electrical energy by means of the generator and then again converted to 
mechanical energy delivered at the wheels. It is possible therefore to have mixed architectures 

denominated “power splits” in which the installed power is divided by means of mechanical 
couplers. Combination of parallel and series hybrid configurations is further divided into sub-
categories based on how the power is distributed [37]. PHEVs are even more suitable topolo-

gies than HEVs for reducing fuel consumption because, unlike HEVs, they may be charged 
from external electric power sources [38]. In all the configurations, regenerative braking can be 
used to charge the battery [36]. Moreover to make recharging of batteries easier, some configu-

rations are equipped with an on-board charger and defined Plug-in electric vehicle (PEV) [39].

3. Sub-system components of hybrid vehicles

3.1. Electric motors

The energy efficiency of a vehicle power train depends on, among other features, the size of 
its components. The optimization problem of sizing the electric motor, engine, and battery 
pack must consider both performance and cost specifications [40, 41]. Among electric motors, 

although the permanent magnet synchronous motor is considered as the benchmark, other 

types of motors are being explored for use in HEVs. Currently, there is some concern on the 
supply and cost of rare-earth permanent magnets.

Considerable research efforts have been made to find alternative electric motor solutions with 
the lowest possible use of these materials [42, 43]. For instance, some automotive applications 
use induction motors or switched reluctance motors [34]. Figure 4 shows the most conceiv-

able electric motor scenario in forthcoming years. Compared with hydraulics, electric drives 

provide better controllability and dynamic response and require less maintenance. Similarly 
to electric power, hydraulic power can be distributed quite easily on the implement; however, 
hydraulics suffers from poor efficiency in part-load operating conditions [44]. The specific 
electric drives for agricultural tractors are listed in Refs. [45, 46].

3.2. Continuous variable transmission (CVT)

Working vehicles drive at low speed, and the energy consumed in accelerating and climb-

ing slopes should be partially recovered at decelerating and descending slopes. Compared 

with urban and on-road vehicles, construction and agricultural are used in a lower range of 
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velocity. Rolling requirements in construction and agricultural machines are related to the 
resistance due to tire deformation combined with resistance due to soil deformation [47, 48]. 

In the case of work vehicles, continuous variable transmission CVT could be used to determine 
the energy flow that reaches the transmission from each energy source (engine, generator, and 
motor battery) [49].

3.3. Energy storage devices

The energy efficiency of construction machinery is generally relatively low, and kinetic or 
potential energy is lost during operation [50]. Currently, batteries [51], super-capacitors, 

hydraulic accumulators, and flywheels are mainly used as energy storage devices in hybrid 
construction and agricultural machinery (HCAM), as schematically described in Figure 5.

3.3.1. Batteries

Batteries are the most studied energy storage and are divided into three types: Li-ion [52], 

nickel-metal hydride [53, 54], and lead-acid [55]. Li-ion batteries are considered as a highly 
prospective technology for vehicle applications [56, 57] because of their larger storage capac-

ity, wide operating temperature range, better material availability, lesser environmental 
impact, safety [58–60]. However, despite having the highest energy density, Li-ion batter-

ies a shorter lifetime, higher vulnerability to environmental temperature, and higher cost 

compared with other energy storage devices. A comprehensive review examined the elec-

trochemical basis for the deterioration of batteries used in HEV applications and carried out 
tests on xEVs, automotive cells, and battery packs [61, 62] regarding their specific energy, 
efficiency, self-discharge, charge-discharge cycles, and cost. The results indicated that Li-ion 
is currently the best battery solution, surpassing the other technologies in all parameters 
except charge speed, in which Pb-acid batteries showed a better performance. Over the last 
years, graphene and its applications have become an important factor in improving the per-

formance of batteries [63].

Figure 4. Types of electric motors for HEV applications.
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3.3.2. Supercapacitors

An alternative energy storage device for hybrid power trains could be super-capacitors, which 

are designed to achieve fast-charging devices of intermediate specific energy [64]. A super-

capacitor [65, 66] has the advantage of a fast charge-discharge capacity, allowing a higher 

regenerative braking energy and supplying power for larger acceleration [67] and can be clas-

sified as a double-layer capacitor or a pseudo-capacitor according to the charge storage mode. 
However, the main drawback of a super-capacitor is that it has low energy density, which 

leads to a limited energy capacity.

3.3.3. Hydraulic accumulator

The hydraulic storage approach converts the recoverable energy into hydraulic form inside 

an accumulator and then releases it by using secondary components or auxiliary cylinders 

[68–70]. Compared with an electric hybrid system composed of a battery or super-capacitor, 
a hydraulic accumulator device has an advantage in power density over an electric system. 

Moreover, hydraulic accumulator energy recovery systems are ideal for cases of frequent and 
short start-stop cycles [71, 72]. However, the application of such systems in work vehicles 

still presents several defects: The impact of the limited energy density is a design trade-off 
between the energy storage capacity and volume or weight [73].

3.3.4. Flywheel energy storage system

The flywheel energy storage system (FESS) has improved considerably in recent years because 
of the development of lightweight carbon fiber materials. This system has become one of the 
most common mechanical energy storage systems for hybrid vehicles [74, 75]. When in charge 

Figure 5. Energy storage for hybrid construction and agricultural machinery.
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mode, the electric motor drives the flywheel to rotate and store a large amount of kinetic 
energy (mechanical energy); when in discharge mode, the flywheel drives the generator, con-

verting kinetic energy into electric energy [76]. The FESS has the advantages of high energy 
density and high power density [77] and works best at low speeds and in frequent stop-start 
work conditions. Producing this system could be cheaper than producing batteries; however, 
the system has limited storage time, and a significant percentage of the stored capacity is 
wasted through self-discharge [78].

4. Hybridization factor

In HEV engineering, the integration of engines, mechanical components, and electric power 
trains leads to increased energy efficiency, that is, a reduction in fuel consumption and a 
subsequent decrease in CO

2
 emissions. In the automotive industry, the basic logic of a hybrid 

vehicle is to provide a new source of power that intervenes in place of the primary source 

(ICE) to improve the overall performance of the system. Moreover, there are possible modes 
of operation that are not provided in a conventional vehicle, such as regenerative braking and 

electric mode (EV). Below are some of the main advantages of a hybrid configuration over a 
vehicle equipped with a combustion engine alone.

• Electric motor can act both as an engine and as a generator, allowing a reversible flow of 
power from the battery to the wheels and vice versa.

• During braking, some of the kinetic energy is recovered (regenerative braking).

• The vehicle can be used only in the electric mode (zero emission vehicle—ZEV).

• When the vehicle has to stop temporarily, the combustion engine can be switched off, 
therefore ensuring considerable energy saving.

It should first be mentioned that there is actually no real classification for hybrid vehicles, 
although a first orientation phase can be identified by defining a significant hybridization fac-

tor (HF) as the ratio between the power of the installed electric motor and the total amount of 
power delivered by the combustion engine and electric motor on the vehicle:

  HF =   
 P  
em

  
 _______ 

 P  
em

   +  P  
ICE

  
    (1)

where P
em

 is the electric motor drive power, and P
ICE

 is the internal combustion engine power. 

In the case of conventional vehicles, the hybridization factor is clearly equal to zero, whereas 
in the case of electric vehicles, the hybridization factor has a unit value. Between these val-
ues, all possible solutions can be obtained. In the automotive engineering field, the definition 
of the hybridization factor has been extensively studied for several applications [49, 79, 80], 

considering its effect on performance and optimization [81–83]. Furthermore, depending on 
the degree of hybridization and the capacity of the hybrid propulsion system to store energy, 
three different levels of hybridization are defined.

• Full hybrid is when the electric system alone is able to make the vehicle move on a stan-

dard driving cycle (0.5 < HF < 0.7).
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• Mild hybrid is when the purely electric operation mode is not able to follow a full standard 

driving cycle (0.25 < HF < 0.5).

• Minimal hybrid is equipped with a stop and start function, characterized by a decreasing 
distance in the purely electric mode (0 < HF < 0.1).

HF = 0 is applicable to a conventional engine vehicle, whereas HF = 1 is applicable to a “pure” 
electric vehicle, such as the BEV [43]. Table 1 presents the hybridization factors calculated by 
using Eq. (1), taking into account the electrical driveline for automotive applications.

Compared with cars, the introduction of electric drives in tractors would allow expanded func-

tionalities, considering that agricultural machines have a large variety of functional loading and 

working drives [20, 84]. The working cycle of a vehicle is strongly correlated with the application. 

In the case of a car, the comparison can be carried out by evaluating the extra-urban cycle and the 

urban cycle. For example, in the case of the urban cycle, the vehicle recovers energy due to fre-

quent accelerations and stops. Working machines even with repetitive movements, such as exca-

vators, are able to recover the kinetic energy of the arm. For agricultural tractors and machinery, 
two tasks [85] have been identified, such as working conditions with steps at which energy recov-

ery is possible: transport and front loading. Telescopic handlers also have a similar duty cycle. 

Unlike in hybrid cars, the hybrid propulsion system in heavy-duty machinery can supply power 
to the driveline and loading hydraulic circuit [86]. The mechanical power supplied by the ICE 
flows to recharge the battery pack, actuate the hydraulic pump, and move the driveline (Table 2).

Although there is no classification for hybrid heavy-duty machines in the literature, a first orien-

tation phase can be determined by defining a hybridization factor for a work vehicle HF
WV

 [87].

4.1. Driveline power

Hybrid architecture in series or in parallel has, in both cases, at least one electric motor (EM
1
) 

for moving the vehicle. In order to generalize the different configurations define (EM
1
), the 

electric motor used for the traction of the vehicle. Therefore, according to the hybridization 
factor described in the automotive field, the first term (µ

1
) of the hybridization factor for 

heavy-duty vehicles (HF
HDV

) is as follows:

   µ  
1
   =   

 P  
e m  

1
  
  
 _______ 

 P  
e m  

1
  
   +  P  

ICE
  
    (2)

Vehicle Electric motor (kW) ICE (kW) HF Eq. (1)

Toyota Prius 31 43 0.42

Toyota Prius 3rd gen. 50 53 0.49

Honda Insight 10 50 0.17

Honda Civic 10 63 0.07

Table 1. HF comparison among automotive vehicles [80].
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4.2. Loading power

The driveline architecture in work vehicles can be electrical, hydraulic, and/or mechani-

cal. Moreover, the loading power can be hydraulic or electrohydraulic depending on the 
vehicle topology architecture. Many work machines have some hydraulic actuators to be 
controlled, a big difference between a passenger car and a heavy-duty vehicle. In a full 
hybrid vehicle, for example, the hydraulic power for loading the bucket is supplied by the 

hydraulic pump, which can be powered by the ICE or an electric motor (EM
2
). The second 

ratio (µ
2
) of the hybridization factor for heavy-duty vehicles can therefore be defined as 

follows:

   µ  
2
   =   

 P  
e m  

2
  
  
 _______ 

 P  
e m  

2
  
   +  P  

ICE
  
    (3)

In the automotive industry, the power of the internal combustion engine is mainly used for 

the handling of the vehicle, and other functions (such as air conditioning) may be neglected 
in a first order assessment hybridization. In a work machine, the power of the internal com-

bustion engine can be used for both driving operations for loading activities. In particular, it 

is observed that the power required to move loads or to carry out excavation work is of the 
same order of magnitude of power required to move the vehicle. So, the design of a hybrid 
working vehicle must take into account the power requirements of the working cycle with 
particular reference to the types of equipment that can be connected to the arm or blade of 
the machine. In the present work, in order to define a hybridization factor that allows com-

paring the many hybrid applications in the construction and agricultural machinery sector 

is the hypothesis that the power can be conventionally comparable between driving and 

loading is used.

According to the previous statement and combining the two ratios expressed in Eqs. (2) and 
(3), the hybridization factor for heavy-duty work vehicles can be defined as follows:

  H  F  
WV

   =   1 __ 
2
    (   µ  

1
   +  µ  

2
   )     (4)

Hybrid architecture

Series Parallel Series-parallel

Driveline powered by ICE No Yes Yes

Driveline powered by EM Yes Yes Yes

Loading devices powered by EM No Yes Yes

Loading devices powered by EG Yes No Yes

Loading devices powered by ICE No Yes Yes

Table 2. Architectures of hybrid construction and agricultural machinery (HCAM).
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5. Architecture review of hybrid construction and agricultural machinery

Manufacturers, governments, and researchers have been paying increasing attention to 
hybrid power train technology toward decreasing the high fuel consumption rate of con-

struction machinery [17]. Hybrid wheel loaders, excavators, and telehandlers have particu-

larly shown significant progress in this regard [88, 89]. With hybrid work vehicles attracting 
more attention, power train configurations, energy management strategies, and energy stor-

age devices have also been increasingly reported in the literature [73, 90–92]. Both research-

ers and manufacturers have approached studies of the hybrid power system applications, 

energy regeneration systems, and architectural challenges of construction machinery quali-
tatively but not systematically and quantitatively. A first review of an electric hybrid HCM 
was presented in 2010 [107]. More recently, a specific review of a wheel loader and an excava-

tor [108] was carried out, and another work in the field of high-voltage hybrid electric trac-

tors [109] was published. Hitachi successfully launched the first hybrid loader in 2003 [90], 

and Komatsu developed the first commercial hybrid excavator in 2008 [93]. Komatsu devel-

oped the HB205-1 and HB215LC-1 hybrid electric excavators, which are capable of recovering 
energy during the excavator slewing motion and of storing this energy in ultra-capacitors. 

Earth-moving machinery manufacturers have developed some diesel-electric or even hybrid-
electric models . Johnson et al. [96] compared the emissions of a Caterpillar D7E diesel-electric 
bulldozer with its conventional counterpart [95]. Over the last years, there has been increas-

ing interest in tractor and agricultural machinery electrification [96–99]. A number of trac-

tor and agricultural machinery manufacturers have developed some diesel-electric or even 

hybrid-electric prototypes [20, 49, 100–102]. Recently, the Agricultural Industry Electronics 
Foundation started working on a standard for compatible electric power interfacing between 
agricultural tractors and implements [103], including, among others, the John Deere 7430/7530 
E-Premium and 6210RE electric tractors [104] and the Belarus 3023 diesel-electric tractor [105]. 

Among telehandler vehicles, the TF 40.7 Hybrid telescopic handler proposed by Merlo [106]. 

Thus, it is necessary to study the various types of power train configurations of hybrid wheel 
loaders and excavators to better understand their construction features. The power require-

ment has different working cycles depending on the applications. Many construction machin-

ery manufacturers and researchers have studied hybrid wheel loaders to effectively use the 
braking energy and operate the engine within its high-efficiency range [110–113]. According 

to the classification of hybrid vehicles in the automotive field, there are three main design 
options for hybrid wheel loader power trains: series, parallel, and series-parallel. In the lit-

erature review, the proposed architecture is mainly described, but no attempt at classification 
and comparison is made. It is not easy to find data sheets on the different vehicles because 
most of them are still at the prototype level. The comparison first outlines the architectures of 
the hybrid work vehicle solutions developed by the main manufacturers, as shown in Table 3.

Figure 6 shows the series hybrid configuration of a wheel loader. As in the configuration of a 
hybrid vehicle, classic engine series ICE directly drives the electric generator, the electricity so 
generated is used to control the electric motor connected to the driveline. The advantage of a 

series hybrid wheel loader is the greater simplicity. In addition the engine ICE, being decou-

pled from the wheels, it can be used at a fixed point in the conditions of greater efficiency. 

Hybrid Electric Vehicles14



In the case of hybrid wheel loaders in series from the transformation of mechanical power 

into electrical and drive of the electric motor can also be done with a battery pack reduced but 
the generator and the electric motor need to be manufactured in terms of maximum power 

demand. The presence of the battery pack can allow to better manage the power demand 
peaks without the need to over-dimension the motor ICE [114, 115]. In literature, the hybrid 

drive train in the series has been applied mainly in large tonnage hybrid wheel loader.

In 2009, Caterpillar came out with the first electric hybrid bulldozers. The Caterpillar D7E 
model is within the range of medium dozers and replaced the traditional model D7R [94].

The company claimed an increase of productivity and a reduction in fuel consumption up to 

24% over the conventional model [94]. The driveline architecture is of the series electric hybrid 

type, as described in Figure 6, with the electric motors powered directly from the inverter but 

having the peculiarity to be directly charged from the ICE without any accumulation system. 

Model Type of vehicle Driveline Loading and working system Energy storage

Caterpillar—D7E Dozer Series Conventional None

Volvo—L220F Hybrid Wheel loader Parallel Parallel Battery

Mecalac—12MTX Hybrid Articulated loader Paralell Paralel Battery

John Deere—644K Hybrid Wheel loader Series Parallel None

Merlo—TF 40.7 Hybrid Telehandler Series Parallel Battery

Claas—6030 Hybrid Telehandler Parallel Conventional Battery

Kobelco SK200H Hybrid Excavator Conventional Series Battery/capacitors

Komatsu—HB215 LC-1 Excavator Paralel Parallel Supercapacitors

Table 3. Hybrid working vehicles and their architectures.

Figure 6. Working vehicle with series hybrid configuration.
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The hydraulic system has a conventional architecture. Table 4 shows the main parameters 

of this work vehicle. A parallel hybrid power train configuration has two separate power 
sources that can directly power the loader. The disadvantage of a parallel configuration is 
that the engine cannot always be controlled in its high-efficiency operating region because it is 
still mechanically coupled to the wheels with an increased efficiency compared with the con-

ventional model and a fuel consumption reduction of 10%[116]. Figure 7 shows a schematic 

of the Volvo L220F parallel hybrid electric wheel loader (HEWL). The vehicle has a parallel 
hybrid electric architecture for both the driving and the loading system. The basic idea of this 

parallel hybrid layout is to supply additional electric power when necessary, regenerating 

the machine during normal operations and minimizing the consumption in idle conditions. 
The power required by the device can be flexibly provided by using a work pump, which is 
driven by the pump motor shows the main parameters of the Volvo L220F. Mecalac proposed 
a similar architecture for the 12 MTX hybrid model and claimed to save up to 20% in fuel 
consumption [117].

However, the parallel configuration is still on the researching stage, and Liugong has applied 
a solution with super-capacitors instead of batteries [118] as schematically shown in Figure 8.

At the CONEXPO International Trade Fair for Construction Machinery (2011), John Deere 
presented the first prototype of its hybrid wheel loader, the 944K hybrid. In February 2013, 
the entry of the first hybrid wheel loader, the 644K hybrid, in the market was announced 
with a reduction in fuel consumption up to 25% [119]. In this smaller model, a single electric 

machine provides all the power needed to drive the vehicle. The vehicle driveline has a series 

electric hybrid architecture, with the electric motor directly powered by the inverter without 

an energy storage system. Figure 9 shows a schematic view of John Deere 644K hybrid wheel 
loader [120]. The installed electrical machines are liquid-cooled brushless permanent magnet 
motors.

The innovative architecture proposed by Merlo, as shown in Figures 10 and 11, is considered 

as a fully series architecture for vehicle traction and as a parallel architecture for the opera-

tion of hydraulic systems. This kind of innovative, patented series-parallel architecture, with 

a split input for hydraulic lifting, allows both the electrical and the mechanical components 

to be arranged in a way that is compatible with the current layout and performance of Merlo 
machines. The main objectives of this hybrid telehandler are an overall improvement in per-

formance, a decrease in daily fuel consumption in ordinary work activities, and a reduction in 

noise emissions. Moreover, the proposed configuration is capable of working in full electric, 
zero-emission mode for indoor use, such as in cattle sheds, stables, industrial and food pro-

cessing warehouses, and buildings. In Ref. [87], it has been demonstrated a fuel consumption 

reduction of 30% with the same level of dynamic performance compared with the conven-

tional telehandler.

Claas proposed a parallel mild hybrid solution for the Scorpion telehandler. The simulation 
results reported in Refs. [121, 122] show a reduction in fuel consumption of about 20% and 

emissions for this parallel hybrid solution compared with the traditional model. The solution 

proposes the use of the electric motor as a power boost to maintain the performance while 

using a smaller diesel motor.
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Vehicle Vehicle operative 

weight (t)

Electric driving motor 

(P
EM1

) (kW)

Electric loading motor 

(P
EM2

) (kW)

ICE (kW) HF (Eq. 2) HF (Eq. 3) HF
WV

 (Eq. 4) % of fuel reduc

Caterpillar D7E 26 2*60 0 176 0.40 0 0.20 24

Volvo—L220F Hybrid 32 50 50 259 0.16 0.16 0.16 10

Mecalac—12MTX Hybrid 8.3 20 20 51 0.28 0.28 0.28 20

John Deere—644K 
Hybrid

19 80 80 171 0.32 0.32 0.32 25

Merlo—TF 40.7 Hybrid 7.5 60 40 56 0.52 0.42 0.47 30

Claas—6030 Hybrid 5.6 15 0 55 0.21 0 0.11 20

Kobelco SK200H Hybrid 20 0 37 114 0 0.24 0.12 40

Komatsu—HB215 LC-1 21 20 90 104 0.16 0.46 0.31 25

Table 4. List of hybrid working vehicles HF and claimed fuel reduction.
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The excavator is a type of construction machinery with a larger weight and higher energy 

consumption [107]. A hybrid excavator can typically recycle two energy types, including the 

braking kinetic energy of the swing and the gravitational potential energy of the booms. In the 

recent literature, excavators present a wide combination of series, parallel, or series-parallel 

hybrid architectures. The change in configuration and the additional costs of electrical com-

ponents make the commercialization of hybrid configurations difficult. Figure 12 shows the 

Figure 7. Parallel hybrid configuration of the Volvo L220F hybrid [116].

Figure 8. Parallel hybrid configuration with super-capacitors, as applied by Liugong [118].
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schematic of the Kobelco series hybrid excavator; the first prototype of this 6-t configuration 
was developed in 2007 with a claimed in [123] to cut fuel consumption by 40% or more and 

reporting results of the verification test on the efficiency of the hybrid excavator in different 
working cycle operations [124, 125].

As showed in Figure 12 in the hybrid solution proposed by Kobelco, each hydraulic is driven 

by an electric motor. This solution increases efficiency but the production cost is higher.

Figure 9. Schematic of the John Deere 644K hybrid wheel loader [120].

Figure 10. Series-parallel hybrid configuration of a Merlo working vehicle [106].
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In the case of parallel hybrid excavator, the internal combustion engine operates the hydraulic 

pump and generator. The hydraulic pump drives the hydraulic circuit of the device, in a man-

ner similar to conventional excavators, while the generator transforms the mechanical energy 

into electrical power and can operate the electric motor of swing rotation. The hybrid solution 

in parallel is simpler; however, the fuel consumption is higher, and the return time for these 
working machines is longer [126]. Hitachi, as shown in Figure 13, proposed a parallel hybrid 

excavator with the gravitational potential recovery of the boom [113].

Figure 12. Series hybrid configuration of the Kobelco excavator.

Figure 11. View of Merlo – TF 40.7 hybrid the hybrid telehandler [106].
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In the series-parallel hybrid power train configuration of an excavator, the engine drives the gen-

erator directly. The hydraulic pumps are driven by the generator in series, and the swing elec-

tric motor is powered by the generator and the battery or super-capacitor in parallel. Although 
series-parallel hybrid excavators have higher production costs compared with parallel and 

series structures, they offer the shortest cost recovery time and efficiency with a fuel consump-

tion up to 25% [126]. Series-parallel hybrid excavators are regarded as the most promising solu-

tions, and both Komatsu (Figures 14 and 15) and Doosan use similar configurations [128, 129].

Figure 13. Parallel hybrid configuration for working excavator Hitachi [127].

Figure 14. Series-parallel hybrid configuration for working excavator Komatsu [126].
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Figure 15. Schematic view of Komatsu—HB215 LC-1 hybrid excavator [126].

The attempt at classification in the present work is based on the specific HF defined in Section 
4, taking into account the data sheets of the vehicles. Table 4 shows the hybridization factors 
for work machines, calculated by using Eq. (4) [22] and considering the effect of a hybrid elec-

tric driveline and hybrid electric loading/working functions.

6. Trends and conclusions

This study focused on the electrification of work vehicles, such as agricultural machineries, 
which is still in the research and development stage. Similarly to HEVs, the main design issue 
in HACMs is controlling the energy transfer from the sources to the loads with minimum 
loss of energy, which is dependent on the driving and working cycles. Compared with auto-

mobiles, the introduction of electric drives in tractors would allow expanded functionalities 

because agricultural machines have a large variety of functional drives.

Main differences in requirements, working cycles, and proposed hybrid architectures between 
HEV and HACM were determined along the present study, focusing on a specific hybridiza-

tion factor for working vehicles that consider both the driving and the loading electrification.

The hybridization factor for working vehicles is introduced in order to classify and compare 
the different hybrid solutions proposed by main manufactures taking into account differ-

ent architectural choices. Moreover, the claimed increasing of efficiency due to the power 
train electrification is reported and listed in terms of fuel consumption reduction. Taking into 
account a large variety of architectural hybrid solution, it has been proven a good correlation 

between the hybridization factor and the fuel efficiency as a general trend in benefit of hybrid 
electrification of working machine.
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Because charging a battery pack from the grid is more efficient than charging it from a 
tractor engine, it seems logical to hybridize the tractor with high-voltage batteries and pro-

pulsion motors. In this manner, the internal combustion engine could be downsized, and 
the traction battery pack could be charged from the grid. Fuel consumption costs would 
thus decrease. However, compared with traditional construction machinery, an additional 

energy storage device is needed, which increases the initial costs. Moreover, the cost added 
by high-voltage equipment needs to be considered in the whole turnover of the hybrid 
vehicle conversion. As indicated by several reports and prototypes, hybrid systems have 

promising applications in both agricultural and construction machinery, but major draw-

backs are related to the increased cost due to electrification. Hybrid technologies, particu-

larly energy storage devices, are still in the early stages of development, and the trends 

in cost reduction could push researchers and manufacturers toward the optimization of 
hybrid solutions for HCAM.

Abbreviation

BEV Battery electric vehicle CVT Continuously variable transmission

EDV Electric-drive vehicle FCV Fuel cell vehicle

HEV Hybrid electric vehicle SHEV Series hybrid electric vehicle

PHEV Parallel hybrid electric vehicle HF Hybridization factor

ICE Internal combustion engine PEV Plug-in electric vehicle

ZEV Zero emission vehicle ESS Energy storage system

RESS Rechargeable energy storage system BMS Battery management system

HCAM Hybrid construction and 

agricultural machineries

Author details

Aurelio Somà

Address all correspondence to: aurelio.soma@polito.it

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy

References

[1] Azhar KM, Zahir KM, Zaman K, et al. Global estimates of energy consumption and green-

house gas emissions. Renewable & Sustainable Energy Reviews. 2014;29:336-344

Trends and Hybridization Factor for Heavy-Duty Working Vehicles
http://dx.doi.org/10.5772/intechopen.68296

23



[2] Reşitoğlu A, Altinis K,Keskin A. The pollutant emissions from diesel-engine vehicles 
and exhaust aftertreatment systems. Clean Technologies and Environmental Policy. 
2015;17:15-27

[3] Regulation (EC) No. 443/2009 of the European Parliament and of the Council of 23 April 
2009 setting emission performance standards for new passenger cars as part of the 
Community’s integrated approach to reduce CO

2
 emissions from light-duty vehicles. 

Official Journal of the European Union L140/1.5/6/2009

[4] Clark NN. NOx/fuel tradeoff for powertrain technologies. In: Heavy-duty Vehicle 
Efficiency Technical Workshop. San Francisco, CA, USA; October 22, 2013

[5] Du J, Sun W, Guo L, Xiao S, Tan M, Li G, et al. Experimental study on fuel economies and 
emissions of direct-injection premixed combustion engine fueled with gasoline/diesel 
blends. Energy Conversion Management. 2015;100:300-309

[6] Xu-Guang T, Hai-Lang S, Tao Q, Zhi-Qiang F, Wen-Hui Y. The impact of common rail 
system’s control parameters on the performance of high power diesel. Energy Procedia. 
2012;16:2067-2072

[7] Cwikowski P, Teodrorcyck A. The latest achievements in gasoline and diesel injection 
technology for the internal combustion engines. Journal of KONES. Powertrain and 
Transport. 2009;16(2):79-90

[8] Pali HS, Kumar N, Alhasan Y. Performance and emission characteristics of an agricul-
tural diesel engine fueled with blends of Salmethylesters and diesel. Energy Conversion 
and Management. 2015;90(146):153

[9] Ettl J, Thuneke K, Remmele E, Emberger P, Widmann B. Future biofuels and driving 
concepts for agricultural tractors. In: 22nd European Biomass Conference & Exhibition. 
Hamburg, Germany; 2014

[10] Flórez-Orrego D, Silva JAM, de Oliveira Jr S. Exergy and environmental comparison of 
the end use of vehicle fuels: The Brazilian case. Energy Conversion and Management. 
2015;100:220-231

[11] Hoy R, Rohrer R, Liska A, Luck J, Isom L, Keshwani D. Agricultural industry advanced 
vehicle technology: Benchmark study for reduction in petroleum use. Idaho National 

Laboratory, University of Nebraska - Lincoln - USA; 2014

[12] Moya A, Barreiro P. Moya A, Barreiro P. Recortar emisiones en vehículos agrícolas-Intro-

ducción del Tier 4: camino hacia las cero emisiones en vehículos todoterreno. Tierras. 
2011;176:88-94

[13] Fiebig M, Wiartalla A, Holderbaum B, Kiesow S. Particulate emissions from diesel 
engines: Correlation between engine technology and emissions. Journal of Occupational 

Medicine and Toxicology. 2014;9:6

[14] “Meeting EPA 2012 Tier 4 Interim and EU Stage IIIB Emissions Customer FAQ (75-
173 hp),”2013, Bulletin 4087191, Cummins Inc., http://cumminsengines.com/uploads/
docs/4087191.pdf, last accessed January 22, 2014

Hybrid Electric Vehicles24



[15] Rahman SM, Masjuki HH, Kalam MA, Adebin MJ, Sanjid A, Sajjad H. Impact of idling 
on fuel consumption and exhaust emissions and available idle-reduction technologies 

for diesel vehicles—A review. Energy Conversion and Management. 2013;74:171-182

[16] Baroni M, Sereni E, Mancarella F. Engine control device for a work vehicle. 2013. Patent 
Application WO2013079324 A1

[17] Holt GD, Edwards DJ. Analysis of United Kingdom off-highway construction machin-

ery market and its consumers using new-sales data. Journal of Construction Engineering 
and Management | ASCE. 2012;139:529-537

[18] Heckmann M, Gobor Z, Huber S, Kammerloher T, Bernhardt H. Design of a test bench 
for traction drive systems in mobile machines. Landtechnik. 2013;68(6):415-419

[19] Ponomarev P, Minav T, Aman R, Luostarinen L. Integrated electro-hydraulic machine 
with self-cooling possibilities for non-road mobile machinery. Journal of Mechanical 
Engineering. 2015;61(3):207-213

[20] Karner J, Baldinger M, Schober P, Reichl B, Prankl H. Hybrid systems for agricultural 
engineering. LandTechnik. 2013;68(1):22-25

[21] Somà A. Effects of driveline hybridization on fuel economy and dynamic performance 
of hybrid telescopic heavy vehicles. In: Proc Technologies for High Efficiency & Fuel 
Economy; 29-30 September; Rosemont (Ill USA): SAE; 2013

[22] Somà A, Bruzzese F, Mocera F, Viglietti E. Hybridization factor and performance of hybrid 
electric telehandler vehicle. IEEE Transactions on Industry Applications. 2016;52:5130-5138

[23] SAE Intl. SAE J1715. Information report, hybrid vehicle (HEV) and electric vehicle (EV) 
terminology; October 2014

[24] UNECE. Working party on transport statistics. Definitions of vehicle energy types. ECE/
Trans/WP.6/2011/5; 2011

[25] Nemry F, Leduc G, Muñoz A. Plug-in hybrid and battery electric vehicles: State of the 
research and development and comparative analysis of energy and cost efficiency. JRC 
Tech Notes. European Commission JRC-IPTS; 2009

[26] Katrašnik Tomazˇ. Analytical framework for analyzing the energy conversion efficiency 
of different hybrid electric vehicle topologies. Energy Conversion and Management. 
2009;50(8):1924-1938

[27] Emadi A, Rajashekara K, Williamson SS, Lukic SM. Topological overview of hybrid 
electric and fuel cell vehicular powerX system architectures and configurations. IEEE 
Transactions on Vehicular Technology.2005;54(3):763-770

[28] Gao L, Dougal RA, Liu S. Power enhancement of an actively controlled battery/ultraca-

pacitor hybrid. IEEE Transactions on Power Electronics. 2003;20(1):366-373

[29] Lo EWC. Review on the configurations of hybrid electric vehicles. In: 3rd International 
Conference Power Electronics Systems and Applications; 2009. pp. 1-4

Trends and Hybridization Factor for Heavy-Duty Working Vehicles
http://dx.doi.org/10.5772/intechopen.68296

25



[30] Bailo Camara M, Gualous H, Gustin F, Berthon A. Design and new control of DC/DC 
converters to share energy between supercapacitors and batteries in hybrid vehicles. 
IEEE Transactions on Vehicular Technology. 2008;57(5):2721-2735

[31] Yoo H, Sul S-K, Park Y, Jeong J. System integration and power-flow management for a 
series hybrid electric vehicle using supercapacitors and batteries. IEEE Transactions on 
Industry Applications. 2008;44(1):108-114

[32] Gao J, Sun F, He H, Zhu GG, Strangas EG. A comparative study of supervisory con-

trol strategies for a series hybrid electric vehicle. In: Power and Energy Engineering 
Conference; Asia-Pacific; 2009. pp. 1-7

[33] Northcott DR, Filizadeh S, Chevrefils AR. Design of a bidirectional buck-boost dc/dc 
converter for a series hybrid electric vehicle using PSCAD/EMTDC. In: IEEE Vehicle 
Power and Propulsion Conference; 2009. pp. 1561-1566

[34] Ehsani M, Gao Yimin, Miller JM. In: Hybrid electric vehicles: Architecture and motor 
drives. Proceedings of the IEEE. 2007;95(4):719-728

[35] Kamil Çağatay Bayindir,Mehmet Ali Gözüküçük,Ahmet Teke.A comprehensive over-

view of hybrid electric vehicle: Powertrain configurations, powertrain control techniques 
and electronic control units. Energy Conversion and Management. 2011;52(2):1305-1313

[36] Katrašnik T, Tranc F, Rodman Oprešnik S. Analysis of the energy conversion efficiency 
in parallel and series hybrid powertrains. IEEE Transactions on Vehicular Technology. 
2007;56(6/2):3649-3659

[37] Cheong K, Li P, Sedler S, Chase T. Comparison between input coupled and output cou-

pled power-split configurations in hybrid vehicles. In: Proceedings of the 52nd National 
Conference on Fluid Power; Milwaukee;National Fluid Power Association; 2011

[38] He Y, Chowdhury M, Pisu P,Ma Y. An energy optimization strategy for power-split 
drivetrain plug-in hybrid electric vehicles. Transportation Research Part C. 2012;22:29-41

[39] Murgovski N, Johaneson L, Sjöberg J, Egardt B. Component sizing of a plug-in hybrid 
electric powertrain via convex optimization. Mechatronics. 2012;22:106-120

[40] Torres O, Bader B, Romeral JL, Lux G, Ortega JA. Influence of the final drive ratio, electric 
motor size and battery capacity on fuel consumption of a parallel plug-in hybrid electric 
vehicle. 19th International Conference on Urban Transport and the Environment; WIT 
Press; 2013

[41] Ebbesen S, Elbert P, Guzzella L. Engine downsizing and electric hybridization under 
consideration of cost and drivability. Oil and Gas Science Technology – Revued’IFP 
Energies Nouvelles. 2013;68(1):109-116

[42] Kiyota K, Kakishima T, Chiba A. Comparison of test result and design stage prediction 

of switched reluctance motor competitive with 60-kW rare-earthv permanent magnet 

motor. IEEE Transactions on Industrial Electronics.2014;61(10):5712-5721

Hybrid Electric Vehicles26



[43] Boldea I, Tutelea LN, Parsa L, Dorrell D. Automotive electric propulsion systems with 
reduced or no permanent magnets: An overview. IEEE Transactions on Industrial 
Electronics.2014;61(10):5696-5711

[44] Karner J, Baldinger M, Reichl B. Prospects of hybrid systems on agricultural machinery. 
GSTF Journal on Agricultural Engineering.2014;1(1):33-37

[45] Bernhard B. Hybrid drives for off-road vehicles. In: FISITA World Automotive Congress; 
Barcelona, Spain; 2004

[46] Karner J, Prankl H, Kogler F. Electric drives in agricultural machinery. In: CIGR Ag Eng 
2012; Valencia, Spain; 2012

[47] Osinenko PV, Geisler M, Herlitzius T. A method of optimal traction control for farm trac-

tors with feedback of drive torque. Biosystems Engineering.2015;129:20-33

[48] Rossi C, Pontara D, Casadei D. E-CVT power split transmission for off-road hybrid electric 
vehicles. Vehicle Power & Propulsion Conference (VPPC) Coimbra; Portugal. IEEE; 2014

[49] Katrasnik T. Hybridization of powertrain and downsizing of IC engine—a way to 
reduce fuel consumption and pollutant emissions—Part I. Energy Conversion and 
Management. 2007;48:1411-1423

[50] Schoenung S. Energy storage systems cost update. Report, Sandia National Laboratories, 
USA; April 2011

[51] Pollet BG, Staffell I, Shang JL. Current status of hybrid, battery and fuel cell electric vehi-
cles: From electrochemistry to market prospects. Electrochimica Acta. 2012;84:235-249

[52] Prada E, Domenico DD, Creff Y, et al. A simplified electrochemical and thermal aging 
model of LiFePO4-graphite Li-ion batteries: Power and capacity fade simulations. 
Journal of the Electrochemical Society. 2013;160:A616–A628

[53] Verbrugge MW, Conell RS. Electrochemical and thermal characterization of battery 
modules commensurate with electric vehicle integration. Journal of the Electrochemical 
Society.2002;149:A45–A53

[54] Kroeze RC, Krein PT. Electrical battery model for use in dynamic electric vehicle simu-

lations. In: Power Electronics Specialists Conference; 15-19 June 2008; Rhodes, Greece. 
New York: IEEE; pp. 1336-1342

[55] Ceraolo M. New dynamical models of lead-acid batteries. IEEE Transactions on Power 
Systems. 2000;15:1184-1190

[56] Hu Y, Yurkovich S, Guezennec Y, et al. Electro-thermal battery model identification for 
automotive applications. Journal of Power Sources. 2011;196:449-457

[57] Chan HL. A new battery model for use with battery energy storage systems and electric 
vehicles power systems. Paper No. 1. In: Power Engineering Society Winter Meeting; 
23-27 January 2000; Piscataway, NJ. New York: IEEE; pp.470-475

Trends and Hybridization Factor for Heavy-Duty Working Vehicles
http://dx.doi.org/10.5772/intechopen.68296

27



[58] Thielmann A, Sauer A, Isenmann R, et al. Produkt-roadmap lithium-ionen-batterien 2030. 
Report. Fraunhofer ISI, Germany; February 2012

[59] Waag W, Fleischer C, Sauer DU. Critical review of the methods for monitoring of lithium-
ion batteries in electric and hybrid vehicles. Journal of Power Sources.2014;258:321-339

[60] Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion batteries: A review. 
Advanced Energy Materials. 2014;4:1-23

[61] Cherry J. Battery durability in electrified vehicle applications: A review of degradation 
mechanisms and durability testing. FEV North America Report; 2016

[62] Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A. Evaluation of alterna-

tive battery technologies for a solar assist plug-in hybrid electric tractor. Transportation 
Research Part D.2010;15:507-512

[63] Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials: A 
review. Journal of Power Sources. 2013;240:66-79

[64] Snook GA, Kao P, Best AS. Conducting-polymerbased supercapacitor devices and elec-

trodes. Journal of Power Sources. 2011;196:1-12

[65] Zhang K, Zhang LL, Zhao XS, et al. Graphene/polyaniline nanofiber composites as 
supercapacitor electrodes. Chemistry of Materials. 2010;22:1392-1401

[66] De Souza VHR, Oliveira MM, Zarbin AJG. Thin and flexible all-solid supercapacitor 
prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in 
liquid–liquid interfaces. Journal of Power Sources. 2014;260:34-42

[67] Peng C, Zhang S, Jewell D, et al. Carbon nanotube and conducting polymer composites 
for supercapacitors. Progress in Natural Science.2008;18:777-788

[68] Van de Ven JD. Constant pressure hydraulic energy storage through a variable area pis-

ton hydraulic accumulator. Applied Energy. 2013;105:262-270

[69] Liang X, Virvalo T. An energy recovery system for a hydraulic crane. Proceedings of 
the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering 
Science.2001;215:737-744

[70] Ho TH, Ahn K. Design and control of a closed-loop hydraulic energy-regenerative sys-

tem. Automation in Construction. 2012;22:444-458

[71] Wang T, Wang Q. An energy-saving pressure-compensated hydraulic system with elec-

trical approach. IEEE/ASME Transactions on Mechatronics. 2014;19:570-578

[72] Wang T, Wang Q, Lin T. Improvement of boom control performance for hybrid hydraulic 
excavator with potential energy recovery. Automation in Construction. 2013;30:161-169

[73] Ho TH, Ahn KK. Modeling and simulation of hydrostatic transmission system with 
energy regeneration using hydraulic accumulator. Journal of Mechanical Science and 
Technology. 2010;24:1163-1175

Hybrid Electric Vehicles28



[74] Jaafar A, Akli CR, Sareni B, et al. Sizing and energy management of a hybrid locomo-

tive based on flywheel and accumulators. IEEE Transactions on Vehicular Technology. 
2009;58:3947-3958

[75] Lu X, Iyer K, Mukherjee K, et al. Study of permanent magnet machine based flywheel 
energy storage system for peaking power series hybrid vehicle control strategy. In: 

Transportation Electrification Conference and Expo(ITEC); 16-19 June 2013; Dearborn, 
US. New York: IEEE; 2013

[76] Dhand A, Pullen K. Review of flywheel based internal combustion engine hybrid vehi-
cles. International Journal of Automotive Technology. 2013;14:797-804

[77] Sebastian R, Pena Alzola R. Flywheel energy storage systems: Review and simula-

tion for an isolated wind power system. Renewable & Sustainable Energy Reviews. 
2012;16:6803-6813

[78] Prodromidis GN, Coutelieris FA. Simulations of economic and technical feasibility of 
battery and flywheel hybrid energy storage systems in autonomous projects. Renewable 
Energy. 2012;39:149-153

[79] Katrašnik T. Hybridization of powertrain and downsizing of the IC engine – Analysis 
and parametric study – Part 2. Energy Conversion Management. 2007;48(5):1424-1434

[80] Lukic SM, Emadi A. Effects of drivetrain hybridization on fuel economy and dynamic 
performance of parallel hybrid electric vehicles. IEEE Transactions on Vehicular 
Technology. 2004;53(2):385-389

[81] Holder C, Gover J. Optimizing the Hybridization Factor for a Parallel Hybrid Electric 
Small Car Vehicle Power and Propulsion Conference; VPPC '06. IEEE; 2006

[82] Bolvashenkov I, Herzog H-G, Engstle A. Factor of hybridization as a design param-

eter for hybrid vehicles. In: Proceedings of the IEEE International Symposium on 
Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM); 2006. pp. 
38-41

[83] Buecherl D, Bolvashenkov I, Herzgov H-G. Verification of the optimum hybridization 
factor as design parameter of hybrid electricvehicles. Vehicle Power and Propulsion 
Conference; VPPC '09. IEEE; 2009. pp. 847-851

[84] Barthel J, Gorges D, Bell M, Munch P. Energy management for hybrid electric tractors 
combining load point shifting, regeneration and boost. In: Vehicle Power &Propulsion 
Conference (VPCC); 27-30 October; Coimbra, Portugal: IEEE; 2014

[85] O’Keefe M, Simpson A, Kelly K, Pedersen D. Duty cycle characterization and evaluation 
towards heavy hybrid vehicle applications. SAE Tech; 2007. Paper 2007-01-0302

[86] Banjac T, Trenc F, Katrasnik T. Energy conversion efficenty of hybrid electric heavy-duty 
vehicles operating according to diverse drive cycles. Energy Conversion and Management. 
2009;50:2865-2878

Trends and Hybridization Factor for Heavy-Duty Working Vehicles
http://dx.doi.org/10.5772/intechopen.68296

29



[87] Somà A, Bruzzese F, Viglietti E. Hybridization factor and performances of hybrid electric 
telescopic heavy vehicles. In: 2015 Tenth International Conference on Ecological Vehicles 
and Renewable Energies (EVER); 2015

[88] Ochiai M. Development for environment friendly construction machinery. Construction. 
2003;9:24-28

[89] Inoue H. Introduction of PC200-8 hybrid hydraulic excavators. Technical Report. 

2009;54(161):1-6. Komatsu, Japan, 27 March 2009

[90] Kanezawa Y, Daisho Y, Kawaguchi T. Increasing efficiency of construction machine by 
hybrid system. In: JSAE (Society of Automotive Engineers of Japan) Annual Congress; 
23-25 May 2001; Yokohama, Japan. Tokyo: JSAE; Paper No. 100, 2001. pp. 17-20

[91] Lin T, Wang Q, Hu B, et al. Research on the energy regeneration systems for hybrid 
hydraulic excavators. Automation in Construction. 2010;19:1016-1026

[92] Wang D, Guan C, Pan S, et al. Performance analysis of hydraulic excavator powertrain 
hybridization. Automation in Construction. 2009;18:249-257

[93] Nishida Y. Introducing the HB335/HB365-1 hybrid hydraulic excavators. Technical 

Report.2014;59(166):1-8. Komatsu, Japan, 28 March 2014

[94] Wang H, Liu L, Zheng G, Liu X, et al. Study of two-motor hybrid bulldozer. SAE 
Technical Paper 2014-01-2376; 2014. DOI:10.4271/2014-01-2376

[95] Filla R. Alternative system solutions for wheel loaders and other construction equip-

ment. In: First International Forum Alternative &Hybrid Drive Trains. Berlin, Germany; 
2008

[96] Johnson KC, Burnette A, Cao T, Russell RL, Scora G. Hybrid off-road equipment in-
use emissions evaluation. FY 2010-11 air quality improvement project. Hybrid off-road 
equipment pilot project. California Air Resources Board; 2013

[97] Tritschler PJ, Bacha S, Rullière E, Husson G. Energy management strategies for an 
embedded fuel cell system on agricultural vehicles. In: XIX International Conference on 
Electrical Machines; ICEM 2010. Rome: IEEE; 2010

[98] Prankl H, Nadlinger M, Demmelmayr F, Schrödl M, Colle T, Kalteis G. Multifunctional 
PTO generator for mobile electric power supply of agricultural machinery. In: 

International Conference on Agricultural Engineering; 2011. Hannover; VDI Berichte 
2124: 2011

[99] Wuebbels R. Machine for harvesting stalk-like plants with an electrically driven cutting 
mechanism. US Patent 0174552 A1; 2012

[100] Stoss KD, Sobotzik J, Shi B, Kreis ER. Tractor power for implement operation – mechan-

ical, hydraulic and electrical: an overview. In: Agricultural Equipment Technology 
Conference ASABE Distinguished Lectures Series 37; 28-30 January, 2013. 2013.  
pp. 1-25; ASABE Publ. no. 913C0113

Hybrid Electric Vehicles30



[101] Laguens M. Potential for energy savings through hybridization of agricultural tractors. 
Engineering Degree Dissertation, Madrid: Tech. Univ.; 2014

[102] Zhitkova S, Felden M, Franck D, Hameyer K. Design of an electrical motor with wide 
speed range for the in-wheel drive in a heavy duty off-road vehicle. In: International 
Conference Electrical Machines (ICEM); 2-5 September; Berlin, Germany; 2014. pp. 
1076-1082

[103] Hahn K. High voltage electric tractor-implement interface. SAE International Journal of 
Commercial Vehicles. 2008;1:383-391

[104] Keil R, Shi B, Sobotzik J. JD 6210RE-tractor/implement electrification and automation. 
Antriebsysteme 2013-Elektrik, Mechanik und Hydraulik in der Anwendung. VDE 
Verlag; 2013

[105] Buning EA. Electric drives in agricultural machinery—Approach from the tractor side. 
In: Key Note Report. 21st Annual Meeting of the Club of Bologna;November 13-14. 
Bologna, EIMA International; 2010

[106] Somà A, Bosso N, Merlo A. Electrohydraulic hybrid lifting vehicle. Patent, WO2011128772; 
2011

[107] Lin T, Wang Q, Hu B, et al. Development of hybrid powered hydraulic construction 
machinery. Automation in Construction. 2010;19:11-19

[108] Wang J, Yang Z, Liu S, Zhang Q, Han Y. A comprehensive overview of hybrid construc-

tion machinery. Advances in Mechanical Engineering. 2016;8(3):1-15

[109] Moreda GP, Muñoz-García MA, Barreiro P. High voltage electrification of tractor 
and agricultural machinery—A review. Energy Conversion and Management. 2016; 
115(2016):117-131

[110] Zou NW, Dai QL, Jia YH, et al. Modeling and simulation research of coaxial parallel 
hybrid loader. Applied Mechanics and Materials. 2010;29:1634-1639

[111] Wang F, Zulkefli MAM, Sun Z, et al. Investigation on the energy management strategy for 
hydraulic hybrid wheel loaders. In: ASME 2013 Dynamic Systems and Control Conference; 
21-23 October 2013; Palo Alto, CA.V001T11A005 (10 pp.). New York: ASME;2013

[112] Sun H, Jiang JQ. Research on the system configuration and energy control strategy for 
parallel hydraulic hybrid loader. Automation in Construction. 2010;19:213-220

[113] Ochiai M, Ryu S. Hybrid in construction machinery. Paper no. 7-1. In: Proceedings of 
the 7th JFPS International Symposiumon Fluid Power; 15-18 September 2008. Toyama, 
Japan; Tokyo: JFPS: 2008. pp.41-44

[114] Ochiai M. Technical trend and problem in construction machinery. Construction 
Machinery. 2002;38:20-24

[115] Riyuu S, Tamura M, Ochiai M. Hybrid construction machine. Patent 2003328397, Japan; 
2003

Trends and Hybridization Factor for Heavy-Duty Working Vehicles
http://dx.doi.org/10.5772/intechopen.68296

31



[116] Grammatico S, Balluchi A, Cosoli E. A series-parallel hybrid electric powertrain for 
industrial vehicles. In: IEEE Vehicle Power and Propulsion Conference (VPPC);1-3 
September 2010. Lille; 2010

[117] Sierks-Schilling B. 12MTX Hybrid—A major project for the environment. 2009. http://
www.building-construction-machinery.net/

[118] Zhou N, Zhang E, Wang Q, et al. Compound hybrid wheel loader. Patent CN102653228A, 
China; 2012

[119] Flint J. A different kind of hybrid from John Deere. October 2013. FarmProgress.com

[120] Anderson E, John Deere 644K Hybrid Drivetrain Overview, Performance, & Develop-
mental Analysis. In SAE 2013 Heavy Duty Vehicles Symposium Technologies for High 
Efficiency & Fuel Economy; Rosemont, IL; September 2013

[121] Rebholz W. New hydrostatic/mechanical power-split CVT for use in construction 
machinery. Symposium on Gearbox in Vehicle; 2010

[122] Bohler F, Thiebes P, Geimer M, Santoire J, Zahoransky R. Hybrid system for industrial 
application. SAE-NA Paper Series; 2009

[123] Kagoshima M, Sora T, Komiyama M. Hybrid construction equipment power control 
apparatus. Patent7069673, USA; 2006

[124] Kagoshima M. The development of an 8 tonne class hybrid hydraulic excavator SK80H. 
Kobelco Technology Review. 2012;31:6-11

[125] Kagoshima M, Komiyama M, Nanjo T, Tsutsui A. Development of new hybrid excava-

tor. Kobelco Technology Review. 2007;27:39-42

[126] Kwon TS, Lee SW, Sul SK, et al. Power control algorithm for hybrid excavator with 
supercapacitor. IEEE Transactions on Industry Applications. 2010;46:1447-1455

[127] Edamura M, Ishida S, Imura S, Izumi S. Adoption of electrification and hybrid drive 
for more energy-efficient construction machinery. Hitachi Review. 2013;62(2):118-122

[128] Profile Komatsu Corporate (KC). PC200-8 hybrid hydraulic excavator contributes to 
reducing CO

2
 emissions. Views. 2008;3:4-5

[129] Cho S, Yoo S, Park C. Development of a mid-size compound type hybrid electric exca-

vator. EVS27 Barcelona, Spain, November 17-20, 2013

Hybrid Electric Vehicles32


